Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dynare
dynare
Merge requests
!368
updates in the particle filters routines
Code
Review changes
Check out branch
Download
Patches
Plain diff
Expand sidebar
Merged
updates in the particle filters routines
FredericKarame:master
into
master
Overview
0
Commits
4
Pipelines
0
Changes
6
Merged
updates in the particle filters routines
Frédéric Karamé
requested to merge
FredericKarame:master
into
master
Apr 12, 2013
Overview
0
Commits
4
Pipelines
0
Changes
6
0
0
Merge request reports
Compare
master
master (base)
and
latest version
latest version
c85f27b9
4 commits,
Sep 10, 2018
6 files
+
331
−
34
Inline
Compare changes
Side-by-side
Inline
Show whitespace changes
Show one file at a time
Files
6
matlab/particle/conditional_filter_proposal.m
0 → 100644
+
130
−
0
View file @ c85f27b9
Edit in single-file editor
Open in Web IDE
function
[
ProposalStateVector
,
Weights
]
=
conditional_filter_proposal
(
ReducedForm
,
obs
,
StateVectors
,
SampleWeights
,
Q_lower_triangular_cholesky
,
H_lower_triangular_cholesky
,
H
,
DynareOptions
,
normconst2
)
%
% Computes the proposal for each past particle using Gaussian approximations
% for the state errors and the Kalman filter
%
% INPUTS
% reduced_form_model [structure] Matlab's structure describing the reduced form model.
% reduced_form_model.measurement.H [double] (pp x pp) variance matrix of measurement errors.
% reduced_form_model.state.Q [double] (qq x qq) variance matrix of state errors.
% reduced_form_model.state.dr [structure] output of resol.m.
% Y [double] pp*smpl matrix of (detrended) data, where pp is the maximum number of observed variables.
%
% OUTPUTS
% LIK [double] scalar, likelihood
% lik [double] vector, density of observations in each period.
%
% REFERENCES
%
% NOTES
% The vector "lik" is used to evaluate the jacobian of the likelihood.
% Copyright (C) 2012-2013 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
%
% AUTHOR(S) frederic DOT karame AT univ DASH lemans DOT fr
% stephane DOT adjemian AT univ DASH lemans DOT fr
persistent
init_flag2
mf0
mf1
persistent
number_of_state_variables
number_of_observed_variables
persistent
number_of_structural_innovations
% Set local state space model (first-order approximation).
ghx
=
ReducedForm
.
ghx
;
ghu
=
ReducedForm
.
ghu
;
% Set local state space model (second-order approximation).
ghxx
=
ReducedForm
.
ghxx
;
ghuu
=
ReducedForm
.
ghuu
;
ghxu
=
ReducedForm
.
ghxu
;
if
any
(
any
(
isnan
(
ghx
)))
||
any
(
any
(
isnan
(
ghu
)))
||
any
(
any
(
isnan
(
ghxx
)))
||
any
(
any
(
isnan
(
ghuu
)))
||
any
(
any
(
isnan
(
ghxu
)))
||
...
any
(
any
(
isinf
(
ghx
)))
||
any
(
any
(
isinf
(
ghu
)))
||
any
(
any
(
isinf
(
ghxx
)))
||
any
(
any
(
isinf
(
ghuu
)))
||
any
(
any
(
isinf
(
ghxu
)))
...
any
(
any
(
abs
(
ghx
)
>
1e4
))
||
any
(
any
(
abs
(
ghu
)
>
1e4
))
||
any
(
any
(
abs
(
ghxx
)
>
1e4
))
||
any
(
any
(
abs
(
ghuu
)
>
1e4
))
||
any
(
any
(
abs
(
ghxu
)
>
1e4
))
ghx
ghu
ghxx
ghuu
ghxu
end
constant
=
ReducedForm
.
constant
;
state_variables_steady_state
=
ReducedForm
.
state_variables_steady_state
;
% Set persistent variables.
if
isempty
(
init_flag2
)
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
number_of_state_variables
=
length
(
mf0
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
init_flag2
=
1
;
end
if
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'cubature'
)
||
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'monte-carlo'
)
[
nodes
,
weights
]
=
spherical_radial_sigma_points
(
number_of_structural_innovations
)
;
weights_c
=
weights
;
end
if
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'quadrature'
)
[
nodes
,
weights
]
=
nwspgr
(
'GQN'
,
number_of_structural_innovations
,
DynareOptions
.
particle
.
smolyak_accuracy
)
;
weights_c
=
weights
;
end
if
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'unscented'
)
[
nodes
,
weights
,
weights_c
]
=
unscented_sigma_points
(
number_of_structural_innovations
,
DynareOptions
)
;
end
epsilon
=
Q_lower_triangular_cholesky
*
(
nodes
'
)
;
yhat
=
repmat
(
StateVectors
-
state_variables_steady_state
,
1
,
size
(
epsilon
,
2
))
;
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
DynareOptions
.
threads
.
local_state_space_iteration_2
);
PredictedStateMean
=
tmp
(
mf0
,:)
*
weights
;
PredictedObservedMean
=
tmp
(
mf1
,:)
*
weights
;
if
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'cubature'
)
||
...
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'monte-carlo'
)
PredictedStateMean
=
sum
(
PredictedStateMean
,
2
)
;
PredictedObservedMean
=
sum
(
PredictedObservedMean
,
2
)
;
dState
=
bsxfun
(
@
minus
,
tmp
(
mf0
,:),
PredictedStateMean
)
'.*
sqrt
(
weights
)
;
dObserved
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
)
'.*
sqrt
(
weights
);
big_mat
=
[
dObserved
dState
;
[
H_lower_triangular_cholesky
zeros
(
number_of_observed_variables
,
number_of_state_variables
)]
]
;
[
mat1
,
mat
]
=
qr2
(
big_mat
,
0
)
;
mat
=
mat
'
;
clear
(
'mat1'
);
PredictedObservedVarianceSquareRoot
=
mat
(
1
:
number_of_observed_variables
,
1
:
number_of_observed_variables
)
;
CovarianceObservedStateSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
1
:
number_of_observed_variables
)
;
StateVectorVarianceSquareRoot
=
mat
(
number_of_observed_variables
+
(
1
:
number_of_state_variables
),
number_of_observed_variables
+
(
1
:
number_of_state_variables
))
;
StateVectorMean
=
PredictedStateMean
+
(
CovarianceObservedStateSquareRoot
/
PredictedObservedVarianceSquareRoot
)
*
(
obs
-
PredictedObservedMean
)
;
end
if
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'quadrature'
)
||
...
strcmpi
(
DynareOptions
.
particle
.
IS_approximation_method
,
'unscented'
)
dState
=
bsxfun
(
@
minus
,
tmp
(
mf0
,:),
PredictedStateMean
);
dObserved
=
bsxfun
(
@
minus
,
tmp
(
mf1
,:),
PredictedObservedMean
);
PredictedStateVariance
=
dState
*
diag
(
weights_c
)
*
dState
'
;
PredictedObservedVariance
=
dObserved
*
diag
(
weights_c
)
*
dObserved
'
+
H
;
PredictedStateAndObservedCovariance
=
dState
*
diag
(
weights_c
)
*
dObserved
'
;
KalmanFilterGain
=
PredictedStateAndObservedCovariance
/
PredictedObservedVariance
;
StateVectorMean
=
PredictedStateMean
+
KalmanFilterGain
*
(
obs
-
PredictedObservedMean
);
StateVectorVariance
=
PredictedStateVariance
-
KalmanFilterGain
*
PredictedObservedVariance
*
KalmanFilterGain
'
;
StateVectorVariance
=
.
5
*
(
StateVectorVariance
+
StateVectorVariance
'
);
StateVectorVarianceSquareRoot
=
reduced_rank_cholesky
(
StateVectorVariance
)
'
;
end
ProposalStateVector
=
StateVectorVarianceSquareRoot
*
randn
(
size
(
StateVectorVarianceSquareRoot
,
2
),
1
)
+
StateVectorMean
;
ypred
=
measurement_equations
(
ProposalStateVector
,
ReducedForm
,
DynareOptions
)
;
foo
=
H_lower_triangular_cholesky
\
(
obs
-
ypred
)
;
likelihood
=
exp
(
-
0.5
*
(
foo
)
'*
foo
)/
normconst2
+
1e-99
;
Weights
=
SampleWeights
.*
likelihood
;
Loading