Skip to content
Snippets Groups Projects
Select Git revision
  • 644f1345ea8b380588cf69686add4901ec925f5a
  • master default protected
  • julia protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • 5.x protected
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-7.0.0
  • julia-6.4.0
  • julia-6.3.0
  • julia-6.2.0
15 results

ComputingTasks.hh

Blame
  • ModelTree.cc 91.14 KiB
    /*
     * Copyright © 2003-2019 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include "ModelTree.hh"
    #include "MinimumFeedbackSet.hh"
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wold-style-cast"
    #pragma GCC diagnostic ignored "-Wsign-compare"
    #pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
    #include <boost/graph/adjacency_list.hpp>
    #include <boost/graph/max_cardinality_matching.hpp>
    #include <boost/graph/strong_components.hpp>
    #include <boost/graph/topological_sort.hpp>
    #pragma GCC diagnostic pop
    
    #ifdef __APPLE__
    # include <mach-o/dyld.h>
    #endif
    
    using namespace MFS;
    
    void
    ModelTree::copyHelper(const ModelTree &m)
    {
      auto f = [this](expr_t e) { return e->clone(*this); };
    
      // Equations
      for (const auto &it : m.equations)
        equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
      for (const auto &it : m.aux_equations)
        aux_equations.push_back(dynamic_cast<BinaryOpNode *>(f(it)));
    
      auto convert_deriv_map = [f](map<vector<int>, expr_t> dm)
                               {
                                 map<vector<int>, expr_t> dm2;
                                 for (const auto &it : dm)
                                   dm2.emplace(it.first, f(it.second));
                                 return dm2;
                               };
    
      // Derivatives
      for (const auto &it : m.derivatives)
        derivatives.push_back(convert_deriv_map(it));
      for (const auto &it : m.params_derivatives)
        params_derivatives[it.first] = convert_deriv_map(it.second);
    
      auto convert_temporary_terms_t = [f](temporary_terms_t tt)
                                       {
                                         temporary_terms_t tt2;
                                         for (const auto &it : tt)
                                           tt2.insert(f(it));
                                         return tt2;
                                       };
    
      // Temporary terms
      for (const auto &it : m.temporary_terms)
        temporary_terms.insert(f(it));
      for (const auto &it : m.temporary_terms_mlv)
        temporary_terms_mlv[f(it.first)] = f(it.second);
      for (const auto &it : m.temporary_terms_derivatives)
        temporary_terms_derivatives.push_back(convert_temporary_terms_t(it));
      for (const auto &it : m.temporary_terms_idxs)
        temporary_terms_idxs[f(it.first)] = it.second;
      for (const auto &it : m.params_derivs_temporary_terms)
        params_derivs_temporary_terms[it.first] = convert_temporary_terms_t(it.second);
      for (const auto &it : m.params_derivs_temporary_terms_idxs)
        params_derivs_temporary_terms_idxs[f(it.first)] = it.second;
    
      // Other stuff
      for (const auto &it : m.trend_symbols_map)
        trend_symbols_map[it.first] = f(it.second);
      for (const auto &it : m.nonstationary_symbols_map)
        nonstationary_symbols_map[it.first] = {it.second.first, f(it.second.second)};
    }
    
    ModelTree::ModelTree(SymbolTable &symbol_table_arg,
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg,
                         bool is_dynamic_arg) :
      DataTree{symbol_table_arg, num_constants_arg, external_functions_table_arg, is_dynamic_arg},
      derivatives(4),
      NNZDerivatives(4, 0),
      temporary_terms_derivatives(4)
    {
    }
    
    ModelTree::ModelTree(const ModelTree &m) :
      DataTree{m},
      user_set_add_flags{m.user_set_add_flags},
      user_set_subst_flags{m.user_set_subst_flags},
      user_set_add_libs{m.user_set_add_libs},
      user_set_subst_libs{m.user_set_subst_libs},
      user_set_compiler{m.user_set_compiler},
      equations_lineno{m.equations_lineno},
      equation_tags{m.equation_tags},
      equation_tags_xref{m.equation_tags_xref},
      NNZDerivatives{m.NNZDerivatives},
      equation_reordered{m.equation_reordered},
      variable_reordered{m.variable_reordered},
      inv_equation_reordered{m.inv_equation_reordered},
      inv_variable_reordered{m.inv_variable_reordered},
      is_equation_linear{m.is_equation_linear},
      endo2eq{m.endo2eq},
      epilogue{m.epilogue},
      prologue{m.prologue},
      block_lag_lead{m.block_lag_lead},
      cutoff{m.cutoff},
      mfs{m.mfs}
    {
      copyHelper(m);
    }
    
    ModelTree &
    ModelTree::operator=(const ModelTree &m)
    {
      DataTree::operator=(m);
    
      equations.clear();
      equations_lineno = m.equations_lineno;
      aux_equations.clear();
      equation_tags = m.equation_tags;
      equation_tags_xref = m.equation_tags_xref;
      NNZDerivatives = m.NNZDerivatives;
    
      derivatives.clear();
      params_derivatives.clear();
    
      temporary_terms.clear();
      temporary_terms_mlv.clear();
      temporary_terms_derivatives.clear();
      params_derivs_temporary_terms.clear();
      params_derivs_temporary_terms_idxs.clear();
    
      trend_symbols_map.clear();
      nonstationary_symbols_map.clear();
    
      equation_reordered = m.equation_reordered;
      variable_reordered = m.variable_reordered;
      inv_equation_reordered = m.inv_equation_reordered;
      inv_variable_reordered = m.inv_variable_reordered;
      is_equation_linear = m.is_equation_linear;
      endo2eq = m.endo2eq;
      epilogue = m.epilogue;
      prologue = m.prologue;
      block_lag_lead = m.block_lag_lead;
      cutoff = m.cutoff;
      mfs = m.mfs;
    
      user_set_add_flags = m.user_set_add_flags;
      user_set_subst_flags = m.user_set_subst_flags;
      user_set_add_libs = m.user_set_add_libs;
      user_set_subst_libs = m.user_set_subst_libs;
      user_set_compiler = m.user_set_compiler;
    
      copyHelper(m);
    
      return *this;
    }
    
    bool
    ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
    {
      const int n = equations.size();
    
      assert(n == symbol_table.endo_nbr());
    
      using BipartiteGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::undirectedS>;
    
      /*
        Vertices 0 to n-1 are for endogenous (using type specific ID)
        Vertices n to 2*n-1 are for equations (using equation no.)
      */
      BipartiteGraph g(2 * n);
    
      // Fill in the graph
      set<pair<int, int>> endo;
    
      for (const auto &it : contemporaneous_jacobian)
        add_edge(it.first.first + n, it.first.second, g);
    
      // Compute maximum cardinality matching
      vector<int> mate_map(2*n);
    
    #if 1
      bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
    #else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
      fill(mate_map.begin(), mate_map.end(), boost::graph_traits<BipartiteGraph>::null_vertex());
    
      auto natural_endo2eqs = computeNormalizedEquations();
    
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          if (natural_endo2eqs.count(i) == 0)
            continue;
    
          int j = natural_endo2eqs.find(i)->second;
    
          put(&mate_map[0], i, n+j);
          put(&mate_map[0], n+j, i);
        }
    
      boost::edmonds_augmenting_path_finder<BipartiteGraph, int *, boost::property_map<BipartiteGraph, boost::vertex_index_t>::type> augmentor(g, &mate_map[0], get(boost::vertex_index, g));
      while (augmentor.augment_matching())
        {
        };
    
      augmentor.get_current_matching(&mate_map[0]);
    
      bool check = boost::maximum_cardinality_matching_verifier<BipartiteGraph, int *, boost::property_map<BipartiteGraph, boost::vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(boost::vertex_index, g));
    #endif
    
      assert(check);
    
    #ifdef DEBUG
      for (int i = 0; i < n; i++)
        cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " matched with equation " << (mate_map[i]-n+1) << endl;
    #endif
    
      // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
      endo2eq.resize(equations.size());
      transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), [=](int i) { return i-n; });
    
    #ifdef DEBUG
      auto natural_endo2eqs = computeNormalizedEquations(natural_endo2eqs);
    
      int n1 = 0, n2 = 0;
    
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          if (natural_endo2eqs.count(i) == 0)
            continue;
    
          n1++;
    
          auto x = natural_endo2eqs.equal_range(i);
          if (find_if(x.first, x.second, [=](auto y) { return y.second == endo2eq[i]; }) == x.second)
            cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, i))
                 << " not used." << endl;
          else
            n2++;
        }
    
      cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
    #endif
    
      // Check if all variables are normalized
      if (auto it = find(mate_map.begin(), mate_map.begin() + n, boost::graph_traits<BipartiteGraph>::null_vertex());
          it != mate_map.begin() + n)
        {
          if (verbose)
            cerr << "ERROR: Could not normalize the model. Variable "
                 << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, it - mate_map.begin()))
                 << " is not in the maximum cardinality matching." << endl;
          check = false;
        }
      return check;
    }
    
    void
    ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
    {
      bool check = false;
    
      cout << "Normalizing the model..." << endl;
    
      int n = equations.size();
    
      // compute the maximum value of each row of the contemporaneous Jacobian matrix
      //jacob_map normalized_contemporaneous_jacobian;
      jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
      vector<double> max_val(n, 0.0);
      for (const auto &it : contemporaneous_jacobian)
        if (fabs(it.second) > max_val[it.first.first])
          max_val[it.first.first] = fabs(it.second);
    
      for (auto &iter : normalized_contemporaneous_jacobian)
        iter.second /= max_val[iter.first.first];
    
      //We start with the highest value of the cutoff and try to normalize the model
      double current_cutoff = 0.99999999;
    
      int suppressed = 0;
      while (!check && current_cutoff > 1e-19)
        {
          jacob_map_t tmp_normalized_contemporaneous_jacobian;
          int suppress = 0;
          for (auto &iter : normalized_contemporaneous_jacobian)
            if (fabs(iter.second) > max(current_cutoff, cutoff))
              tmp_normalized_contemporaneous_jacobian[{ iter.first.first, iter.first.second }] = iter.second;
            else
              suppress++;
    
          if (suppress != suppressed)
            check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
          suppressed = suppress;
          if (!check)
            {
              current_cutoff /= 2;
              // In this last case try to normalize with the complete jacobian
              if (current_cutoff <= 1e-19)
                check = computeNormalization(normalized_contemporaneous_jacobian, false);
            }
        }
    
      if (!check)
        {
          cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
          //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
          jacob_map_t tmp_normalized_contemporaneous_jacobian;
          set<pair<int, int>> endo;
          for (int i = 0; i < n; i++)
            {
              endo.clear();
              equations[i]->collectEndogenous(endo);
              for (const auto &it : endo)
                tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
            }
          check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
          if (check)
            {
              // Update the jacobian matrix
              for (const auto &[key, ignore] : tmp_normalized_contemporaneous_jacobian)
                {
                  if (static_jacobian.find({ key.first, key.second }) == static_jacobian.end())
                    static_jacobian[{ key.first, key.second }] = 0;
                  if (dynamic_jacobian.find({ 0, key.first, key.second }) == dynamic_jacobian.end())
                    dynamic_jacobian[{ 0, key.first, key.second }] = nullptr;
                  if (contemporaneous_jacobian.find({ key.first, key.second }) == contemporaneous_jacobian.end())
                    contemporaneous_jacobian[{ key.first, key.second }] = 0;
                  try
                    {
                      if (derivatives[1].find({ key.first, getDerivID(symbol_table.getID(SymbolType::endogenous, key.second), 0) }) == derivatives[1].end())
                        derivatives[1][{ key.first, getDerivID(symbol_table.getID(SymbolType::endogenous, key.second), 0) }] = Zero;
                    }
                  catch (DataTree::UnknownDerivIDException &e)
                    {
                      cerr << "The variable " << symbol_table.getName(symbol_table.getID(SymbolType::endogenous, key.second))
                           << " does not appear at the current period (i.e. with no lead and no lag); this case is not handled by the 'block' option of the 'model' block." << endl;
                      exit(EXIT_FAILURE);
                    }
                }
            }
        }
    
      if (!check)
        {
          cerr << "No normalization could be computed. Aborting." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    multimap<int, int>
    ModelTree::computeNormalizedEquations() const
    {
      multimap<int, int> endo2eqs;
      for (size_t i = 0; i < equations.size(); i++)
        {
          auto lhs = dynamic_cast<VariableNode *>(equations[i]->arg1);
          if (!lhs)
            continue;
    
          int symb_id = lhs->symb_id;
          if (symbol_table.getType(symb_id) != SymbolType::endogenous)
            continue;
    
          set<pair<int, int>> endo;
          equations[i]->arg2->collectEndogenous(endo);
          if (endo.find({ symbol_table.getTypeSpecificID(symb_id), 0 }) != endo.end())
            continue;
    
          endo2eqs.emplace(symbol_table.getTypeSpecificID(symb_id), static_cast<int>(i));
          cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << i+1 << endl;
        }
      return endo2eqs;
    }
    
    void
    ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
    {
      int nb_elements_contemparenous_Jacobian = 0;
      set<vector<int>> jacobian_elements_to_delete;
      for (const auto &[indices, d1] : derivatives[1])
        {
          int deriv_id = indices[1];
          if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
            {
              int eq = indices[0];
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              double val = 0;
              try
                {
                  val = d1->eval(eval_context);
                }
              catch (ExprNode::EvalExternalFunctionException &e)
                {
                  val = 1;
                }
              catch (ExprNode::EvalException &e)
                {
                  cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " (line " << equations_lineno[eq] << ") and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
                  d1->writeOutput(cerr, ExprNodeOutputType::matlabDynamicModelSparse, temporary_terms, {});
                  cerr << endl;
                  exit(EXIT_FAILURE);
                }
              if (fabs(val) < cutoff)
                {
                  if (verbose)
                    cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
                  jacobian_elements_to_delete.insert({ eq, deriv_id });
                }
              else
                {
                  if (lag == 0)
                    {
                      nb_elements_contemparenous_Jacobian++;
                      contemporaneous_jacobian[{ eq, var }] = val;
                    }
                  if (static_jacobian.find({ eq, var }) != static_jacobian.end())
                    static_jacobian[{ eq, var }] += val;
                  else
                    static_jacobian[{ eq, var }] = val;
                  dynamic_jacobian[{ lag, eq, var }] = d1;
                }
            }
        }
    
      // Get rid of the elements of the Jacobian matrix below the cutoff
      for (const auto &it : jacobian_elements_to_delete)
        derivatives[1].erase(it);
    
      if (jacobian_elements_to_delete.size() > 0)
        {
          cout << jacobian_elements_to_delete.size() << " elements among " << derivatives[1].size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
               << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
        }
    }
    
    vector<pair<int, int>>
    ModelTree::select_non_linear_equations_and_variables(vector<bool> is_equation_linear, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered,
                                                         vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered,
                                                         lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead,
                                                         vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed)
    {
      vector<int> eq2endo(equations.size(), 0);
      /*equation_reordered.resize(equations.size());
        variable_reordered.resize(equations.size());*/
      unsigned int num = 0;
      for (auto it : endo2eq)
        if (!is_equation_linear[it])
          num++;
      vector<int> endo2block = vector<int>(endo2eq.size(), 1);
      vector<pair<set<int>, pair<set<int>, vector<int>>>> components_set(num);
      int i = 0, j = 0;
      for (auto it : endo2eq)
        if (!is_equation_linear[it])
          {
            equation_reordered[i] = it;
            variable_reordered[i] = j;
            endo2block[j] = 0;
            components_set[endo2block[j]].first.insert(i);
            i++;
            j++;
          }
      getVariableLeadLagByBlock(dynamic_jacobian, endo2block, endo2block.size(), equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
      n_static = vector<unsigned int>(endo2eq.size(), 0);
      n_forward = vector<unsigned int>(endo2eq.size(), 0);
      n_backward = vector<unsigned int>(endo2eq.size(), 0);
      n_mixed = vector<unsigned int>(endo2eq.size(), 0);
      for (unsigned int i = 0; i < endo2eq.size(); i++)
        {
          if (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second != 0)
            n_mixed[i]++;
          else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second != 0)
            n_forward[i]++;
          else if (variable_lag_lead[variable_reordered[i]].first != 0 && variable_lag_lead[variable_reordered[i]].second == 0)
            n_backward[i]++;
          else if (variable_lag_lead[variable_reordered[i]].first == 0 && variable_lag_lead[variable_reordered[i]].second == 0)
            n_static[i]++;
        }
      cout.flush();
      int nb_endo = is_equation_linear.size();
      vector<pair<int, int>> blocks(1, {i, i});
      inv_equation_reordered.resize(nb_endo);
      inv_variable_reordered.resize(nb_endo);
      for (int i = 0; i < nb_endo; i++)
        {
          inv_variable_reordered[variable_reordered[i]] = i;
          inv_equation_reordered[equation_reordered[i]] = i;
        }
      return blocks;
    }
    
    bool
    ModelTree::computeNaturalNormalization()
    {
      bool bool_result = true;
      set<pair<int, int>> result;
      endo2eq.resize(equations.size());
      for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
        if (!is_equation_linear[eq])
          {
            BinaryOpNode *eq_node = equations[eq];
            expr_t lhs = eq_node->arg1;
            result.clear();
            lhs->collectDynamicVariables(SymbolType::endogenous, result);
            if (result.size() == 1 && result.begin()->second == 0)
              {
                //check if the endogenous variable has not been already used in an other match !
                if (find(endo2eq.begin(), endo2eq.end(), result.begin()->first) == endo2eq.end())
                  endo2eq[result.begin()->first] = eq;
                else
                  {
                    bool_result = false;
                    break;
                  }
              }
          }
      return bool_result;
    }
    
    void
    ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
    {
      vector<int> eq2endo(equations.size(), 0);
      equation_reordered.resize(equations.size());
      variable_reordered.resize(equations.size());
      int n = equations.size();
      vector<bool> IM(n*n);
      int i = 0;
      for (auto it : endo2eq)
        {
          eq2endo[it] = i;
          equation_reordered[i] = i;
          variable_reordered[it] = i;
          i++;
        }
      if (cutoff == 0)
        {
          set<pair<int, int>> endo;
          for (int i = 0; i < n; i++)
            {
              endo.clear();
              equations[i]->collectEndogenous(endo);
              for (const auto &it : endo)
                IM[i * n + endo2eq[it.first]] = true;
            }
        }
      else
        for (const auto &it : static_jacobian_arg)
          IM[it.first.first * n + endo2eq[it.first.second]] = true;
      bool something_has_been_done = true;
      prologue = 0;
      int k = 0;
      // Find the prologue equations and place first the AR(1) shock equations first
      while (something_has_been_done)
        {
          int tmp_prologue = prologue;
          something_has_been_done = false;
          for (int i = prologue; i < n; i++)
            {
              int nze = 0;
              for (int j = tmp_prologue; j < n; j++)
                if (IM[i * n + j])
                  {
                    nze++;
                    k = j;
                  }
              if (nze == 1)
                {
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[tmp_prologue * n + j];
                      IM[tmp_prologue * n + j] = IM[i * n + j];
                      IM[i * n + j] = tmp_bool;
                    }
                  int tmp = equation_reordered[tmp_prologue];
                  equation_reordered[tmp_prologue] = equation_reordered[i];
                  equation_reordered[i] = tmp;
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[j * n + tmp_prologue];
                      IM[j * n + tmp_prologue] = IM[j * n + k];
                      IM[j * n + k] = tmp_bool;
                    }
                  tmp = variable_reordered[tmp_prologue];
                  variable_reordered[tmp_prologue] = variable_reordered[k];
                  variable_reordered[k] = tmp;
                  tmp_prologue++;
                  something_has_been_done = true;
                }
            }
          prologue = tmp_prologue;
        }
    
      something_has_been_done = true;
      epilogue = 0;
      // Find the epilogue equations
      while (something_has_been_done)
        {
          int tmp_epilogue = epilogue;
          something_has_been_done = false;
          for (int i = prologue; i < n - static_cast<int>(epilogue); i++)
            {
              int nze = 0;
              for (int j = prologue; j < n - tmp_epilogue; j++)
                if (IM[j * n + i])
                  {
                    nze++;
                    k = j;
                  }
              if (nze == 1)
                {
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                      IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                      IM[k * n + j] = tmp_bool;
                    }
                  int tmp = equation_reordered[n - 1 - tmp_epilogue];
                  equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
                  equation_reordered[k] = tmp;
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                      IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                      IM[j * n + i] = tmp_bool;
                    }
                  tmp = variable_reordered[n - 1 - tmp_epilogue];
                  variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
                  variable_reordered[i] = tmp;
                  tmp_epilogue++;
                  something_has_been_done = true;
                }
            }
          epilogue = tmp_epilogue;
        }
    }
    
    equation_type_and_normalized_equation_t
    ModelTree::equationTypeDetermination(const map<tuple<int, int, int>, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
    {
      expr_t lhs;
      BinaryOpNode *eq_node;
      EquationType Equation_Simulation_Type;
      equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
      for (unsigned int i = 0; i < equations.size(); i++)
        {
          int eq = Index_Equ_IM[i];
          int var = Index_Var_IM[i];
          eq_node = equations[eq];
          lhs = eq_node->arg1;
          Equation_Simulation_Type = E_SOLVE;
          auto derivative = first_order_endo_derivatives.find({ eq, var, 0 });
          pair<bool, expr_t> res;
          if (derivative != first_order_endo_derivatives.end())
            {
              set<pair<int, int>> result;
              derivative->second->collectEndogenous(result);
              auto d_endo_variable = result.find({ var, 0 });
              //Determine whether the equation could be evaluated rather than to be solved
              if (lhs->isVariableNodeEqualTo(SymbolType::endogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
                Equation_Simulation_Type = E_EVALUATE;
              else
                {
                  vector<tuple<int, expr_t, expr_t>> List_of_Op_RHS;
                  res = equations[eq]->normalizeEquation(var, List_of_Op_RHS);
                  if (mfs == 2)
                    {
                      if (d_endo_variable == result.end() && res.second)
                        Equation_Simulation_Type = E_EVALUATE_S;
                    }
                  else if (mfs == 3)
                    {
                      if (res.second) // The equation could be solved analytically
                        Equation_Simulation_Type = E_EVALUATE_S;
                    }
                }
            }
          V_Equation_Simulation_Type[eq] = { Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second) };
        }
      return V_Equation_Simulation_Type;
    }
    
    void
    ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
    {
      int nb_endo = symbol_table.endo_nbr();
      variable_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
      equation_lead_lag = lag_lead_vector_t(nb_endo, { 0, 0 });
      vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
      for (int i = 0; i < nb_endo; i++)
        {
          if (i < static_cast<int>(prologue))
            {
              variable_blck[variable_reordered[i]] = i;
              equation_blck[equation_reordered[i]] = i;
            }
          else if (i < static_cast<int>(components_set.size() + prologue))
            {
              variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
              equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
            }
          else
            {
              variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
              equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
            }
        }
      for (const auto &it : dynamic_jacobian)
        {
          auto [lag, j_1, i_1] = it.first;
          if (variable_blck[i_1] == equation_blck[j_1])
            {
              if (lag > variable_lead_lag[i_1].second)
                variable_lead_lag[i_1] = { variable_lead_lag[i_1].first, lag };
              if (lag < -variable_lead_lag[i_1].first)
                variable_lead_lag[i_1] = { -lag, variable_lead_lag[i_1].second };
              if (lag > equation_lead_lag[j_1].second)
                equation_lead_lag[j_1] = { equation_lead_lag[j_1].first, lag };
              if (lag < -equation_lead_lag[j_1].first)
                equation_lead_lag[j_1] = { -lag, equation_lead_lag[j_1].second };
            }
        }
    }
    
    void
    ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
    {
      int nb_var = variable_reordered.size();
      int n = nb_var - prologue - epilogue;
    
      AdjacencyList_t G2(n);
    
      // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
      auto v_index = get(boost::vertex_index, G2);
      for (int i = 0; i < n; i++)
        put(v_index, vertex(i, G2), i);
    
      vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);
    
      for (int i = 0; i < nb_var; i++)
        {
          reverse_equation_reordered[equation_reordered[i]] = i;
          reverse_variable_reordered[variable_reordered[i]] = i;
        }
      jacob_map_t tmp_normalized_contemporaneous_jacobian;
      if (cutoff == 0)
        {
          set<pair<int, int>> endo;
          for (int i = 0; i < nb_var; i++)
            {
              endo.clear();
              equations[i]->collectEndogenous(endo);
              for (const auto &it : endo)
                tmp_normalized_contemporaneous_jacobian[{ i, it.first }] = 1;
            }
        }
      else
        tmp_normalized_contemporaneous_jacobian = static_jacobian;
      for (const auto &[key, value] : tmp_normalized_contemporaneous_jacobian)
        if (reverse_equation_reordered[key.first] >= static_cast<int>(prologue) && reverse_equation_reordered[key.first] < static_cast<int>(nb_var - epilogue)
            && reverse_variable_reordered[key.second] >= static_cast<int>(prologue) && reverse_variable_reordered[key.second] < static_cast<int>(nb_var - epilogue)
            && key.first != endo2eq[key.second])
          add_edge(vertex(reverse_equation_reordered[endo2eq[key.second]]-prologue, G2),
                   vertex(reverse_equation_reordered[key.first]-prologue, G2),
                   G2);
    
      vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
      boost::iterator_property_map<int *, boost::property_map<AdjacencyList_t, boost::vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(boost::vertex_index, G2));
    
      // Compute strongly connected components
      int num = strong_components(G2, endo2block_map);
    
      blocks = vector<pair<int, int>>(num, { 0, 0 });
    
      // Create directed acyclic graph associated to the strongly connected components
      using DirectedGraph = boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS>;
      DirectedGraph dag(num);
    
      for (unsigned int i = 0; i < num_vertices(G2); i++)
        {
          AdjacencyList_t::out_edge_iterator it_out, out_end;
          AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
          for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
            {
              int t_b = endo2block_map[target(*it_out, G2)];
              int s_b = endo2block_map[source(*it_out, G2)];
              if (s_b != t_b)
                add_edge(s_b, t_b, dag);
            }
        }
    
      // Compute topological sort of DAG (ordered list of unordered SCC)
      deque<int> ordered2unordered;
      topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order
    
      // Construct mapping from unordered SCC to ordered SCC
      vector<int> unordered2ordered(num);
      for (int i = 0; i < num; i++)
        unordered2ordered[ordered2unordered[i]] = i;
    
      //This vector contains for each block:
      //   - first set = equations belonging to the block,
      //   - second set = the feeback variables,
      //   - third vector = the reordered non-feedback variables.
      vector<tuple<set<int>, set<int>, vector<int>>> components_set(num);
      for (unsigned int i = 0; i < endo2block.size(); i++)
        {
          endo2block[i] = unordered2ordered[endo2block[i]];
          blocks[endo2block[i]].first++;
          get<0>(components_set[endo2block[i]]).insert(i);
        }
    
      getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
    
      vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
      int order = prologue;
      //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
      if (select_feedback_variable)
        {
          for (int i = 0; i < n; i++)
            if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
                || variable_lag_lead[variable_reordered[i+prologue]].second > 0
                || variable_lag_lead[variable_reordered[i+prologue]].first > 0
                || equation_lag_lead[equation_reordered[i+prologue]].second > 0
                || equation_lag_lead[equation_reordered[i+prologue]].first > 0
                || mfs == 0)
              add_edge(vertex(i, G2), vertex(i, G2), G2);
        }
      else
        for (int i = 0; i < n; i++)
          if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
            add_edge(vertex(i, G2), vertex(i, G2), G2);
    
      //Determines the dynamic structure of each equation
      n_static = vector<unsigned int>(prologue+num+epilogue, 0);
      n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
      n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
      n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);
    
      for (int i = 0; i < static_cast<int>(prologue); i++)
        if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
          n_mixed[i]++;
        else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
          n_forward[i]++;
        else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
          n_backward[i]++;
        else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
          n_static[i]++;
    
      //For each block, the minimum set of feedback variable is computed
      // and the non-feedback variables are reordered to get
      // a sub-recursive block without feedback variables
    
      for (int i = 0; i < num; i++)
        {
          AdjacencyList_t G = extract_subgraph(G2, get<0>(components_set[i]));
          set<int> feed_back_vertices;
          AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
          auto v_index = get(boost::vertex_index, G);
          get<1>(components_set[i]) = feed_back_vertices;
          blocks[i].second = feed_back_vertices.size();
          vector<int> Reordered_Vertice;
          Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);
    
          //First we have the recursive equations conditional on feedback variables
          for (int j = 0; j < 4; j++)
            for (int its : Reordered_Vertice)
              {
                bool something_done = false;
                if (j == 2 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second != 0)
                  {
                    n_mixed[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 3 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second != 0)
                  {
                    n_forward[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 1 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second == 0)
                  {
                    n_backward[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[its+prologue]].second == 0)
                  {
                    n_static[prologue+i]++;
                    something_done = true;
                  }
                if (something_done)
                  {
                    equation_reordered[order] = tmp_equation_reordered[its+prologue];
                    variable_reordered[order] = tmp_variable_reordered[its+prologue];
                    order++;
                  }
              }
    
          get<2>(components_set[i]) = Reordered_Vertice;
          //Second we have the equations related to the feedback variables
          for (int j = 0; j < 4; j++)
            for (int feed_back_vertice : feed_back_vertices)
              {
                bool something_done = false;
                if (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
                  {
                    n_mixed[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second != 0)
                  {
                    n_forward[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
                  {
                    n_backward[prologue+i]++;
                    something_done = true;
                  }
                else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue]].second == 0)
                  {
                    n_static[prologue+i]++;
                    something_done = true;
                  }
                if (something_done)
                  {
                    equation_reordered[order] = tmp_equation_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
                    variable_reordered[order] = tmp_variable_reordered[v_index[vertex(feed_back_vertice, G)]+prologue];
                    order++;
                  }
              }
        }
    
      for (int i = 0; i < static_cast<int>(epilogue); i++)
        if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
          n_mixed[prologue+num+i]++;
        else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
          n_forward[prologue+num+i]++;
        else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
          n_backward[prologue+num+i]++;
        else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
          n_static[prologue+num+i]++;
    
      inv_equation_reordered.resize(nb_var);
      inv_variable_reordered.resize(nb_var);
      for (int i = 0; i < nb_var; i++)
        {
          inv_variable_reordered[variable_reordered[i]] = i;
          inv_equation_reordered[equation_reordered[i]] = i;
        }
    }
    
    void
    ModelTree::printBlockDecomposition(const vector<pair<int, int>> &blocks) const
    {
      int largest_block = 0,
        Nb_SimulBlocks = 0,
        Nb_feedback_variable = 0;
      unsigned int Nb_TotalBlocks = getNbBlocks();
      for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
        {
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
            {
              Nb_SimulBlocks++;
              int size = getBlockSize(block);
              if (size > largest_block)
                {
                  largest_block = size;
                  Nb_feedback_variable = getBlockMfs(block);
                }
            }
        }
    
      int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
      cout << Nb_TotalBlocks << " block(s) found:" << endl
           << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
           << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
           << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
    }
    
    block_type_firstequation_size_mfs_t
    ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int>> &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<tuple<int, int, int, int>> &block_col_type, bool linear_decomposition)
    {
      int i = 0;
      int count_equ = 0, blck_count_simult = 0;
      int Blck_Size, MFS_Size;
      int Lead, Lag;
      block_type_firstequation_size_mfs_t block_type_size_mfs;
      BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
      int eq = 0;
      unsigned int l_n_static = 0, l_n_forward = 0, l_n_backward = 0, l_n_mixed = 0;
      for (i = 0; i < static_cast<int>(prologue+blocks.size()+epilogue); i++)
        {
          int first_count_equ = count_equ;
          if (i < static_cast<int>(prologue))
            {
              Blck_Size = 1;
              MFS_Size = 1;
            }
          else if (i < static_cast<int>(prologue+blocks.size()))
            {
              Blck_Size = blocks[blck_count_simult].first;
              MFS_Size = blocks[blck_count_simult].second;
              blck_count_simult++;
            }
          else if (i < static_cast<int>(prologue+blocks.size()+epilogue))
            {
              Blck_Size = 1;
              MFS_Size = 1;
            }
    
          Lag = Lead = 0;
          set<pair<int, int>> endo;
          for (count_equ = first_count_equ; count_equ < Blck_Size+first_count_equ; count_equ++)
            {
              endo.clear();
              equations[equation_reordered[count_equ]]->collectEndogenous(endo);
              for (const auto &it : endo)
                {
                  int curr_variable = it.first;
                  int curr_lag = it.second;
                  if (linear_decomposition)
                    {
                      if (dynamic_jacobian.find({ curr_lag, equation_reordered[count_equ], curr_variable }) != dynamic_jacobian.end())
                        {
                          if (curr_lag > Lead)
                            Lead = curr_lag;
                          else if (-curr_lag > Lag)
                            Lag = -curr_lag;
                        }
                    }
                  else
                    {
                      if (find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable)
                          != variable_reordered.begin()+(first_count_equ+Blck_Size)
                          && dynamic_jacobian.find({ curr_lag, equation_reordered[count_equ], curr_variable }) != dynamic_jacobian.end())
                        {
                          if (curr_lag > Lead)
                            Lead = curr_lag;
                          else if (-curr_lag > Lag)
                            Lag = -curr_lag;
                        }
                    }
                }
            }
          if (Lag > 0 && Lead > 0)
            {
              if (Blck_Size == 1)
                Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
              else
                Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
            }
          else if (Blck_Size > 1)
            {
              if (Lead > 0)
                Simulation_Type = SOLVE_BACKWARD_COMPLETE;
              else
                Simulation_Type = SOLVE_FORWARD_COMPLETE;
            }
          else
            {
              if (Lead > 0)
                Simulation_Type = SOLVE_BACKWARD_SIMPLE;
              else
                Simulation_Type = SOLVE_FORWARD_SIMPLE;
            }
          l_n_static = n_static[i];
          l_n_forward = n_forward[i];
          l_n_backward = n_backward[i];
          l_n_mixed = n_mixed[i];
          if (Blck_Size == 1)
            {
              if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
                {
                  if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                    Simulation_Type = EVALUATE_BACKWARD;
                  else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                    Simulation_Type = EVALUATE_FORWARD;
                }
              if (i > 0)
                {
                  bool is_lead = false, is_lag = false;
                  int c_Size = get<2>(block_type_size_mfs[block_type_size_mfs.size()-1]);
                  int first_equation = get<1>(block_type_size_mfs[block_type_size_mfs.size()-1]);
                  if (c_Size > 0 && ((prev_Type == EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                                     || (prev_Type == EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag)))
                    {
                      for (int j = first_equation; j < first_equation+c_Size; j++)
                        {
                          auto it = dynamic_jacobian.find({ -1, equation_reordered[eq], variable_reordered[j] });
                          if (it != dynamic_jacobian.end())
                            is_lag = true;
                          it = dynamic_jacobian.find({ +1, equation_reordered[eq], variable_reordered[j] });
                          if (it != dynamic_jacobian.end())
                            is_lead = true;
                        }
                    }
                  if ((prev_Type == EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                      || (prev_Type == EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag))
                    {
                      //merge the current block with the previous one
                      BlockSimulationType c_Type = get<0>(block_type_size_mfs[block_type_size_mfs.size()-1]);
                      c_Size++;
                      block_type_size_mfs[block_type_size_mfs.size()-1] = { c_Type, first_equation, c_Size, c_Size };
                      if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
                        Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
                      if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
                        Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                      block_lag_lead[block_type_size_mfs.size()-1] = { Lag, Lead };
                      auto tmp = block_col_type[block_col_type.size()-1];
                      block_col_type[block_col_type.size()-1] = { get<0>(tmp)+l_n_static, get<1>(tmp)+l_n_forward, get<2>(tmp)+l_n_backward, get<3>(tmp)+l_n_mixed };
                    }
                  else
                    {
                      block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
                      block_lag_lead.emplace_back(Lag, Lead);
                      block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
                    }
                }
              else
                {
                  block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
                  block_lag_lead.emplace_back(Lag, Lead);
                  block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
                }
            }
          else
            {
              block_type_size_mfs.emplace_back(Simulation_Type, eq, Blck_Size, MFS_Size);
              block_lag_lead.emplace_back(Lag, Lead);
              block_col_type.emplace_back(l_n_static, l_n_forward, l_n_backward, l_n_mixed);
            }
          prev_Type = Simulation_Type;
          eq += Blck_Size;
        }
      return block_type_size_mfs;
    }
    
    vector<bool>
    ModelTree::equationLinear(map<tuple<int, int, int>, expr_t> first_order_endo_derivatives) const
    {
      vector<bool> is_linear(symbol_table.endo_nbr(), true);
      for (const auto &it : first_order_endo_derivatives)
        {
          expr_t Id = it.second;
          set<pair<int, int>> endogenous;
          Id->collectEndogenous(endogenous);
          if (endogenous.size() > 0)
            {
              int eq = get<0>(it.first);
              is_linear[eq] = false;
            }
        }
      return is_linear;
    }
    
    vector<bool>
    ModelTree::BlockLinear(const blocks_derivatives_t &blocks_derivatives, const vector<int> &variable_reordered) const
    {
      unsigned int nb_blocks = getNbBlocks();
      vector<bool> blocks_linear(nb_blocks, true);
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          int block_size = getBlockSize(block);
          block_derivatives_equation_variable_laglead_nodeid_t derivatives_block = blocks_derivatives[block];
          int first_variable_position = getBlockFirstEquation(block);
          if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            for (const auto &[ignore, ignore2, lag, d1] : derivatives_block)
              {
                if (lag == 0)
                  {
                    set<pair<int, int>> endogenous;
                    d1->collectEndogenous(endogenous);
                    if (endogenous.size() > 0)
                      for (int l = 0; l < block_size; l++)
                        if (endogenous.find({ variable_reordered[first_variable_position+l], 0 }) != endogenous.end())
                          {
                            blocks_linear[block] = false;
                            goto the_end;
                          }
                  }
              }
          else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            for (const auto &[ignore, ignore2, lag, d1] : derivatives_block)
              {
                set<pair<int, int>> endogenous;
                d1->collectEndogenous(endogenous);
                if (endogenous.size() > 0)
                  for (int l = 0; l < block_size; l++)
                    if (endogenous.find({ variable_reordered[first_variable_position+l], lag }) != endogenous.end())
                      {
                        blocks_linear[block] = false;
                        goto the_end;
                      }
              }
        the_end:
          ;
        }
      return blocks_linear;
    }
    
    int
    ModelTree::equation_number() const
    {
      return (equations.size());
    }
    
    void
    ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                               ExprNodeOutputType output_type,
                               const temporary_terms_t &temporary_terms) const
    {
      if (auto it = derivatives[1].find({ eq, getDerivID(symb_id, lag) });
          it != derivatives[1].end())
        it->second->writeOutput(output, output_type, temporary_terms, {});
      else
        output << 0;
    }
    
    void
    ModelTree::computeDerivatives(int order, const set<int> &vars)
    {
      assert(order >= 1);
    
      // Do not shrink the vectors, since they have a minimal size of 4 (see constructor)
      derivatives.resize(max(static_cast<size_t>(order+1), derivatives.size()));
      NNZDerivatives.resize(max(static_cast<size_t>(order+1), NNZDerivatives.size()), 0);
    
      // First-order derivatives
      for (int var : vars)
        for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
          {
            expr_t d1 = equations[eq]->getDerivative(var);
            if (d1 == Zero)
              continue;
            derivatives[1][{ eq, var }] = d1;
            ++NNZDerivatives[1];
          }
    
      // Higher-order derivatives
      for (int o = 2; o <= order; o++)
        for (const auto &it : derivatives[o-1])
          for (int var : vars)
            {
              if (it.first.back() > var)
                continue;
    
              expr_t d = it.second->getDerivative(var);
              if (d == Zero)
                continue;
    
              vector<int> indices{it.first};
              indices.push_back(var);
              // At this point, indices of endogenous variables are sorted in non-decreasing order
              derivatives[o][indices] = d;
              // We output symmetric elements at order = 2
              if (o == 2 && indices[1] != indices[2])
                NNZDerivatives[o] += 2;
              else
                NNZDerivatives[o]++;
            }
    }
    
    void
    ModelTree::computeTemporaryTerms(bool is_matlab, bool no_tmp_terms)
    {
      /* Collect all model local variables appearing in equations (and only those,
         because printing unused model local variables can lead to a crash,
         see Dynare/dynare#101).
         Then store them in a dedicated structure (temporary_terms_mlv), that will
         be treated as the rest of temporary terms. */
      temporary_terms_mlv.clear();
      set<int> used_local_vars;
      for (auto &equation : equations)
        equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
      for (int used_local_var : used_local_vars)
        {
          VariableNode *v = AddVariable(used_local_var);
          temporary_terms_mlv[v] = local_variables_table.find(used_local_var)->second;
        }
    
      // Compute the temporary terms in equations and derivatives
      map<pair<int, int>, temporary_terms_t> temp_terms_map;
      map<expr_t, pair<int, pair<int, int>>> reference_count;
    
      for (auto &equation : equations)
        equation->computeTemporaryTerms({ 0, 0 },
                                        temp_terms_map,
                                        reference_count,
                                        is_matlab);
    
      for (int order = 1; order < static_cast<int>(derivatives.size()); order++)
        for (const auto &it : derivatives[order])
          it.second->computeTemporaryTerms({ 0, order },
                                           temp_terms_map,
                                           reference_count,
                                           is_matlab);
    
      /* If the user has specified the notmpterms option, clear all temporary
         terms, except those that correspond to external functions (since they are
         not optional) */
      if (no_tmp_terms)
        for (auto &it : temp_terms_map)
          // The following loop can be simplified with std::erase_if() in C++20
          for (auto it2 = it.second.begin(); it2 != it.second.end();)
            if (!dynamic_cast<AbstractExternalFunctionNode *>(*it2))
              it2 = it.second.erase(it2);
            else
              ++it2;
    
      // Fill the (now obsolete) temporary_terms structure
      temporary_terms.clear();
      for (const auto &it : temp_terms_map)
        temporary_terms.insert(it.second.begin(), it.second.end());
    
      // Fill the new structure
      temporary_terms_derivatives.clear();
      temporary_terms_derivatives.resize(derivatives.size());
      for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
        temporary_terms_derivatives[order] = move(temp_terms_map[{ 0, order }]);
    
      // Compute indices in MATLAB/Julia vector
      int idx = 0;
      for (auto &it : temporary_terms_mlv)
        temporary_terms_idxs[it.first] = idx++;
      for (int order = 0; order < static_cast<int>(derivatives.size()); order++)
        for (const auto &it : temporary_terms_derivatives[order])
          temporary_terms_idxs[it] = idx++;
    }
    
    void
    ModelTree::writeModelLocalVariableTemporaryTerms(temporary_terms_t &temp_term_union,
                                                     const temporary_terms_idxs_t &tt_idxs,
                                                     ostream &output, ExprNodeOutputType output_type,
                                                     deriv_node_temp_terms_t &tef_terms) const
    {
      temporary_terms_t tto;
      for (auto it : temporary_terms_mlv)
        tto.insert(it.first);
    
      for (auto &it : temporary_terms_mlv)
        {
          if (isJuliaOutput(output_type))
            output << "    @inbounds const ";
    
          it.first->writeOutput(output, output_type, tto, tt_idxs, tef_terms);
          output << " = ";
          it.second->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
    
          if (isCOutput(output_type) || isMatlabOutput(output_type))
            output << ";";
          output << endl;
    
          /* We put in temp_term_union the VariableNode corresponding to the MLV,
             not its definition, so that when equations use the MLV,
             T(XXX) is printed instead of the MLV name */
          temp_term_union.insert(it.first);
        }
    }
    
    void
    ModelTree::writeTemporaryTerms(const temporary_terms_t &tt,
                                   temporary_terms_t &temp_term_union,
                                   const temporary_terms_idxs_t &tt_idxs,
                                   ostream &output, ExprNodeOutputType output_type, deriv_node_temp_terms_t &tef_terms) const
    {
      for (auto it : tt)
        {
          if (dynamic_cast<AbstractExternalFunctionNode *>(it))
            it->writeExternalFunctionOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
    
          if (isJuliaOutput(output_type))
            output << "    @inbounds ";
    
          it->writeOutput(output, output_type, tt, tt_idxs, tef_terms);
          output << " = ";
          it->writeOutput(output, output_type, temp_term_union, tt_idxs, tef_terms);
    
          if (isCOutput(output_type) || isMatlabOutput(output_type))
            output << ";";
          output << endl;
    
          temp_term_union.insert(it);
        }
    }
    
    void
    ModelTree::writeJsonTemporaryTerms(const temporary_terms_t &tt,
                                       temporary_terms_t &temp_term_union,
                                       ostream &output,
                                       deriv_node_temp_terms_t &tef_terms, const string &concat) const
    {
      // Local var used to keep track of temp nodes already written
      bool wrote_term = false;
      temporary_terms_t tt2 = temp_term_union;
    
      output << R"("external_functions_temporary_terms_)" << concat << R"(": [)";
      for (auto it : tt)
        {
          if (dynamic_cast<AbstractExternalFunctionNode *>(it))
            {
              if (wrote_term)
                output << ", ";
              vector<string> efout;
              it->writeJsonExternalFunctionOutput(efout, tt2, tef_terms);
              for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
                {
                  if (it1 != efout.begin())
                    output << ", ";
                  output << *it1;
                }
              wrote_term = true;
            }
          tt2.insert(it);
        }
    
      wrote_term = false;
      output << "]"
             << R"(, "temporary_terms_)" << concat << R"(": [)";
      for (const auto &it : tt)
        {
          if (wrote_term)
            output << ", ";
          output << R"({"temporary_term": ")";
          it->writeJsonOutput(output, tt, tef_terms);
          output << R"(")"
                 << R"(, "value": ")";
          it->writeJsonOutput(output, temp_term_union, tef_terms);
          output << R"("})" << endl;
          wrote_term = true;
    
          temp_term_union.insert(it);
        }
      output << "]";
    }
    
    void
    ModelTree::fixNestedParenthesis(ostringstream &output, map<string, string> &tmp_paren_vars, bool &message_printed) const
    {
      string str = output.str();
      if (!testNestedParenthesis(str))
        return;
      int open = 0;
      int first_open_paren = 0;
      int matching_paren = 0;
      bool hit_limit = false;
      int i1 = 0;
      for (size_t i = 0; i < str.length(); i++)
        {
          if (str.at(i) == '(')
            {
              if (open == 0)
                first_open_paren = i;
              open++;
            }
          else if (str.at(i) == ')')
            {
              open--;
              if (open == 0)
                matching_paren = i;
            }
          if (open > 32)
            hit_limit = true;
    
          if (hit_limit && open == 0)
            {
              if (!message_printed)
                {
                  cerr << "Warning: A .m file created by Dynare will have more than 32 nested parenthesis. MATLAB cannot support this. " << endl
                       << "         We are going to modify, albeit inefficiently, this output to have fewer than 32 nested parenthesis. " << endl
                       << "         It would hence behoove you to use the use_dll option of the model block to circumnavigate this problem." << endl
                       << "         If you have not yet set up a compiler on your system, see the MATLAB documentation for doing so." << endl
                       << "         For Windows, see: https://www.mathworks.com/help/matlab/matlab_external/install-mingw-support-package.html" << endl << endl;
                  message_printed = true;
                }
              string str1 = str.substr(first_open_paren, matching_paren - first_open_paren + 1);
              string repstr, varname;
              while (testNestedParenthesis(str1))
                {
                  size_t open_paren_idx = string::npos;
                  size_t match_paren_idx = string::npos;
                  size_t last_open_paren = string::npos;
                  for (size_t j = 0; j < str1.length(); j++)
                    {
                      if (str1.at(j) == '(')
                        {
                          // don't match, e.g. y(1)
                          if (size_t idx = str1.find_last_of("*/-+", j - 1);
                              j == 0 || (idx != string::npos && idx == j - 1))
                            open_paren_idx = j;
                          last_open_paren = j;
                        }
                      else if (str1.at(j) == ')')
                        {
                          // don't match, e.g. y(1)
                          if (size_t idx = str1.find_last_not_of("0123456789", j - 1);
                              idx != string::npos && idx != last_open_paren)
                            match_paren_idx = j;
                        }
    
                      if (open_paren_idx != string::npos && match_paren_idx != string::npos)
                        {
                          string val = str1.substr(open_paren_idx, match_paren_idx - open_paren_idx + 1);
                          if (auto it = tmp_paren_vars.find(val);
                              it == tmp_paren_vars.end())
                            {
                              ostringstream ptvstr;
                              ptvstr << i1++;
                              varname = "paren32_tmp_var_" + ptvstr.str();
                              repstr = repstr + varname + " = " + val + ";\n";
                              tmp_paren_vars[val] = varname;
                            }
                          else
                            varname = it->second;
                          str1.replace(open_paren_idx, match_paren_idx - open_paren_idx + 1, varname);
                          break;
                        }
                    }
                }
              if (auto it = tmp_paren_vars.find(str1);
                  it == tmp_paren_vars.end())
                {
                  ostringstream ptvstr;
                  ptvstr << i1++;
                  varname = "paren32_tmp_var_" + ptvstr.str();
                  repstr = repstr + varname + " = " + str1 + ";\n";
                }
              else
                varname = it->second;
              str.replace(first_open_paren, matching_paren - first_open_paren + 1, varname);
              size_t insertLoc = str.find_last_of("\n", first_open_paren);
              str.insert(insertLoc + 1, repstr);
              hit_limit = false;
              i = -1;
              first_open_paren = matching_paren = open = 0;
            }
        }
      output.str(str);
    }
    
    bool
    ModelTree::testNestedParenthesis(const string &str) const
    {
      int open = 0;
      for (char i : str)
        {
          if (i == '(')
            open++;
          else if (i == ')')
            open--;
          if (open > 32)
            return true;
        }
      return false;
    }
    
    void
    ModelTree::compileTemporaryTerms(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, map_idx_t map_idx, bool dynamic, bool steady_dynamic) const
    {
      // Local var used to keep track of temp nodes already written
      temporary_terms_t tt2;
      // To store the functions that have already been written in the form TEF* = ext_fun();
      deriv_node_temp_terms_t tef_terms;
      for (auto it : tt)
        {
          if (dynamic_cast<AbstractExternalFunctionNode *>(it))
            {
              it->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
            }
    
          FNUMEXPR_ fnumexpr(TemporaryTerm, static_cast<int>(map_idx.find(it->idx)->second));
          fnumexpr.write(code_file, instruction_number);
          it->compile(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
          if (dynamic)
            {
              FSTPT_ fstpt(static_cast<int>(map_idx.find(it->idx)->second));
              fstpt.write(code_file, instruction_number);
            }
          else
            {
              FSTPST_ fstpst(static_cast<int>(map_idx.find(it->idx)->second));
              fstpst.write(code_file, instruction_number);
            }
          // Insert current node into tt2
          tt2.insert(it);
        }
    }
    
    void
    ModelTree::writeJsonModelLocalVariables(ostream &output, deriv_node_temp_terms_t &tef_terms) const
    {
      /* Collect all model local variables appearing in equations, and print only
         them. Printing unused model local variables can lead to a crash (see
         ticket #101). */
      set<int> used_local_vars;
    
      // Use an empty set for the temporary terms
      const temporary_terms_t tt;
    
      for (auto equation : equations)
        equation->collectVariables(SymbolType::modelLocalVariable, used_local_vars);
    
      output << R"("model_local_variables": [)";
      bool printed = false;
      for (int it : local_variables_vector)
        if (used_local_vars.find(it) != used_local_vars.end())
          {
            if (printed)
              output << ", ";
            else
              printed = true;
    
            int id = it;
            vector<string> efout;
            expr_t value = local_variables_table.find(id)->second;
            value->writeJsonExternalFunctionOutput(efout, tt, tef_terms);
            for (auto it1 = efout.begin(); it1 != efout.end(); ++it1)
              {
                if (it1 != efout.begin())
                  output << ", ";
                output << *it1;
              }
    
            if (!efout.empty())
              output << ", ";
    
            /* We append underscores to avoid name clashes with "g1" or "oo_" (see
               also VariableNode::writeOutput) */
            output << R"({"variable": ")" << symbol_table.getName(id) << R"(__")"
                   << R"(, "value": ")";
            value->writeJsonOutput(output, tt, tef_terms);
            output << R"("})" << endl;
          }
      output << "]";
    }
    
    void
    ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type) const
    {
      temporary_terms_t tt;
      temporary_terms_idxs_t ttidxs;
      writeModelEquations(output, output_type, tt);
    }
    
    void
    ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type,
                                   const temporary_terms_t &temporary_terms) const
    {
      for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->arg1;
          expr_t rhs = eq_node->arg2;
    
          // Test if the right hand side of the equation is empty.
          double vrhs = 1.0;
          try
            {
              vrhs = rhs->eval(eval_context_t());
            }
          catch (ExprNode::EvalException &e)
            {
            }
    
          if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
            if (isJuliaOutput(output_type))
              {
                output << "    @inbounds residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                       << eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
                       << RIGHT_ARRAY_SUBSCRIPT(output_type)
                       << " = (";
                lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
                output << ") - (";
                rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
                output << ")" << endl;
              }
            else
              {
                output << "lhs = ";
                lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
                output << ";" << endl
                       << "rhs = ";
                rhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
                output << ";" << endl
                       << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                       << eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
                       << RIGHT_ARRAY_SUBSCRIPT(output_type)
                       << " = lhs - rhs;" << endl;
              }
          else // The right hand side of the equation is empty ==> residual=lhs;
            {
              if (isJuliaOutput(output_type))
                output << "    @inbounds ";
              output << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                     << eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
                     << RIGHT_ARRAY_SUBSCRIPT(output_type)
                     << " = ";
              lhs->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs);
              output << ";" << endl;
            }
        }
    }
    
    void
    ModelTree::compileModelEquations(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, const map_idx_t &map_idx, bool dynamic, bool steady_dynamic) const
    {
      for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->arg1;
          expr_t rhs = eq_node->arg2;
          FNUMEXPR_ fnumexpr(ModelEquation, eq);
          fnumexpr.write(code_file, instruction_number);
          // Test if the right hand side of the equation is empty.
          double vrhs = 1.0;
          try
            {
              vrhs = rhs->eval(eval_context_t());
            }
          catch (ExprNode::EvalException &e)
            {
            }
    
          if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
            {
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
              rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
    
              FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
              fbinary.write(code_file, instruction_number);
    
              FSTPR_ fstpr(eq);
              fstpr.write(code_file, instruction_number);
            }
          else // The right hand side of the equation is empty ==> residual=lhs;
            {
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
              FSTPR_ fstpr(eq);
              fstpr.write(code_file, instruction_number);
            }
        }
    }
    
    void
    ModelTree::Write_Inf_To_Bin_File(const string &filename,
                                     int &u_count_int, bool &file_open, bool is_two_boundaries, int block_mfs) const
    {
      int j;
      std::ofstream SaveCode;
      if (file_open)
        SaveCode.open(filename, ios::out | ios::in | ios::binary | ios::ate);
      else
        SaveCode.open(filename, ios::out | ios::binary);
      if (!SaveCode.is_open())
        {
          cerr << R"(Error : Can't open file ")" << filename << R"(" for writing)" << endl;
          exit(EXIT_FAILURE);
        }
      u_count_int = 0;
      for (const auto & [indices, d1] : derivatives[1])
        {
          int deriv_id = indices[1];
          if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
            {
              int eq = indices[0];
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              SaveCode.write(reinterpret_cast<char *>(&eq), sizeof(eq));
              int varr = var + lag * block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
              SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
              int u = u_count_int + block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
              u_count_int++;
            }
        }
      if (is_two_boundaries)
        u_count_int += symbol_table.endo_nbr();
      for (j = 0; j < static_cast<int>(symbol_table.endo_nbr()); j++)
        SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
      for (j = 0; j < static_cast<int>(symbol_table.endo_nbr()); j++)
        SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
      SaveCode.close();
    }
    
    void
    ModelTree::writeLatexModelFile(const string &mod_basename, const string &latex_basename, ExprNodeOutputType output_type, bool write_equation_tags) const
    {
      filesystem::create_directories(mod_basename + "/latex");
    
      ofstream output, content_output;
      string filename = mod_basename + "/latex/" + latex_basename + ".tex";
      string content_filename = mod_basename + "/latex/" + latex_basename + "_content" + ".tex";
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      content_output.open(content_filename, ios::out | ios::binary);
      if (!content_output.is_open())
        {
          cerr << "ERROR: Can't open file " << content_filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << R"(\documentclass[10pt,a4paper]{article})" << endl
             << R"(\usepackage[landscape]{geometry})" << endl
             << R"(\usepackage{fullpage})" << endl
             << R"(\usepackage{amsfonts})" << endl
             << R"(\usepackage{breqn})" << endl
             << R"(\begin{document})" << endl
             << R"(\footnotesize)" << endl;
    
      // Write model local variables
      for (int id : local_variables_vector)
        {
          expr_t value = local_variables_table.find(id)->second;
    
          content_output << R"(\begin{dmath*})" << endl
                         << symbol_table.getTeXName(id) << " = ";
          // Use an empty set for the temporary terms
          value->writeOutput(content_output, output_type);
          content_output << endl << R"(\end{dmath*})" << endl;
        }
    
      for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
        {
          content_output << "% Equation " << eq + 1 << endl;
          if (write_equation_tags)
            {
              bool wrote_eq_tag = false;
              for (const auto & [tagged_eq, tag_pair] : equation_tags)
                if (tagged_eq == eq)
                  {
                    if (!wrote_eq_tag)
                      content_output << R"(\noindent[)";
                    else
                      content_output << ", ";
    
                    content_output << tag_pair.first;
    
                    if (!(tag_pair.second.empty()))
                      content_output << "= `" << tag_pair.second << "'";
    
                    wrote_eq_tag = true;
                  }
    
              if (wrote_eq_tag)
                content_output << "]";
            }
    
          content_output << R"(\begin{dmath})" << endl;
          // Here it is necessary to cast to superclass ExprNode, otherwise the overloaded writeOutput() method is not found
          dynamic_cast<ExprNode *>(equations[eq])->writeOutput(content_output, output_type);
          content_output << endl << R"(\end{dmath})" << endl;
        }
    
      output << R"(\include{)" << latex_basename + "_content" << "}" << endl
             << R"(\end{document})" << endl;
    
      output.close();
      content_output.close();
    }
    
    void
    ModelTree::addEquation(expr_t eq, int lineno)
    {
      auto beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq && beq->op_code == BinaryOpcode::equal);
    
      equations.push_back(beq);
      equations_lineno.push_back(lineno);
    }
    
    vector<int>
    ModelTree::includeExcludeEquations(set<pair<string, string>> &eqs, bool exclude_eqs,
                                       vector<BinaryOpNode *> &equations, vector<int> &equations_lineno,
                                       vector<pair<int, pair<string, string>>> &equation_tags,
                                       multimap<pair<string, string>, int> &equation_tags_xref, bool static_equations) const
    {
      vector<int> excluded_vars;
      if (equations.empty())
        return excluded_vars;
    
      // Get equation numbers of tags
      set<int> tag_eqns;
      for (auto &it : eqs)
        if (equation_tags_xref.find(it) != equation_tags_xref.end())
          {
            auto range = equation_tags_xref.equal_range(it);
            for_each(range.first, range.second, [&tag_eqns](auto &x) { tag_eqns.insert(x.second); });
            eqs.erase(it);
          }
      if (tag_eqns.empty())
        return excluded_vars;
    
      set<int> eqns;
      if (exclude_eqs)
        eqns = tag_eqns;
      else
        for (size_t i = 0; i < equations.size(); i++)
          if (tag_eqns.find(i) == tag_eqns.end())
            eqns.insert(i);
    
      // remove from equations, equations_lineno, equation_tags, equation_tags_xref
      vector<BinaryOpNode *> new_eqns;
      vector<int> new_equations_lineno;
      map<int, int> old_eqn_num_2_new;
      for (size_t i = 0; i < equations.size(); i++)
        if (eqns.find(i) != eqns.end())
          {
            bool found = false;
            for (const auto & [tagged_eq, tag_pair] : equation_tags)
              if (tagged_eq == static_cast<int>(i) && tag_pair.first == "endogenous")
                {
                  found = true;
                  excluded_vars.push_back(symbol_table.getID(tag_pair.second));
                  break;
                }
            if (!found)
              {
                set<pair<int, int>> result;
                equations[i]->arg1->collectDynamicVariables(SymbolType::endogenous, result);
                if (result.size() == 1)
                  excluded_vars.push_back(result.begin()->first);
                else
                  {
                    cerr << "ERROR: Equation " << i
                         << " has been excluded but does not have a single variable on LHS or `endogenous` tag" << endl;
                    exit(EXIT_FAILURE);
                  }
              }
          }
        else
          {
            new_eqns.emplace_back(equations[i]);
            old_eqn_num_2_new[i] = new_eqns.size() - 1;
            new_equations_lineno.emplace_back(equations_lineno[i]);
          }
      int n_excl = equations.size() - new_eqns.size();
    
      equations = new_eqns;
      equations_lineno = new_equations_lineno;
    
      equation_tags.erase(remove_if(equation_tags.begin(), equation_tags.end(),
                                    [&](const auto &it) { return eqns.find(it.first) != eqns.end(); }),
                          equation_tags.end());
      for (auto &it : old_eqn_num_2_new)
        for (auto &it1 : equation_tags)
          if (it1.first == it.first)
            it1.first = it.second;
    
      equation_tags_xref.clear();
      for (const auto &it : equation_tags)
        equation_tags_xref.emplace(it.second, it.first);
    
      if (!static_equations)
        for (size_t i = 0; i < excluded_vars.size(); i++)
          for (size_t j = i+1; j < excluded_vars.size(); j++)
            if (excluded_vars[i] == excluded_vars[j])
              {
                cerr << "Error: Variable " << symbol_table.getName(i) << " was excluded twice"
                     << " via in/exclude_eqs option" << endl;
                exit(EXIT_FAILURE);
              }
    
      cout << "Excluded " << n_excl << (static_equations ? " static " : " dynamic ")
           << "equation" << (n_excl > 1 ? "s" : "") << " via in/exclude_eqs option" << endl;
    
      return excluded_vars;
    }
    
    void
    ModelTree::simplifyEquations()
    {
      size_t last_subst_table_size = 0;
      map<VariableNode *, NumConstNode *> subst_table;
      findConstantEquations(subst_table);
      while (subst_table.size() != last_subst_table_size)
        {
          last_subst_table_size = subst_table.size();
          for (auto &equation : equations)
            equation = dynamic_cast<BinaryOpNode *>(equation->replaceVarsInEquation(subst_table));
          subst_table.clear();
          findConstantEquations(subst_table);
        }
    }
    
    void
    ModelTree::findConstantEquations(map<VariableNode *, NumConstNode *> &subst_table) const
    {
      for (auto &equation : equations)
        equation->findConstantEquations(subst_table);
    }
    
    void
    ModelTree::addEquation(expr_t eq, int lineno, const vector<pair<string, string>> &eq_tags)
    {
      int n = equations.size();
      for (const auto &eq_tag : eq_tags)
        {
          equation_tags.emplace_back(n, eq_tag);
          equation_tags_xref.emplace(eq_tag, n);
        }
      addEquation(eq, lineno);
    }
    
    void
    ModelTree::addAuxEquation(expr_t eq)
    {
      auto beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq && beq->op_code == BinaryOpcode::equal);
    
      aux_equations.push_back(beq);
    }
    
    void
    ModelTree::addTrendVariables(const vector<int> &trend_vars, expr_t growth_factor) noexcept(false)
    {
      for (int id : trend_vars)
        if (trend_symbols_map.find(id) != trend_symbols_map.end())
          throw TrendException(symbol_table.getName(id));
        else
          trend_symbols_map[id] = growth_factor;
    }
    
    void
    ModelTree::addNonstationaryVariables(const vector<int> &nonstationary_vars, bool log_deflator, expr_t deflator) noexcept(false)
    {
      for (int id : nonstationary_vars)
        if (nonstationary_symbols_map.find(id) != nonstationary_symbols_map.end())
          throw TrendException(symbol_table.getName(id));
        else
          nonstationary_symbols_map[id] = { log_deflator, deflator };
    }
    
    void
    ModelTree::initializeVariablesAndEquations()
    {
      for (size_t j = 0; j < equations.size(); j++)
        equation_reordered.push_back(j);
    
      for (int j = 0; j < symbol_table.endo_nbr(); j++)
        variable_reordered.push_back(j);
    }
    
    void
    ModelTree::set_cutoff_to_zero()
    {
      cutoff = 0;
    }
    
    void
    ModelTree::jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      if (isJuliaOutput(output_type))
        output << "    @inbounds ";
      output << "g1" << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (isMatlabOutput(output_type) || isJuliaOutput(output_type))
        output << eq_nb + 1 << "," << col_nb + 1;
      else
        output << eq_nb + col_nb *equations.size();
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }
    
    void
    ModelTree::sparseHelper(int order, ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      output << "v" << order << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (isMatlabOutput(output_type) || isJuliaOutput(output_type))
        output << row_nb + 1 << "," << col_nb + 1;
      else
        output << row_nb + col_nb * NNZDerivatives[order];
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }
    
    void
    ModelTree::computeParamsDerivatives(int paramsDerivsOrder)
    {
      assert(paramsDerivsOrder >= 1);
    
      set<int> deriv_id_set;
      addAllParamDerivId(deriv_id_set);
    
      // First-order derivatives w.r.t. params
      for (int param : deriv_id_set)
        {
          for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
            {
              expr_t d = equations[eq]->getDerivative(param);
              if (d == Zero)
                continue;
              params_derivatives[{ 0, 1 }][{ eq, param }] = d;
            }
    
          for (int endoOrd = 1; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
            for (const auto &[indices, dprev] : derivatives[endoOrd])
              {
                expr_t d = dprev->getDerivative(param);
                if (d == Zero)
                  continue;
                vector<int> new_indices = indices;
                new_indices.push_back(param);
                params_derivatives[{ endoOrd, 1 }][new_indices] = d;
              }
        }
    
      // Higher-order derivatives w.r.t. parameters
      for (int endoOrd = 0; endoOrd < static_cast<int>(derivatives.size()); endoOrd++)
        for (int paramOrd = 2; paramOrd <= paramsDerivsOrder; paramOrd++)
          for (const auto &[indices, dprev] : params_derivatives[{ endoOrd, paramOrd-1 }])
            for (int param : deriv_id_set)
              {
                if (indices.back() > param)
                  continue;
    
                expr_t d = dprev->getDerivative(param);
                if (d == Zero)
                  continue;
                vector<int> new_indices = indices;
                new_indices.push_back(param);
                // At this point, indices of both endogenous and parameters are sorted in non-decreasing order
                params_derivatives[{ endoOrd, paramOrd }][new_indices] = d;
              }
    }
    
    void
    ModelTree::computeParamsDerivativesTemporaryTerms()
    {
      map<expr_t, pair<int, pair<int, int>>> reference_count;
    
      /* The temp terms should be constructed in the same order as the for loops in
         {Static,Dynamic}Model::write{Json,}ParamsDerivativesFile() */
      params_derivs_temporary_terms.clear();
      for (const auto &[order, derivs] : params_derivatives)
        for (const auto &[indices, d] : derivs)
          d->computeTemporaryTerms(order, params_derivs_temporary_terms,
                                   reference_count, true);
    
      int idx = 0;
      for (auto &[mlv, value] : temporary_terms_mlv)
        params_derivs_temporary_terms_idxs[mlv] = idx++;
      for (const auto &[order, tts] : params_derivs_temporary_terms)
        for (const auto &tt : tts)
          params_derivs_temporary_terms_idxs[tt] = idx++;
    }
    
    bool
    ModelTree::isNonstationary(int symb_id) const
    {
      return nonstationary_symbols_map.find(symb_id) != nonstationary_symbols_map.end();
    }
    
    void
    ModelTree::writeJsonModelEquations(ostream &output, bool residuals) const
    {
      if (residuals)
        output << endl << R"("residuals":[)" << endl;
      else
        output << endl << R"("model":[)" << endl;
      for (int eq = 0; eq < static_cast<int>(equations.size()); eq++)
        {
          if (eq > 0)
            output << ", ";
    
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->arg1;
          expr_t rhs = eq_node->arg2;
    
          if (residuals)
            {
              output << R"({"residual": {)"
                     << R"("lhs": ")";
              lhs->writeJsonOutput(output, temporary_terms, {});
              output << R"(")";
    
              output << R"(, "rhs": ")";
              rhs->writeJsonOutput(output, temporary_terms, {});
              output << R"(")";
              try
                {
                  // Test if the right hand side of the equation is empty.
                  if (rhs->eval(eval_context_t()) != 0)
                    {
                      output << R"(, "rhs": ")";
                      rhs->writeJsonOutput(output, temporary_terms, {});
                      output << R"(")";
                    }
                }
              catch (ExprNode::EvalException &e)
                {
                }
              output << "}";
            }
          else
            {
              output << R"({"lhs": ")";
              lhs->writeJsonOutput(output, {}, {});
              output << R"(", "rhs": ")";
              rhs->writeJsonOutput(output, {}, {});
              output << R"(")"
                     << R"(, "line": )" << equations_lineno[eq];
    
              if (auto eqtags = getEquationTags(eq);
                  !eqtags.empty())
                {
                  output << R"(, "tags": {)";
                  int i = 0;
                  for (const auto &[name, value] : eqtags)
                    {
                      if (i != 0)
                        output << ", ";
                      output << R"(")" << name << R"(": ")" << value << R"(")";
                      i++;
                    }
                  output << "}";
                  eqtags.clear();
                }
            }
          output << "}" << endl;
        }
      output << endl << "]" << endl;
    }
    
    string
    ModelTree::matlab_arch(const string &mexext)
    {
      if (mexext == "mexglx")
        return "glnx86";
      else if (mexext == "mexa64")
        return "glnxa64";
      if (mexext == "mexw32")
        return "win32";
      else if (mexext == "mexw64")
        return "win64";
      else if (mexext == "mexmaci")
        {
          cerr << "32-bit MATLAB not supported on macOS" << endl;
          exit(EXIT_FAILURE);
        }
      else if (mexext == "mexmaci64")
        return "maci64";
      else
        {
          cerr << "ERROR: 'mexext' option to preprocessor incorrectly set, needed with 'use_dll'" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ModelTree::compileDll(const string &basename, const string &static_or_dynamic, const string &mexext, const filesystem::path &matlabroot, const filesystem::path &dynareroot) const
    {
      const string opt_flags = "-O3 -g0 --param ira-max-conflict-table-size=1 -fno-forward-propagate -fno-gcse -fno-dce -fno-dse -fno-tree-fre -fno-tree-pre -fno-tree-cselim -fno-tree-dse -fno-tree-dce -fno-tree-pta -fno-gcse-after-reload";
    
      filesystem::path compiler;
      ostringstream flags;
      string libs;
    
      if (mexext == "mex")
        {
          // Octave
          compiler = matlabroot / "bin" / "mkoctfile";
          flags << "--mex";
        }
      else
        {
          // MATLAB
          compiler = "gcc";
          string arch = matlab_arch(mexext);
          auto include_dir = matlabroot / "extern" / "include";
          flags << "-I " << include_dir;
          auto bin_dir = matlabroot / "bin" / arch;
          flags << " -L " << bin_dir;
          flags << " -fexceptions -DNDEBUG";
          libs = "-lmex -lmx";
          if (mexext == "mexglx" || mexext == "mexa64")
            {
              // GNU/Linux
              flags << " -D_GNU_SOURCE -fPIC -pthread"
                    << " -shared -Wl,--no-undefined -Wl,-rpath-link," << bin_dir;
              libs += " -lm -lstdc++";
    
              if (mexext == "mexglx")
                flags << " -D_FILE_OFFSET_BITS=64 -m32";
              else
                flags << " -fno-omit-frame-pointer";
            }
          else if (mexext == "mexw32" || mexext == "mexw64")
            {
              // Windows
              flags << " -static-libgcc -static-libstdc++ -shared";
              // Put the MinGW environment shipped with Dynare in the path
              auto mingwpath = dynareroot / (string{"mingw"} + (mexext == "mexw32" ? "32" : "64")) / "bin";
              string newpath = "PATH=" + mingwpath.string() + ';' + string{getenv("PATH")};
              if (putenv(const_cast<char *>(newpath.c_str())) != 0)
                {
                  cerr << "Can't set PATH" << endl;
                  exit(EXIT_FAILURE);
                }
            }
          else
            {
              // macOS
    #ifdef __APPLE__
              char dynare_m_path[PATH_MAX];
              uint32_t size = PATH_MAX;
              string gcc_relative_path = "";
              if (_NSGetExecutablePath(dynare_m_path, &size) == 0)
                {
                  string str = dynare_m_path;
                  gcc_relative_path = str.substr(0, str.find_last_of("/")) + "/../../.brew/bin/gcc-9";
                }
    
              if (filesystem::exists(gcc_relative_path))
                compiler = gcc_relative_path;
              else if (filesystem::exists("/usr/local/bin/gcc-9"))
                compiler = "/usr/local/bin/gcc-9";
              else
                {
                  cerr << "ERROR: You must install gcc-9 on your system before using the `use_dll` option of Dynare. "
                       << "You can do this via the Dynare installation package." << endl;
                  exit(EXIT_FAILURE);
                }
    #endif
              flags << " -fno-common -arch x86_64 -mmacosx-version-min=10.9 -Wl,-twolevel_namespace -undefined error -bundle";
              libs += " -lm -lstdc++";
            }
        }
    
      auto model_dir = filesystem::path{basename} / "model" / "src";
      filesystem::path main_src{model_dir / (static_or_dynamic + ".c")},
        mex_src{model_dir / (static_or_dynamic + "_mex.c")};
    
      filesystem::path mex_dir{"+" + basename};
      filesystem::path binary{mex_dir / (static_or_dynamic + "." + mexext)};
    
      ostringstream cmd;
    
    #ifdef _WIN32
      /* On Windows, system() hands the command over to "cmd.exe /C". We need to
         enclose the whole command line within double quotes if we want the inner
         quotes to be correctly handled. See "cmd /?" for more details. */
      cmd << '"';
    #endif
    
      if (user_set_compiler.empty())
        cmd << compiler << " ";
      else
        if (!filesystem::exists(user_set_compiler))
          {
            cerr << "Error: The specified compiler '" << user_set_compiler << "' cannot be found on your system" << endl;
            exit(EXIT_FAILURE);
          }
        else
          cmd << user_set_compiler << " ";
    
      if (user_set_subst_flags.empty())
        cmd << opt_flags << " " << flags.str() << " ";
      else
        cmd << user_set_subst_flags << " ";
    
      if (!user_set_add_flags.empty())
        cmd << user_set_add_flags << " ";
    
      cmd << main_src << " " << mex_src << " -o " << binary << " ";
    
      if (user_set_subst_libs.empty())
        cmd << libs;
      else
        cmd << user_set_subst_libs;
    
      if (!user_set_add_libs.empty())
        cmd << " " << user_set_add_libs;
    
    #ifdef _WIN32
      cmd << '"';
    #endif
    
      cout << "Compiling " << static_or_dynamic << " MEX..." << endl << cmd.str() << endl;
    
      if (system(cmd.str().c_str()))
        {
          cerr << "Compilation failed" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ModelTree::reorderAuxiliaryEquations()
    {
      using namespace boost;
    
      // Create the mapping between auxiliary variables and auxiliary equations
      int n = static_cast<int>(aux_equations.size());
      map<int, int> auxEndoToEq;
      for (int i = 0; i < n; i++)
        {
          auto varexpr = dynamic_cast<VariableNode *>(aux_equations[i]->arg1);
          assert(varexpr && symbol_table.getType(varexpr->symb_id) == SymbolType::endogenous);
          auxEndoToEq[varexpr->symb_id] = i;
        }
      assert(static_cast<int>(auxEndoToEq.size()) == n);
    
      /* Construct the directed acyclic graph where auxiliary equations are
         vertices and edges represent dependency relationships. */
      using Graph = adjacency_list<vecS, vecS, directedS>;
      Graph g(n);
      for (int i = 0; i < n; i++)
        {
          set<int> endos;
          aux_equations[i]->collectVariables(SymbolType::endogenous, endos);
          for (int endo : endos)
            if (auto it = auxEndoToEq.find(endo);
                it != auxEndoToEq.end() && it->second != i)
              add_edge(i, it->second, g);
        }
    
      // Topological sort of the graph
      using Vertex = graph_traits<Graph>::vertex_descriptor;
      vector<Vertex> ordered;
      topological_sort(g, back_inserter(ordered));
    
      // Reorder auxiliary equations accordingly
      auto aux_equations_old = aux_equations;
      auto index = get(vertex_index, g); // Maps vertex descriptors to their index
      for (int i = 0; i < n; i++)
        aux_equations[i] = aux_equations_old[index[ordered[i]]];
    }