Skip to content
Snippets Groups Projects
Select Git revision
  • 7dde09169ecd4b5e32b3cd35bef88958a262ec11
  • master default protected
  • julia protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • 5.x protected
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-7.0.0
  • julia-6.4.0
  • julia-6.3.0
  • julia-6.2.0
15 results

SymbolList.cc

Blame
  • display_problematic_vars_Jacobian.m 8.50 KiB
    function display_problematic_vars_Jacobian(problemrow, problemcol, M_, x, type, caller_string)
    % display_problematic_vars_Jacobian(problemrow,problemcol,M_,x,caller_string)
    % print the equation numbers and variables associated with problematic entries
    % of the Jacobian
    %
    % INPUTS
    %   problemrow      [vector] rows associated with problematic entries
    %   problemcol      [vector] columns associated with problematic entries
    %   M_              [matlab structure] Definition of the model.
    %   x               [vector] point at which the Jacobian was evaluated
    %   type            [string] 'static' or 'dynamic' depending on the type of
    %                               Jacobian
    %   caller_string   [string] contains name of calling function for printing
    
    % Copyright © 2014-2024 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
    
    skipline();
    if nargin<6
        caller_string='';
    end
    initial_aux_eq_nbr=M_.ramsey_orig_endo_nbr;
    if strcmp(type,'dynamic')
        for ii=1:length(problemrow)
            if problemcol(ii) <= 3*M_.endo_nbr % Endogenous
                endo = true;
                var_index = mod(problemcol(ii)-1, M_.endo_nbr)+1;
                if problemcol(ii) <= M_.endo_nbr
                    type_string='lag of';
                elseif problemcol(ii) <= 2*M_.endo_nbr
                    type_string='';
                else
                    type_string='lead of';
                end
            elseif problemcol(ii) <= 3*M_.endo_nbr+M_.exo_nbr % Exogenous
                endo = false;
                var_index = problemcol(ii) - 3*M_.endo_nbr;
            else % Exogenous deterministic, ignore
                continue
            end
    
            if endo && var_index <= M_.orig_endo_nbr
                if problemrow(ii)<=initial_aux_eq_nbr
                    eq_nbr = problemrow(ii);
                    fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s  (initial value of %s: %g) \n', ...
                            eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
                else
                    eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                    fprintf('Derivative of Equation %d with respect to %s Variable %s  (initial value of %s: %g) \n', ...
                            eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
                end
            elseif endo && var_index > M_.orig_endo_nbr % auxiliary vars
                if M_.aux_vars(1, var_index - M_.orig_endo_nbr).type==6 %Ramsey Lagrange Multiplier
                    if problemrow(ii)<=initial_aux_eq_nbr
                        eq_nbr = problemrow(ii);
                        fprintf('Derivative of Auxiliary Equation %d with respect to %s of Lagrange multiplier of equation %s (initial value: %g) \n', ...
                                eq_nbr, type_string, M_.aux_vars(1, var_index-M_.orig_endo_nbr).eq_nbr, x(var_index));
                    else
                        eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                        fprintf('Derivative of Equation %d with respect to %s of Lagrange multiplier of equation %s (initial value: %g) \n', ...
                                eq_nbr, type_string, M_.aux_vars(1, var_index-M_.orig_endo_nbr).eq_nbr, x(var_index));
                    end
                else
                    if problemrow(ii)<=initial_aux_eq_nbr
                        eq_nbr = problemrow(ii);
                        orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
                        fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s  (initial value of %s: %g) \n', ...
                                eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
                    else
                        eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                        orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
                        fprintf('Derivative of Equation %d with respect to %s Variable %s  (initial value of %s: %g) \n', ...
                                eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
                    end
                end
            else % Exogenous
                if problemrow(ii)<=initial_aux_eq_nbr
                    eq_nbr = problemrow(ii);
                    fprintf('Derivative of Auxiliary Equation %d with respect to %s shock %s \n', ...
                            eq_nbr, type_string, M_.exo_names{var_index});
                else
                    eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                    fprintf('Derivative of Equation %d with respect to %s shock %s \n', ...
                            eq_nbr, type_string, M_.exo_names{var_index});
                end
            end
        end
        fprintf('\n%s  The problem most often occurs, because a variable with\n', caller_string)
        fprintf('%s  exponent smaller than 0 has been initialized to 0. Taking the derivative\n', caller_string)
        fprintf('%s  and evaluating it at the steady state then results in a division by 0.\n', caller_string)
        fprintf('%s  If you are using model-local variables (# operator), check their values as well.\n', caller_string)
    elseif strcmp(type, 'static')
        for ii=1:length(problemrow)
            if problemcol(ii)<=M_.orig_endo_nbr
                if problemrow(ii)<=initial_aux_eq_nbr
                    eq_nbr = problemrow(ii);
                    fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s  (initial value of %s: %g) \n', ...
                            eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
                else
                    eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                    fprintf('Derivative of Equation %d with respect to Variable %s  (initial value of %s: %g) \n', ...
                            eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
                end
            else %auxiliary vars
                if M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).type ==6 %Ramsey Lagrange Multiplier
                    if problemrow(ii)<=initial_aux_eq_nbr
                        eq_nbr = problemrow(ii);
                        fprintf('Derivative of Auxiliary Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
                                eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
                    else
                        eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                        fprintf('Derivative of Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
                                eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
                    end
                else
                    if problemrow(ii)<=initial_aux_eq_nbr
                        eq_nbr = problemrow(ii);
                        orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
                        fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s  (initial value of %s: %g) \n', ...
                                eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
                    else
                        eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
                        orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
                        fprintf('Derivative of Equation %d with respect to Variable %s  (initial value of %s: %g) \n', ...
                                eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
                    end
                end
            end
        end
        fprintf('\n%s  The problem most often occurs, because a variable with\n', caller_string)
        fprintf('%s  exponent smaller than 1 has been initialized to 0. Taking the derivative\n', caller_string)
        fprintf('%s  and evaluating it at the steady state then results in a division by 0.\n', caller_string)
        fprintf('%s  If you are using model-local variables (# operator), check their values as well.\n', caller_string)
    else
        error('Unknown Type')
    end