Skip to content
Snippets Groups Projects
Select Git revision
  • 805f57f1191905936883d9bf32c4cca0656cfe57
  • master default protected
  • julia protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • 5.x protected
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-7.0.0
  • julia-6.4.0
  • julia-6.3.0
  • julia-6.2.0
15 results

ParsingDriver.cc

  • do_parameter_initialization.m 9.06 KiB
    function [xparam1,estim_params_,xparam1_explicitly_initialized,xparam1_properly_calibrated]=do_parameter_initialization(estim_params_,xparam1_calib,xparam1_NaN_set_to_prior_mean)
    % function [xparam1,estim_params_]=get_initialized_parameters(estim_params_,xparam1_calib)
    % gets explicitly initialized variables and properly calibrated parameters
    %
    % INPUTS
    %    o estim_params_    [structure] characterizing parameters to be estimated.
    %    o xparam1_calib    [double]    vector of parameters to be estimated, with parameters
    %                                   initialized from calibration using get_all_parameters
    %
    %    o xparam1_NaN_set_to_prior_mean [double]    vector of parameters to be estimated, with parameters
    %                                                initialized using dynare_estimation_init; not explicitly initialized
    %                                                parameters are at prior mean
    % OUTPUTS
    %    o xparam1                           [double]    vector of initialized parameters; uses the hierarchy: 1) explicitly initialized parameters,
    %                                                    2) calibrated parameters, 3) prior mean
    %    o estim_params_    [structure] characterizing parameters to be estimated; it is
    %                                   updated here to reflect calibrated parameters
    %    o xparam1_explicitly_initialized    [double]    vector of parameters to be estimated that
    %                                                    were explicitly initialized
    %    o xparam1_properly_calibrated       [double]    vector of parameters to be estimated that
    %                                                    were properly calibrated
    %
    % SPECIAL REQUIREMENTS
    %    None
    
    % Copyright © 2013-2017 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
    
    nvx = size(estim_params_.var_exo,1);
    nvn = size(estim_params_.var_endo,1);
    ncx = size(estim_params_.corrx,1);
    ncn = size(estim_params_.corrn,1);
    np = size(estim_params_.param_vals,1);
    
    estim_params_.nvx = nvx; %exogenous shock variances
    estim_params_.nvn = nvn; %endogenous variances, i.e. measurement error
    estim_params_.ncx = ncx; %exogenous shock correlations
    estim_params_.ncn = ncn; % correlation between endogenous variables, i.e. measurement error.
    estim_params_.np = np;   % other parameters of the model
    
    xparam1_explicitly_initialized = NaN(nvx+nvn+ncx+ncn+np,1);
    xparam1_properly_calibrated = NaN(nvx+nvn+ncx+ncn+np,1);
    
    offset=0;
    if nvx
        initialized_par_index=find(~isnan(estim_params_.var_exo(:,2)));
        calibrated_par_index=find(isnan(estim_params_.var_exo(:,2)) & ~isnan(xparam1_calib(offset+1:offset+nvx,1)));
        uninitialized_par_index=find(isnan(estim_params_.var_exo(:,2)) & isnan(xparam1_calib(offset+1:offset+nvx,1)));
        xparam1_explicitly_initialized(offset+initialized_par_index,1) = estim_params_.var_exo(initialized_par_index,2);
        %update estim_params_ with calibrated starting values
        estim_params_.var_exo(calibrated_par_index,2)=xparam1_calib(offset+calibrated_par_index,1);
        %find parameters that are calibrated and do not violate inverse gamma prior
        xparam1_properly_calibrated(offset+calibrated_par_index,1) = xparam1_calib(offset+calibrated_par_index,1);
        inv_gamma_violation=find(estim_params_.var_exo(calibrated_par_index,2)==0 & estim_params_.var_exo(calibrated_par_index,5)==4);
        if inv_gamma_violation
            estim_params_.var_exo(calibrated_par_index(inv_gamma_violation),2)=NaN;
            xparam1_properly_calibrated(offset+calibrated_par_index(inv_gamma_violation),1)=NaN;
            fprintf('PARAMETER INITIALIZATION: Some standard deviations of shocks of the calibrated model are 0 and\n')
            fprintf('PARAMETER INITIALIZATION: violate the inverse gamma prior. They will instead be initialized with the prior mean.\n')
        end
        if uninitialized_par_index
            fprintf('PARAMETER INITIALIZATION: Warning, some estimated standard deviations of shocks are not\n')
            fprintf('PARAMETER INITIALIZATION: initialized. They will be initialized with the prior mean.\n')
        end
    end
    offset=offset+nvx;
    if nvn
        initialized_par_index=find(~isnan(estim_params_.var_endo(:,2)));
        calibrated_par_index=find(isnan(estim_params_.var_endo(:,2)) & ~isnan(xparam1_calib(offset+1:offset+nvn,1)));
        uninitialized_par_index=find(isnan(estim_params_.var_endo(:,2)) & isnan(xparam1_calib(offset+1:offset+nvn,1)));
        xparam1_explicitly_initialized(offset+initialized_par_index,1) = estim_params_.var_endo(initialized_par_index,2);
        estim_params_.var_endo(calibrated_par_index,2)=xparam1_calib(offset+calibrated_par_index,1);
        %find parameters that are calibrated and do not violate inverse gamma prior
        xparam1_properly_calibrated(offset+calibrated_par_index,1) = xparam1_calib(offset+calibrated_par_index,1);
        inv_gamma_violation=find(estim_params_.var_endo(calibrated_par_index,2)==0 & estim_params_.var_endo(calibrated_par_index,5)==4);
        if inv_gamma_violation
            estim_params_.var_endo(calibrated_par_index(inv_gamma_violation),2)=NaN;
            xparam1_properly_calibrated(offset+calibrated_par_index(inv_gamma_violation),1)=NaN;
            fprintf('PARAMETER INITIALIZATION: Some measurement errors of the calibrated model are 0 and violate the\n')
            fprintf('PARAMETER INITIALIZATION: inverse gamma prior. They will instead be initialized with the prior mean.\n')
        end
        if uninitialized_par_index
            fprintf('PARAMETER INITIALIZATION: Warning, some measurement errors are not initialized. They will be initialized\n')
            fprintf('PARAMETER INITIALIZATION: with the prior mean.\n')
        end
    end
    offset=offset+nvn;
    if ncx
        initialized_par_index=find(~isnan(estim_params_.corrx(:,3)));
        calibrated_par_index=find(isnan(estim_params_.corrx(:,3)) & ~isnan(xparam1_calib(offset+1:offset+ncx,1)));
        uninitialized_par_index=find(isnan(estim_params_.corrx(:,3)) & isnan(xparam1_calib(offset+1:offset+ncx,1)));
        xparam1_explicitly_initialized(offset+initialized_par_index,1) = estim_params_.corrx(initialized_par_index,3);
        estim_params_.corrx(calibrated_par_index,3)=xparam1_calib(offset+calibrated_par_index,1);
        xparam1_properly_calibrated(offset+calibrated_par_index,1) = xparam1_calib(offset+calibrated_par_index,1);
        if uninitialized_par_index
            fprintf('PARAMETER INITIALIZATION: Warning, some correlations between structural shocks are not initialized.\n')
            fprintf('PARAMETER INITIALIZATION: They will be initialized with the prior mean.\n')
        end
    end
    offset=offset+ncx;
    if ncn
        initialized_par_index=find(~isnan(estim_params_.corrn(:,3)));
        calibrated_par_index=find(isnan(estim_params_.corrn(:,3)) & ~isnan(xparam1_calib(offset+1:offset+ncn,1)));
        uninitialized_par_index=find(isnan(estim_params_.corrn(:,3)) & isnan(xparam1_calib(offset+1:offset+ncn,1)));
        xparam1_explicitly_initialized(offset+initialized_par_index,1) = estim_params_.corrn(initialized_par_index,3);
        estim_params_.corrn(calibrated_par_index,3)=xparam1_calib(offset+calibrated_par_index,1);
        xparam1_properly_calibrated(offset+calibrated_par_index,1) = xparam1_calib(offset+calibrated_par_index,1);
        if uninitialized_par_index
            fprintf('PARAMETER INITIALIZATION: Warning, some correlations between measurement errors are not initialized.\n')
            fprintf('PARAMETER INITIALIZATION: They will be initialized with the prior mean.\n')
        end
    end
    offset=offset+ncn;
    if np
        initialized_par_index=find(~isnan(estim_params_.param_vals(:,2)));
        calibrated_par_index=find(isnan(estim_params_.param_vals(:,2)) & ~isnan(xparam1_calib(offset+1:offset+np,1)));
        uninitialized_par_index=find(isnan(estim_params_.param_vals(:,2)) & isnan(xparam1_calib(offset+1:offset+np,1)));
        xparam1_explicitly_initialized(offset+initialized_par_index,1) = estim_params_.param_vals(initialized_par_index,2);
        estim_params_.param_vals(calibrated_par_index,2)=xparam1_calib(offset+calibrated_par_index,1);
        xparam1_properly_calibrated(offset+calibrated_par_index,1) = xparam1_calib(offset+calibrated_par_index,1);
        if uninitialized_par_index
            fprintf('PARAMETER INITIALIZATION: Warning, some deep parameters are not initialized. They will be\n')
            fprintf('PARAMETER INITIALIZATION: initialized with the prior mean.\n')
        end
    end
    xparam1=xparam1_explicitly_initialized;
    xparam1(isnan(xparam1))=xparam1_properly_calibrated(isnan(xparam1)); %set not explicitly initialized parameters that do not obviously violate prior distribution to calibrated parameter values
    xparam1(isnan(xparam1))=xparam1_NaN_set_to_prior_mean(isnan(xparam1)); %set not yet initialized parameters to prior mean coming from dynare_estimation_init