Skip to content
Snippets Groups Projects
Select Git revision
  • ad40f1365c8fe791546464e968bb4d86daaddbdd
  • master default protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • julia-6.4.0
  • julia
  • julia-meson
  • 5.x protected
  • julia-6.3.0
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-6.2.0
  • created_preprocessor_repo
16 results

Doxyfile

Blame
  • dynare_gradient.m 1.79 KiB
    function [F,G] = dynare_gradient(fcn,x,epsilon,varargin)
    % Computes the gradient of a function from R^m in R^n.
    %
    % INPUTS:
    %  fcn      [string]  name of the matlab's function.
    %  x        [double]  m*1 vector (where the gradient is evaluated).
    %  epsilon  [double]  scalar or m*1 vector of steps.
    %
    % OUTPUTS:
    %  F        [double]  n*1 vector, evaluation of the function at x.
    %  G        [double]  n*m matrix, evaluation of the gradient at x.
    %
    % OUTPUTS
    %
    % Copyright (C) 2010-2017 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    % Evaluate the function at x.
    F = feval(fcn, x, varargin{:});
    
    % (G)Set dimensions.
    m = length(x);
    n = length(F);
    
    % Initialization of the gradient.
    G = NaN(length(F),length(x));
    
    if length(epsilon==1)
        H = epsilon*eye(m);
    else
        H = diag(epsilon);
    end
    
    % Compute the gradient.
    for i=1:m
        if size(x,1)>size(x,2)
            h = H(i,:);
        else
            h = H(:,i);
        end
        [Fh,~,~,flag] = feval(fcn, x+transpose(h), varargin{:});
        if flag
            G(:,i) = (Fh-F)/epsilon;
        else
            [Fh,~,~,flag] = feval(fcn, x-transpose(h), varargin{:});
            if flag
                G(:,i) = (F-Fh)/epsilon;
            else
                error('-- Bad gradient --')
            end
        end
    end