Skip to content
Snippets Groups Projects
Select Git revision
  • master default protected
  • python-codegen
  • 6.x protected
  • llvm-15
  • julia-6.4.0
  • julia
  • julia-meson
  • 5.x protected
  • julia-6.3.0
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-6.2.0
  • created_preprocessor_repo
15 results

ComputingTasks.cc

Blame
  • ComputingTasks.cc 42.36 KiB
    /*
     * Copyright (C) 2003-2010 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <cstdlib>
    #include <cassert>
    #include <iostream>
    #include <sstream>
    
    using namespace std;
    
    #include "ComputingTasks.hh"
    #include "Statement.hh"
    
    SteadyStatement::SteadyStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    SteadyStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.steady_present = true;
    }
    
    void
    SteadyStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "steady;\n";
    }
    
    CheckStatement::CheckStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    CheckStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "check;\n";
    }
    
    void
    CheckStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.check_present = true;
    }
    
    ModelInfoStatement::ModelInfoStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    ModelInfoStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      //mod_file_struct.model_info_present = true;
    }
    
    void
    ModelInfoStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "model_info();\n";
    }
    
    SimulStatement::SimulStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    SimulStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.simul_present = true;
    }
    
    void
    SimulStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "simul();\n";
    }
    
    StochSimulStatement::StochSimulStatement(const SymbolList &symbol_list_arg,
                                             const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    StochSimulStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.stoch_simul_present = true;
    
      // Fill in option_order of mod_file_struct
      OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
      if (it != options_list.num_options.end())
        mod_file_struct.order_option = max(mod_file_struct.order_option, atoi(it->second.c_str()));
    
      // Fill in mod_file_struct.partial_information
      it = options_list.num_options.find("partial_information");
      if (it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      it = options_list.num_options.find("k_order_solver");
      if ((it != options_list.num_options.end() && it->second == "1")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      // Check that option "pruning" is not used with k-order
      it = options_list.num_options.find("pruning");
      if ((it != options_list.num_options.end() && it->second == "1")
          && mod_file_struct.k_order_solver)
        {
          cerr << "ERROR: in 'stoch_simul', you cannot use option 'pruning' with 'k_order_solver' option or with 3rd order approximation" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    StochSimulStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "info = stoch_simul(var_list_);" << endl;
    }
    
    ForecastStatement::ForecastStatement(const SymbolList &symbol_list_arg,
                                         const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    ForecastStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "info = forecast(var_list_,'simul');\n";
    }
    
    RamseyPolicyStatement::RamseyPolicyStatement(const SymbolList &symbol_list_arg,
                                                 const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    RamseyPolicyStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.ramsey_policy_present = true;
    
      /* Fill in option_order of mod_file_struct
         Since ramsey policy needs one further order of derivation (for example, for 1st order
         approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
      OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
      if (it != options_list.num_options.end())
        {
          int order = atoi(it->second.c_str());
          if (order > 1)
            {
              cerr << "ERROR: ramsey_policy: order > 1 is not yet implemented" << endl;
              exit(EXIT_FAILURE);
            }
          mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
        }
    
      // Fill in mod_file_struct.partial_information
      it = options_list.num_options.find("partial_information");
      if (it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      it = options_list.num_options.find("k_order_solver");
      if ((it != options_list.num_options.end() && it->second == "1")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    }
    
    void
    RamseyPolicyStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "ramsey_policy(var_list_);\n";
    }
    
    EstimationStatement::EstimationStatement(const SymbolList &symbol_list_arg,
                                             const OptionsList &options_list_arg,
                                             const SymbolTable &symbol_table_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    EstimationStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.estimation_present = true;
    
      // Fill in option_order of mod_file_struct
      OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
      if (it != options_list.num_options.end())
        mod_file_struct.order_option = max(mod_file_struct.order_option, atoi(it->second.c_str()));
    
      // Fill in mod_file_struct.partial_information
      it = options_list.num_options.find("partial_information");
      if (it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.partial_information = true;
    
      // Fill in mod_file_struct.dsge_var_calibrated
      it = options_list.num_options.find("dsge_var");
      if (it != options_list.num_options.end())
        mod_file_struct.dsge_var_calibrated = it->second;
    
      // Fill in mod_file_struct.dsge_var_estimated
      OptionsList::string_options_t::const_iterator it_str = options_list.string_options.find("dsge_var");
      if (it_str != options_list.string_options.end())
        mod_file_struct.dsge_var_estimated = true;
    
      // Fill in mod_file_struct.bayesian_irf_present
      it = options_list.num_options.find("bayesian_irf");
      if (it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.bayesian_irf_present = true;
    
      it = options_list.num_options.find("dsge_varlag");
      if (it != options_list.num_options.end())
        if (mod_file_struct.dsge_var_calibrated.empty() &&
            !mod_file_struct.dsge_var_estimated)
          {
            cerr << "ERROR: The estimation statement requires a dsge_var option to be passed "
                 << "if the dsge_varlag option is passed." << endl;
            exit(EXIT_FAILURE);
          }
    
      if (!mod_file_struct.dsge_var_calibrated.empty() &&
          mod_file_struct.dsge_var_estimated)
        {
          cerr << "ERROR: An estimation statement cannot take more than one dsge_var option." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    EstimationStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "dynare_estimation(var_list_);\n";
    }
    
    DynareSensitivityStatement::DynareSensitivityStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    DynareSensitivityStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      OptionsList::num_options_t::const_iterator it = options_list.num_options.find("identification");
      if (it != options_list.num_options.end()
          && it->second == "1")
        mod_file_struct.identification_present = true;
    }
    
    void
    DynareSensitivityStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output, "options_gsa");
      output << "dynare_sensitivity(options_gsa);" << endl;
    }
    
    RplotStatement::RplotStatement(const SymbolList &symbol_list_arg,
                                   const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    RplotStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "rplot(var_list_);\n";
    }
    
    UnitRootVarsStatement::UnitRootVarsStatement(const SymbolList &symbol_list_arg) :
      symbol_list(symbol_list_arg)
    {
    }
    
    void
    UnitRootVarsStatement::writeOutput(ostream &output, const string &basename) const
    {
      symbol_list.writeOutput("options_.unit_root_vars", output);
    }
    
    PeriodsStatement::PeriodsStatement(int periods_arg) : periods(periods_arg)
    {
    }
    
    void
    PeriodsStatement::writeOutput(ostream &output, const string &basename) const
    {
      output << "options_.periods = " << periods << ";" << endl;
    }
    
    DsampleStatement::DsampleStatement(int val1_arg) : val1(val1_arg), val2(-1)
    {
    }
    
    DsampleStatement::DsampleStatement(int val1_arg, int val2_arg) : val1(val1_arg), val2(val2_arg)
    {
    }
    
    void
    DsampleStatement::writeOutput(ostream &output, const string &basename) const
    {
      if (val2 < 0)
        output << "dsample(" << val1 << ");" << endl;
      else
        output << "dsample(" << val1 << ", " << val2 << ");" << endl;
    }
    
    EstimatedParamsStatement::EstimatedParamsStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                       const SymbolTable &symbol_table_arg) :
      estim_params_list(estim_params_list_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    EstimatedParamsStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      for (vector<EstimationParams>::const_iterator it = estim_params_list.begin();
           it != estim_params_list.end(); it++)
        {
          if (it->name == "dsge_prior_weight")
            mod_file_struct.dsge_prior_weight_in_estimated_params = true;
    
          // Handle case of degenerate beta prior
          if (it->prior == "1") //BETA_PDF is associated with "1" in DynareBison.yy
            try
              {
                if (it->mean->eval(eval_context_t()) == 0.5 &&
                    it->std->eval(eval_context_t()) == 0.5)
                  {
                    cerr << "ERROR: The prior density is not defined for the beta distribution when the mean = standard deviation = 0.5." << endl;
                    exit(EXIT_FAILURE);
                  }
              }
            catch (ExprNode::EvalException &e)
              {
                // We don't have enough information to compute the numerical value, skip the test
              }
        }
    }
    
    void
    EstimatedParamsStatement::writeOutput(ostream &output, const string &basename) const
    {
      output << "global estim_params_" << endl
             << "estim_params_.var_exo = [];" << endl
             << "estim_params_.var_endo = [];" << endl
             << "estim_params_.corrx = [];" << endl
             << "estim_params_.corrn = [];" << endl
             << "estim_params_.param_vals = [];" << endl;
    
      vector<EstimationParams>::const_iterator it;
    
      for (it = estim_params_list.begin(); it != estim_params_list.end(); it++)
        {
          int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
          SymbolType symb_type = symbol_table.getType(it->name);
    
          switch (it->type)
            {
            case 1:
              if (symb_type == eExogenous)
                output << "estim_params_.var_exo = [estim_params_.var_exo; ";
              else if (symb_type == eEndogenous)
                output << "estim_params_.var_endo = [estim_params_.var_endo; ";
              output << symb_id;
              break;
            case 2:
              output << "estim_params_.param_vals = [estim_params_.param_vals; "
                     << symb_id;
              break;
            case 3:
              if (symb_type == eExogenous)
                output << "estim_params_.corrx = [estim_params_.corrx; ";
              else if (symb_type == eEndogenous)
                output << "estim_params_.corrn = [estim_params_.corrn; ";
              output << symb_id << " " << symbol_table.getTypeSpecificID(it->name2)+1;
              break;
            }
          output << ", ";
          it->init_val->writeOutput(output);
          output << ", ";
          it->low_bound->writeOutput(output);
          output << ", ";
          it->up_bound->writeOutput(output);
          output << ", "
                 << it->prior << ", ";
          it->mean->writeOutput(output);
          output << ", ";
          it->std->writeOutput(output);
          output << ", ";
          it->p3->writeOutput(output);
          output << ", ";
          it->p4->writeOutput(output);
          output << ", ";
          it->jscale->writeOutput(output);
          output << " ];" << endl;
        }
    }
    
    EstimatedParamsInitStatement::EstimatedParamsInitStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                               const SymbolTable &symbol_table_arg) :
      estim_params_list(estim_params_list_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    EstimatedParamsInitStatement::writeOutput(ostream &output, const string &basename) const
    {
      vector<EstimationParams>::const_iterator it;
    
      for (it = estim_params_list.begin(); it != estim_params_list.end(); it++)
        {
          int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
          SymbolType symb_type = symbol_table.getType(it->name);
    
          if (it->type < 3)
            {
              if (symb_type == eExogenous)
                {
                  output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;
                  output << "estim_params_.var_exo(tmp1,2) = ";
                  it->init_val->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eEndogenous)
                {
                  output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;
                  output << "estim_params_.var_endo(tmp1,2) = ";
                  it->init_val->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eParameter)
                {
                  output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;
                  output << "estim_params_.param_vals(tmp1,2) = ";
                  it->init_val->writeOutput(output);
                  output << ";" << endl;
                }
            }
          else
            {
              if (symb_type == eExogenous)
                {
                  output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << ")) & (estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ");" << endl;
                  output << "estim_params_.corrx(tmp1,3) = ";
                  it->init_val->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eEndogenous)
                {
                  output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << ")) & (estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ";" << endl;
                  output << "estim_params_.corrn(tmp1,3) = ";
                  it->init_val->writeOutput(output);
                  output << ";" << endl;
                }
            }
        }
    }
    
    EstimatedParamsBoundsStatement::EstimatedParamsBoundsStatement(const vector<EstimationParams> &estim_params_list_arg,
                                                                   const SymbolTable &symbol_table_arg) :
      estim_params_list(estim_params_list_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    EstimatedParamsBoundsStatement::writeOutput(ostream &output, const string &basename) const
    {
      vector<EstimationParams>::const_iterator it;
    
      for (it = estim_params_list.begin(); it != estim_params_list.end(); it++)
        {
          int symb_id = symbol_table.getTypeSpecificID(it->name) + 1;
          SymbolType symb_type = symbol_table.getType(it->name);
    
          if (it->type < 3)
            {
              if (symb_type == eExogenous)
                {
                  output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.var_exo(tmp1,3) = ";
                  it->low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.var_exo(tmp1,4) = ";
                  it->up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eEndogenous)
                {
                  output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.var_endo(tmp1,3) = ";
                  it->low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.var_endo(tmp1,4) = ";
                  it->up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eParameter)
                {
                  output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.param_vals(tmp1,3) = ";
                  it->low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.param_vals(tmp1,4) = ";
                  it->up_bound->writeOutput(output);
                  output << ";" << endl;
                }
            }
          else
            {
              if (symb_type == eExogenous)
                {
                  output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << ")) & (estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ");" << endl;
    
                  output << "estim_params_.corrx(tmp1,4) = ";
                  it->low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.corrx(tmp1,5) = ";
                  it->up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == eEndogenous)
                {
                  output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << ")) & (estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it->name2)+1 << ";" << endl;
    
                  output << "estim_params_.corrn(tmp1,4) = ";
                  it->low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.corrn(tmp1,5) = ";
                  it->up_bound->writeOutput(output);
                  output << ";" << endl;
                }
            }
        }
    }
    
    ObservationTrendsStatement::ObservationTrendsStatement(const trend_elements_t &trend_elements_arg,
                                                           const SymbolTable &symbol_table_arg) :
      trend_elements(trend_elements_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    ObservationTrendsStatement::writeOutput(ostream &output, const string &basename) const
    {
      output << "options_.trend_coeff_ = {};" << endl;
    
      trend_elements_t::const_iterator it;
    
      for (it = trend_elements.begin(); it != trend_elements.end(); it++)
        {
          SymbolType type = symbol_table.getType(it->first);
          if (type == eEndogenous)
            {
              output << "tmp1 = strmatch('" << it->first << "',options_.varobs,'exact');\n";
              output << "options_.trend_coeffs{tmp1} = '";
              it->second->writeOutput(output);
              output << "';" << endl;
            }
          else
            cout << "Error : Non-variable symbol used in TREND_COEFF: " << it->first << endl;
        }
    }
    
    CalibVarStatement::CalibVarStatement(const calib_var_t &calib_var_arg,
                                         const calib_covar_t &calib_covar_arg,
                                         const calib_ac_t &calib_ac_arg,
                                         const SymbolTable &symbol_table_arg) :
      calib_var(calib_var_arg),
      calib_covar(calib_covar_arg),
      calib_ac(calib_ac_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    CalibVarStatement::writeOutput(ostream &output, const string &basename) const
    {
    
      output << "%" << endl
             << "% CALIB_VAR" << endl
             << "%" << endl;
    
      for (int i = 1; i < 4; i++)
        {
          output << "calib_var_index{" << i << "} = [];\n";
          output << "calib_targets{" << i << "} = [];\n";
          output << "calib_weights{" << i << "}=[];\n";
        }
    
      // Print calibration variances
      for (calib_var_t::const_iterator it = calib_var.begin();
           it != calib_var.end(); it++)
        {
          const string &name = it->first;
          const string &weight = it->second.first;
          const expr_t expression = it->second.second;
    
          int id = symbol_table.getTypeSpecificID(name) + 1;
          if (symbol_table.getType(name) == eEndogenous)
            {
              output << "calib_var_index{1} = [calib_var_index{1};" <<  id << "," << id << "];\n";
              output << "calib_weights{1} = [calib_weights{1}; " << weight << "];\n";
              output << "calib_targets{1} =[calib_targets{1}; ";
              expression->writeOutput(output);
              output << "];\n";
            }
          else if (symbol_table.getType(name) == eExogenous)
            {
              output << "calib_var_index{3} = [calib_var_index{3};" <<  id << "," << id << "];\n";
              output << "calib_weights{3} = [calib_weights{3}; " << weight << "];\n";
              output << "calib_targets{3} =[calib_targets{3}; ";
              expression->writeOutput(output);
              output << "];\n";
            }
        }
    
      // Print calibration covariances
      for (calib_covar_t::const_iterator it = calib_covar.begin();
           it != calib_covar.end(); it++)
        {
          const string &name1 = it->first.first;
          const string &name2 = it->first.second;
          const string &weight = it->second.first;
          const expr_t expression = it->second.second;
    
          int id1 = symbol_table.getTypeSpecificID(name1) + 1;
          int id2 = symbol_table.getTypeSpecificID(name2) + 1;
          if (symbol_table.getType(name1) == eEndogenous)
            {
              output << "calib_var_index{1} = [calib_var_index{1};" <<  id1 << "," << id2 << "];\n";
              output << "calib_weights{1} = [calib_weights{1}; " << weight << "];\n";
              output << "calib_targets{1} =[calib_targets{1}; ";
              expression->writeOutput(output);
              output << "];\n";
            }
          else if (symbol_table.getType(name1) == eExogenous)
            {
              output << "calib_var_index{3} = [calib_var_index{3};" <<  id1 << "," << id2 << "];\n";
              output << "calib_weights{3} = [calib_weights{3}; " << weight << "];\n";
              output << "calib_targets{3} =[calib_targets{3}; ";
              expression->writeOutput(output);
              output << "];\n";
            }
        }
    
      // Print calibration autocorrelations
      int max_iar = 3;
    
      for (calib_ac_t::const_iterator it = calib_ac.begin();
           it != calib_ac.end(); it++)
        {
          const string &name = it->first.first;
          int iar = it->first.second + 3;
          const string &weight = it->second.first;
          const expr_t expression = it->second.second;
    
          int id = symbol_table.getTypeSpecificID(name) + 1;
    
          if (iar > max_iar)
            {
              // Create new variables
              for (int i = max_iar + 1; i <= iar; i++)
                {
                  output << "calib_var_index{" << i << "} = [];\n";
                  output << "calib_targets{" << i << "} = [];\n";
                  output << "calib_weights{" << i << "}=[];\n";
                }
              max_iar = iar;
            }
    
          output << "calib_var_index{" << iar << "} = [calib_var_index{" << iar << "};" <<  id << "];\n";
          output << "calib_weights{" << iar << "} = [calib_weights{" << iar << "}; " << weight << "];\n";
          output << "calib_targets{" << iar << "} =[calib_targets{" << iar << "}; ";
          expression->writeOutput(output);
          output << "];\n";
        }
    }
    
    CalibStatement::CalibStatement(int covar_arg) : covar(covar_arg)
    {
    }
    
    void
    CalibStatement::writeOutput(ostream &output, const string &basename) const
    {
      output << "M_.Sigma_e=calib(calib_var_index,calib_targets,calib_weights," << covar << ",Sigma_e_);\n";
    }
    
    OsrParamsStatement::OsrParamsStatement(const SymbolList &symbol_list_arg) :
      symbol_list(symbol_list_arg)
    {
    }
    
    void
    OsrParamsStatement::writeOutput(ostream &output, const string &basename) const
    {
      symbol_list.writeOutput("osr_params_", output);
    }
    
    OsrStatement::OsrStatement(const SymbolList &symbol_list_arg,
                               const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    OsrStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.osr_present = true;
    
      // Fill in option_order of mod_file_struct
      OptionsList::num_options_t::const_iterator it = options_list.num_options.find("order");
      if (it != options_list.num_options.end())
        mod_file_struct.order_option = max(mod_file_struct.order_option, atoi(it->second.c_str()));
    
      // Fill in mod_file_struct.partial_information
      it = options_list.num_options.find("partial_information");
      if (it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      it = options_list.num_options.find("k_order_solver");
      if ((it != options_list.num_options.end() && it->second == "1")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    }
    
    void
    OsrStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "osr(var_list_,osr_params_,obj_var_,optim_weights_);\n";
    }
    
    OptimWeightsStatement::OptimWeightsStatement(const var_weights_t &var_weights_arg,
                                                 const covar_weights_t &covar_weights_arg,
                                                 const SymbolTable &symbol_table_arg) :
      var_weights(var_weights_arg),
      covar_weights(covar_weights_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    void
    OptimWeightsStatement::writeOutput(ostream &output, const string &basename) const
    {
      output << "%" << endl
             << "% OPTIM_WEIGHTS" << endl
             << "%" << endl
             << "optim_weights_ = sparse(M_.endo_nbr,M_.endo_nbr);" << endl
             << "obj_var_ = [];" << endl << endl;
    
      for (var_weights_t::const_iterator it = var_weights.begin();
           it != var_weights.end(); it++)
        {
          const string &name = it->first;
          const expr_t value = it->second;
          int id = symbol_table.getTypeSpecificID(name) + 1;
          output <<  "optim_weights_(" << id << "," << id << ") = ";
          value->writeOutput(output);
          output << ";" << endl;
          output << "obj_var_ = [obj_var_; " << id << "];\n";
        }
    
      for (covar_weights_t::const_iterator it = covar_weights.begin();
           it != covar_weights.end(); it++)
        {
          const string &name1 = it->first.first;
          const string &name2 = it->first.second;
          const expr_t value = it->second;
          int id1 = symbol_table.getTypeSpecificID(name1) + 1;
          int id2 = symbol_table.getTypeSpecificID(name2) + 1;
          output <<  "optim_weights_(" << id1 << "," << id2 << ") = ";
          value->writeOutput(output);
          output << ";" << endl;
          output << "obj_var_ = [obj_var_; " << id1 << "; " << id2 << "];\n";
        }
    }
    
    DynaSaveStatement::DynaSaveStatement(const SymbolList &symbol_list_arg,
                                         const string &filename_arg) :
      symbol_list(symbol_list_arg),
      filename(filename_arg)
    {
    }
    
    void
    DynaSaveStatement::writeOutput(ostream &output, const string &basename) const
    {
      symbol_list.writeOutput("var_list_", output);
      output << "dynasave('" << filename
             << "',var_list_);" << endl;
    }
    
    DynaTypeStatement::DynaTypeStatement(const SymbolList &symbol_list_arg,
                                         const string &filename_arg) :
      symbol_list(symbol_list_arg),
      filename(filename_arg)
    {
    }
    
    void
    DynaTypeStatement::writeOutput(ostream &output, const string &basename) const
    {
      symbol_list.writeOutput("var_list_", output);
      output << "dynatype('" << filename
             << "',var_list_);" << endl;
    }
    
    ModelComparisonStatement::ModelComparisonStatement(const filename_list_t &filename_list_arg,
                                                       const OptionsList &options_list_arg) :
      filename_list(filename_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    ModelComparisonStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
    
      output << "ModelNames_ = {};" << endl;
      output << "ModelPriors_ = [];" << endl;
    
      for (filename_list_t::const_iterator it = filename_list.begin();
           it != filename_list.end(); it++)
        {
          output << "ModelNames_ = { ModelNames_{:} '" << (*it).first << "'};" << endl;
          output << "ModelPriors_ = [ ModelPriors_ ; " << (*it).second << "];" << endl;
        }
      output << "model_comparison(ModelNames_,ModelPriors_,oo_,options_,M_.fname);" << endl;
    }
    
    PlannerObjectiveStatement::PlannerObjectiveStatement(StaticModel *model_tree_arg) :
      model_tree(model_tree_arg)
    {
    }
    
    PlannerObjectiveStatement::~PlannerObjectiveStatement()
    {
      delete model_tree;
    }
    
    void
    PlannerObjectiveStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      assert(model_tree->equation_number() == 1);
    }
    
    void
    PlannerObjectiveStatement::computingPass()
    {
      model_tree->computingPass(eval_context_t(), false, true, false, false);
    }
    
    void
    PlannerObjectiveStatement::writeOutput(ostream &output, const string &basename) const
    {
      model_tree->writeStaticFile(basename + "_objective", false, false);
    }
    
    BVARDensityStatement::BVARDensityStatement(int maxnlags_arg, const OptionsList &options_list_arg) :
      maxnlags(maxnlags_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    BVARDensityStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    BVARDensityStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "bvar_density(" << maxnlags << ");" << endl;
    }
    
    BVARForecastStatement::BVARForecastStatement(int nlags_arg, const OptionsList &options_list_arg) :
      nlags(nlags_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    BVARForecastStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    BVARForecastStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "bvar_forecast(" << nlags << ");" << endl;
    }
    
    SBVARStatement::SBVARStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    SBVARStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    SBVARStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "swz_sbvar(0,M_,options_);" << endl;
    }
    
    MS_SBVARStatement::MS_SBVARStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    MS_SBVARStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    MS_SBVARStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      output << "swz_sbvar(1,M_,options_);" << endl;
    }
    
    IdentificationStatement::IdentificationStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    IdentificationStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      mod_file_struct.identification_present = true;
    }
    
    void
    IdentificationStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output, "options_ident");
      output << "dynare_identification(options_ident);" << endl;
    }
    
    WriteLatexDynamicModelStatement::WriteLatexDynamicModelStatement(const DynamicModel &dynamic_model_arg) :
      dynamic_model(dynamic_model_arg)
    {
    }
    
    void
    WriteLatexDynamicModelStatement::writeOutput(ostream &output, const string &basename) const
    {
      dynamic_model.writeLatexFile(basename);
    }
    
    WriteLatexStaticModelStatement::WriteLatexStaticModelStatement(const StaticModel &static_model_arg) :
      static_model(static_model_arg)
    {
    }
    
    void
    WriteLatexStaticModelStatement::writeOutput(ostream &output, const string &basename) const
    {
      static_model.writeLatexFile(basename);
    }
    
    ShockDecompositionStatement::ShockDecompositionStatement(const SymbolList &symbol_list_arg,
                                                             const OptionsList &options_list_arg) :
      symbol_list(symbol_list_arg),
      options_list(options_list_arg)
    {
    }
    
    void
    ShockDecompositionStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_ = shock_decomposition(M_,oo_,options_,var_list_);\n";
    }
    
    ConditionalForecastStatement::ConditionalForecastStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    ConditionalForecastStatement::writeOutput(ostream &output, const string &basename) const
    {
      options_list.writeOutput(output, "options_cond_fcst_");
      output << "imcforecast(constrained_paths_, constrained_vars_, options_cond_fcst_);" << endl;
    }
    
    PlotConditionalForecastStatement::PlotConditionalForecastStatement(int periods_arg, const SymbolList &symbol_list_arg) :
      periods(periods_arg),
      symbol_list(symbol_list_arg)
    {
    }
    
    void
    PlotConditionalForecastStatement::writeOutput(ostream &output, const string &basename) const
    {
      symbol_list.writeOutput("var_list_", output);
      if (periods == -1)
        output << "plot_icforecast(var_list_);" << endl;
      else
        output << "plot_icforecast(var_list_, " << periods << ");" << endl;
    }
    
    SvarIdentificationStatement::SvarIdentificationStatement(const svar_identification_exclusion_t &exclusion_arg,
                                                             const bool &upper_cholesky_present_arg,
                                                             const bool &lower_cholesky_present_arg,
                                                             const SymbolTable &symbol_table_arg) :
      exclusion(exclusion_arg),
      upper_cholesky_present(upper_cholesky_present_arg),
      lower_cholesky_present(lower_cholesky_present_arg),
      symbol_table(symbol_table_arg)
    {
    }
    
    int
    SvarIdentificationStatement::getMaxLag() const
    {
      int max_lag = 0;
      for (svar_identification_exclusion_t::const_iterator it = exclusion.begin(); it != exclusion.end(); it++)
        if (it->first.first > max_lag)
          max_lag = it->first.first;
    
      return max_lag;
    }
    
    void
    SvarIdentificationStatement::checkPass(ModFileStructure &mod_file_struct)
    {
      if (!mod_file_struct.svar_identification_present)
        mod_file_struct.svar_identification_present = true;
      else
        {
          cerr << "ERROR: You may only have one svar_identification block in your .mod file." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    SvarIdentificationStatement::writeOutput(ostream &output, const string &basename) const
    {
      if (upper_cholesky_present && lower_cholesky_present)
        {
          cerr << "SvarIdentificationStatement::writeOutput() Should not arrive here (1). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "%" << endl
             << "% SVAR IDENTIFICATION" << endl
             << "%" << endl;
    
      if (upper_cholesky_present)
        output << "options_.ms.upper_cholesky=1;" << endl;
    
      if (lower_cholesky_present)
        output << "options_.ms.lower_cholesky=1;" << endl;
    
      if (!upper_cholesky_present && !lower_cholesky_present)
        {
          int n = symbol_table.endo_nbr();
    //       int m = symbol_table.exo_nbr();
          int m = 1; // this is the constant, not the shocks
          int r = getMaxLag();
          int k = r*n+m;
    
          if (k < 1)
    	{
    	  cerr << "ERROR: lag = " << r
    	       << ", number of endogenous variables = " << n
    	       << ", number of exogenous variables = " << m
    	       << ". If this is not a logical error in the specification"
    	       << " of the .mod file, please report it to the Dynare Team." << endl;
    	  exit(EXIT_FAILURE);
    	}
          if (n < 1)
            {
              cerr << "ERROR: Number of endogenous variables = " << n << "< 1. If this is not a logical "
                   << "error in the specification of the .mod file, please report it to the Dynare Team." << endl;
              exit(EXIT_FAILURE);
            }
          output << "options_.ms.Qi = zeros(" << n << ", " << n << ", " << n << ");" << endl;
          output << "options_.ms.Ri = zeros(" << k << ", " << k << ", " << n << ");" << endl;
    
          for (svar_identification_exclusion_t::const_iterator it = exclusion.begin(); it != exclusion.end(); it++)
            {
              for (unsigned int h = 0; h < it->second.size(); h++)
                {
                  int j = it->second.at(h) + 1;
                  int i = it->first.second;
                  if (j < 1 || j > n || (int) h+1 > n || i < 1)
                    {
                      cerr << "SvarIdentificationStatement::writeOutput() Should not arrive here (2). Please report this to the Dynare Team." << endl;
                      exit(EXIT_FAILURE);
                    }
                  if (i > n)
                    {
                      cerr << "ERROR: equation number " << i << " is greater than the number of endogenous variables, " << n << "." << endl;
                      exit(EXIT_FAILURE);
                    }
    
                  if (it->first.first == 0)
                    output << "options_.ms.Qi(" << h+1 << ", " << j << ", "<< i << ") = 1;" << endl;
                  else if (it->first.first > 0)
                    {
                      if ((it->first.first-1)*n+j > k)
                        {
                          cerr << "ERROR: lag =" << it->first.first << ", num endog vars = " << n << "current endog var index = " << j << ". Index "
                               << "out of bounds. If the above does not represent a logical error, please report this to the Dyanre Team." << endl;
                        }
                      output << "options_.ms.Ri(" << h+1 << ", " << (it->first.first-1)*n+j << ", "<< i << ") = 1;" << endl;
                    }
                  else
                    {
                      cerr << "SvarIdentificationStatement::writeOutput() Should not arrive here (3). Please report this to the Dynare Team." << endl;
                      exit(EXIT_FAILURE);
                    }
                }
            }
        }
    }
    
    MarkovSwitchingStatement::MarkovSwitchingStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    MarkovSwitchingStatement::writeOutput(ostream &output, const string &basename) const
    {
      OptionsList::num_options_t::const_iterator itChain, itState, itNOS, itDuration;
    
      itChain = options_list.num_options.find("ms.chain");
      if (itChain == options_list.num_options.end())
        {
          cerr << "MarkovSwitchingStatement::writeOutput() Should not arrive here (1). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    
      itDuration = options_list.num_options.find("ms.duration");
      if (itDuration == options_list.num_options.end())
        {
          cerr << "MarkovSwitchingStatement::writeOutput() Should not arrive here (2). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    
      itState = options_list.num_options.find("ms.state");
      itNOS = options_list.num_options.find("ms.number_of_states");
      if (itState != options_list.num_options.end()
          && itNOS == options_list.num_options.end())
        output << "options_.ms.ms_chain(" << itChain->second << ").state(" << itState->second << ").duration = " << itDuration->second << ";" << endl;
      else if (itState == options_list.num_options.end()
               && itNOS != options_list.num_options.end())
        for (int i = 0; i < atoi(itNOS->second.c_str()); i++)
          output << "options_.ms.ms_chain(" << itChain->second << ").state(" << i+1 << ").duration = " << itDuration->second << ";" << endl;
      else
        {
          cerr << "MarkovSwitchingStatement::writeOutput() Should not arrive here (3). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    SvarStatement::SvarStatement(const OptionsList &options_list_arg) :
      options_list(options_list_arg)
    {
    }
    
    void
    SvarStatement::writeOutput(ostream &output, const string &basename) const
    {
      OptionsList::num_options_t::const_iterator it0, it1, it2;
      OptionsList::vec_int_options_t::const_iterator itv;
    
      it0 = options_list.num_options.find("ms.chain");
      if (it0 != options_list.num_options.end())
        output << "options_.ms.ms_chain(" << it0->second << ")";
      else
        {
          cerr << "SvarStatement::writeOutput() Should not arrive here (1). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    
      it0 = options_list.string_options.find("ms.coefficients");
      it1 = options_list.string_options.find("ms.variances");
      it2 = options_list.string_options.find("ms.constants");
      if (it0 != options_list.string_options.end()
          && it1 == options_list.string_options.end()
          && it2 == options_list.string_options.end())
        output << "." << it0->second;
      else if (it0 == options_list.string_options.end()
               && it1 != options_list.string_options.end()
               && it2 == options_list.string_options.end())
        output << "." << it1->second;
      else if (it0 == options_list.string_options.end()
               && it1 == options_list.string_options.end()
               && it2 != options_list.string_options.end())
        output << "." << it2->second;
      else
        {
          cerr << "SvarStatement::writeOutput() Should not arrive here (2). Please report this to the Dynare Team." << endl;
          exit(EXIT_FAILURE);
        }
    
      itv = options_list.vector_int_options.find("ms.equations");
      output << ".equations = ";
      if (itv != options_list.vector_int_options.end())
        {
          if (itv->second.size() > 1)
            {
              output << "[";
              for (vector<int>::const_iterator viit = itv->second.begin();
                   viit != itv->second.end(); viit++)
                output << *viit << ";";
              output << "];" << endl;
            }
          else if (itv->second.size() == 1)
            output << itv->second.front() << ";" << endl;
          else
            {
              cerr << "SvarStatement::writeOutput() Should not arrive here (3). Please report this to the Dynare Team." << endl;
              exit(EXIT_FAILURE);
            }
        }
      else
        output << "'ALL';" << endl;
    }