Skip to content
Snippets Groups Projects
Select Git revision
  • bf99443ecfb19144b60d44e1ecd1e99a9b901e06
  • master default protected
  • julia protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • 5.x protected
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-7.0.0
  • julia-6.4.0
  • julia-6.3.0
  • julia-6.2.0
15 results

StaticDllModel.cc

Blame
  • user avatar
    sebastien authored
    git-svn-id: https://www.dynare.org/svn/dynare/trunk@2886 ac1d8469-bf42-47a9-8791-bf33cf982152
    743041ec
    History
    StaticDllModel.cc 53.24 KiB
    /*
     * Copyright (C) 2003-2009 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <iostream>
    #include <cmath>
    #include <cstdlib>
    #include <cassert>
    #include <cstdio>
    #include <cerrno>
    #include "StaticDllModel.hh"
    
    // For mkdir() and chdir()
    #ifdef _WIN32
    # include <direct.h>
    #else
    # include <unistd.h>
    # include <sys/stat.h>
    # include <sys/types.h>
    #endif
    
    StaticDllModel::StaticDllModel(SymbolTable &symbol_table_arg,
                               NumericalConstants &num_constants_arg) :
        ModelTree(symbol_table_arg, num_constants_arg),
        max_lag(0), max_lead(0),
        max_endo_lag(0), max_endo_lead(0),
        max_exo_lag(0), max_exo_lead(0),
        max_exo_det_lag(0), max_exo_det_lead(0),
        dynJacobianColsNbr(0),
        cutoff(1e-15),
        mfs(0),
        block_triangular(symbol_table_arg, num_constants_arg)
    {
    }
    
    NodeID
    StaticDllModel::AddVariable(const string &name, int lag)
    {
      return AddVariableInternal(name, lag);
    }
    
    void
    StaticDllModel::compileDerivative(ofstream &code_file, int eq, int symb_id, int lag, map_idx_type &map_idx) const
      {
        //first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
        first_derivatives_type::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag)));
        if (it != first_derivatives.end())
          (it->second)->compile(code_file, false, temporary_terms, map_idx, false);
        else
          code_file.write(&FLDZ, sizeof(FLDZ));
      }
    
    
    void
    StaticDllModel::compileChainRuleDerivative(ofstream &code_file, int eqr, int varr, int lag, map_idx_type &map_idx) const
    {
      map<pair<int, pair<int, int> >, NodeID>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
      if (it != first_chain_rule_derivatives.end())
        (it->second)->compile(code_file, false, temporary_terms, map_idx, false);
      else
        code_file.write(&FLDZ, sizeof(FLDZ));
    }
    
    
    void
    StaticDllModel::BuildIncidenceMatrix()
    {
      set<pair<int, int> > endogenous, exogenous;
      for (int eq = 0; eq < (int) equations.size(); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          endogenous.clear();
          NodeID Id = eq_node->get_arg1();
          Id->collectEndogenous(endogenous);
          Id = eq_node->get_arg2();
          Id->collectEndogenous(endogenous);
          for (set<pair<int, int> >::iterator it_endogenous=endogenous.begin();it_endogenous!=endogenous.end();it_endogenous++)
            {
              block_triangular.incidencematrix.fill_IM(eq, it_endogenous->first, 0, eEndogenous);
            }
          exogenous.clear();
          Id = eq_node->get_arg1();
          Id->collectExogenous(exogenous);
          Id = eq_node->get_arg2();
          Id->collectExogenous(exogenous);
          for (set<pair<int, int> >::iterator it_exogenous=exogenous.begin();it_exogenous!=exogenous.end();it_exogenous++)
            {
              block_triangular.incidencematrix.fill_IM(eq, it_exogenous->first, 0, eExogenous);
            }
        }
    }
    
    void
    StaticDllModel::computeTemporaryTermsOrdered(Model_Block *ModelBlock)
    {
      map<NodeID, pair<int, int> > first_occurence;
      map<NodeID, int> reference_count;
      int i, j, eqr, varr, lag;
      temporary_terms_type vect;
      ostringstream tmp_output;
      BinaryOpNode *eq_node;
      first_derivatives_type::const_iterator it;
      first_chain_rule_derivatives_type::const_iterator it_chr;
      ostringstream tmp_s;
    
      temporary_terms.clear();
      map_idx.clear();
      for (j = 0;j < ModelBlock->Size;j++)
        {
          // Compute the temporary terms reordered
          for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
            {
              if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S && i<ModelBlock->Block_List[j].Nb_Recursives && ModelBlock->Block_List[j].Equation_Normalized[i])
                  ModelBlock->Block_List[j].Equation_Normalized[i]->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, i, map_idx);
    					else
    					  {
    					  	eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                  eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, i, map_idx);
    					  }
            }
    			for(i=0; i<(int)ModelBlock->Block_List[j].Chain_Rule_Derivatives->size();i++)
    				{
              pair< pair<int, pair<int, int> >, pair<int, int> > it = ModelBlock->Block_List[j].Chain_Rule_Derivatives->at(i);
              lag=it.first.first;
              int eqr=it.second.first;
              int varr=it.second.second;
              it_chr=first_chain_rule_derivatives.find(make_pair(eqr, make_pair( varr, lag)));
              it_chr->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, j, ModelBlock, ModelBlock->Block_List[j].Size-1, map_idx);
    				}
    
        }
      for (j = 0;j < ModelBlock->Size;j++)
        {
          // Collecte the temporary terms reordered
          for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
            {
            	if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S && i<ModelBlock->Block_List[j].Nb_Recursives && ModelBlock->Block_List[j].Equation_Normalized[i])
                  ModelBlock->Block_List[j].Equation_Normalized[i]->collectTemporary_terms(temporary_terms, ModelBlock, j);
    					else
    					  {
    					  	eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                  eq_node->collectTemporary_terms(temporary_terms, ModelBlock, j);
    					  }
    
            }
    			for(i=0; i<(int)ModelBlock->Block_List[j].Chain_Rule_Derivatives->size();i++)
            {
              pair< pair<int, pair<int, int> >, pair<int, int> > it = ModelBlock->Block_List[j].Chain_Rule_Derivatives->at(i);
              lag=it.first.first;
              eqr=it.second.first;
              varr=it.second.second;
              it_chr=first_chain_rule_derivatives.find(make_pair(eqr, make_pair( varr, lag)));
              it_chr->second->collectTemporary_terms(temporary_terms, ModelBlock, j);
            }
        }
      // Add a mapping form node ID to temporary terms order
      j=0;
      for (temporary_terms_type::const_iterator it = temporary_terms.begin();
           it != temporary_terms.end(); it++)
        map_idx[(*it)->idx]=j++;
    }
    
    void
    StaticDllModel::writeModelEquationsOrdered_M( Model_Block *ModelBlock, const string &static_basename) const
      {
        int i,j,k,m;
        string tmp_s, sps;
        ostringstream tmp_output, tmp1_output, global_output;
        NodeID lhs=NULL, rhs=NULL;
        BinaryOpNode *eq_node;
        map<NodeID, int> reference_count;
        ofstream  output;
        int nze, nze_exo, nze_other_endo;
        vector<int> feedback_variables;
        //For each block
        for (j = 0;j < ModelBlock->Size;j++)
          {
            //recursive_variables.clear();
            feedback_variables.clear();
            //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
            nze = nze_exo = nze_other_endo = 0;
            for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
              nze+=ModelBlock->Block_List[j].IM_lead_lag[m].size;
            tmp1_output.str("");
            tmp1_output << static_basename << "_" << j+1 << ".m";
            output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
            output << "%\n";
            output << "% " << tmp1_output.str() << " : Computes static model for Dynare\n";
            output << "%\n";
            output << "% Warning : this file is generated automatically by Dynare\n";
            output << "%           from model file (.mod)\n\n";
            output << "%/\n";
            if (ModelBlock->Block_List[j].Simulation_Type==EVALUATE_BACKWARD
                ||ModelBlock->Block_List[j].Simulation_Type==EVALUATE_FORWARD)
              output << "function y = " << static_basename << "_" << j+1 << "(y, x, params)\n";
            else if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE
                     ||   ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE
                     ||   ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_SIMPLE
                     ||   ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_SIMPLE)
              output << "function [residual, y, g1] = " << static_basename << "_" << j+1 << "(y, x, params)\n";
            output << "  % ////////////////////////////////////////////////////////////////////////" << endl
            << "  % //" << string("                     Block ").substr(int(log10(j + 1))) << j + 1 << " " << BlockTriangular::BlockType0(ModelBlock->Block_List[j].Type)
            << "          //" << endl
            << "  % //                     Simulation type "
            << BlockTriangular::BlockSim(ModelBlock->Block_List[j].Simulation_Type) << "  //" << endl
            << "  % ////////////////////////////////////////////////////////////////////////" << endl;
            //The Temporary terms
            if (ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD
                && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD)
              output << "    g1 = spalloc(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives
                     << ", " << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives << ", " << nze << ");\n";
    
            if (ModelBlock->Block_List[j].Temporary_InUse->size())
              {
                tmp_output.str("");
                for (temporary_terms_inuse_type::const_iterator it = ModelBlock->Block_List[j].Temporary_InUse->begin();
                     it != ModelBlock->Block_List[j].Temporary_InUse->end(); it++)
                  tmp_output << " T" << *it;
                output << "  global" << tmp_output.str() << ";\n";
              }
            if (ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD)
              output << "  residual=zeros(" << ModelBlock->Block_List[j].Size-ModelBlock->Block_List[j].Nb_Recursives << ",1);\n";
            // The equations
            for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
              {
                temporary_terms_type tt2;
                tt2.clear();
                if (ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->size())
                  output << "  " << sps << "% //Temporary variables" << endl;
                for (temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->begin();
                     it != ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->end(); it++)
                  {
                    output << "  " <<  sps;
                    (*it)->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                    output << " = ";
                    (*it)->writeOutput(output, oMatlabStaticModelSparse, tt2);
                    // Insert current node into tt2
                    tt2.insert(*it);
                    output << ";" << endl;
                  }
                string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, ModelBlock->Block_List[j].Variable[i])) ;
                eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                lhs = eq_node->get_arg1();
                rhs = eq_node->get_arg2();
                tmp_output.str("");
                /*if((ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD or ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD) and (i<ModelBlock->Block_List[j].Nb_Recursives))
                  lhs->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms);
                else*/
    						lhs->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms);
                switch (ModelBlock->Block_List[j].Simulation_Type)
                  {
                  case EVALUATE_BACKWARD:
                  case EVALUATE_FORWARD:
    evaluation:     if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
                      output << "    % equation " << ModelBlock->Block_List[j].Equation[i]+1 << " variable : " << sModel
                      << " (" << ModelBlock->Block_List[j].Variable[i]+1 << ") " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                    output << "    ";
                    if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE)
                      {
                        output << tmp_output.str();
                        output << " = ";
      									rhs->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                      }
                    else if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                      {
                        output << "%" << tmp_output.str();
                        output << " = ";
                        if (ModelBlock->Block_List[j].Equation_Normalized[i])
                          {
                            rhs->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                            output << "\n    ";
                            tmp_output.str("");
                            eq_node = (BinaryOpNode *)ModelBlock->Block_List[j].Equation_Normalized[i];
                            lhs = eq_node->get_arg1();
                            rhs = eq_node->get_arg2();
                            lhs->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                            output << " = ";
    											  rhs->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                          }
                      }
                    else
                      {
                        cerr << "Type missmatch for equation " << ModelBlock->Block_List[j].Equation[i]+1  << "\n";
                        exit(EXIT_FAILURE);
                      }
                    output << ";\n";
                    break;
                  case SOLVE_BACKWARD_SIMPLE:
                  case SOLVE_FORWARD_SIMPLE:
                  case SOLVE_BACKWARD_COMPLETE:
                  case SOLVE_FORWARD_COMPLETE:
                    if (i<ModelBlock->Block_List[j].Nb_Recursives)
                      goto evaluation;
                    feedback_variables.push_back(ModelBlock->Block_List[j].Variable[i]);
                    output << "  % equation " << ModelBlock->Block_List[j].Equation[i]+1 << " variable : " << sModel
                    << " (" << ModelBlock->Block_List[j].Variable[i]+1 << ") " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                    output << "  " << "residual(" << i+1-ModelBlock->Block_List[j].Nb_Recursives << ") = (";
                    goto end;
                  default:
    end:
                    output << tmp_output.str();
                    output << ") - (";
                    rhs->writeOutput(output, oMatlabStaticModelSparse, temporary_terms);
                    output << ");\n";
                  }
              }
            // The Jacobian if we have to solve the block
            output << "  " << sps << "% Jacobian  " << endl;
            switch (ModelBlock->Block_List[j].Simulation_Type)
              {
              case EVALUATE_BACKWARD:
              case EVALUATE_FORWARD:
                break;
              case SOLVE_BACKWARD_SIMPLE:
              case SOLVE_FORWARD_SIMPLE:
              case SOLVE_BACKWARD_COMPLETE:
              case SOLVE_FORWARD_COMPLETE:
                for(i=0; i<(int)ModelBlock->Block_List[j].Chain_Rule_Derivatives->size();i++)
                  {
                    pair< pair<int, pair<int, int> >, pair<int, int> > it = ModelBlock->Block_List[j].Chain_Rule_Derivatives->at(i);
                    k=it.first.first;
                    int eq=it.first.second.first;
                    int var=it.first.second.second;
                    int eqr=it.second.first;
                    int varr=it.second.second;
                    output << "    g1(" << eq+1-ModelBlock->Block_List[j].Nb_Recursives << ", "
                           << var+1-ModelBlock->Block_List[j].Nb_Recursives  << ") = ";
                    writeChainRuleDerivative(output, eqr, varr, k, oMatlabStaticModelSparse, temporary_terms);
                    output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                           << " " << varr+1 << ", equation=" << eqr+1 << endl;
                  }
                break;
              default:
                break;
              }
            output.close();
          }
      }
    
    void
    StaticDllModel::writeModelEquationsCodeOrdered(const string file_name, const Model_Block *ModelBlock, const string bin_basename, map_idx_type map_idx) const
      {
        struct Uff_l
          {
            int u, var, lag;
            Uff_l *pNext;
          };
    
        struct Uff
          {
            Uff_l *Ufl, *Ufl_First;
          };
    
        int i,j,k,v;
        string tmp_s;
        ostringstream tmp_output;
        ofstream code_file;
        NodeID lhs=NULL, rhs=NULL;
        BinaryOpNode *eq_node;
        Uff Uf[symbol_table.endo_nbr()];
        map<NodeID, int> reference_count;
        vector<int> feedback_variables;
        bool file_open=false;
        string main_name=file_name;
        main_name+=".cod";
        code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate );
        if (!code_file.is_open())
          {
            cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
            exit(EXIT_FAILURE);
          }
        //Temporary variables declaration
        code_file.write(&FDIMST, sizeof(FDIMST));
        k=temporary_terms.size();
        code_file.write(reinterpret_cast<char *>(&k),sizeof(k));
    
        for (j = 0; j < ModelBlock->Size ;j++)
          {
            feedback_variables.clear();
            if (j>0)
              code_file.write(&FENDBLOCK, sizeof(FENDBLOCK));
            code_file.write(&FBEGINBLOCK, sizeof(FBEGINBLOCK));
            v=ModelBlock->Block_List[j].Size - ModelBlock->Block_List[j].Nb_Recursives;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            v=ModelBlock->Block_List[j].Simulation_Type;
            code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
            int count_u;
            for (i=ModelBlock->Block_List[j].Nb_Recursives; i < ModelBlock->Block_List[j].Size;i++)
              {
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Variable[i]),sizeof(ModelBlock->Block_List[j].Variable[i]));
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Equation[i]),sizeof(ModelBlock->Block_List[j].Equation[i]));
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].Own_Derivative[i]),sizeof(ModelBlock->Block_List[j].Own_Derivative[i]));
              }
            if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE)
              {
                int u_count_int=0;
                Write_Inf_To_Bin_File(file_name, bin_basename, j, u_count_int,file_open);
                code_file.write(reinterpret_cast<char *>(&ModelBlock->Block_List[j].is_linear),sizeof(ModelBlock->Block_List[j].is_linear));
                v = u_count_int ;
                code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                v=symbol_table.endo_nbr();
                code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                v=block_triangular.ModelBlock->Block_List[j].Max_Lag;
                code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                v=block_triangular.ModelBlock->Block_List[j].Max_Lead;
                code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
    
                v=u_count_int;
                code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                file_open=true;
              }
                // The equations
                //cout << block_triangular.BlockSim(ModelBlock->Block_List[j].Simulation_Type) << "  j=" << j << endl;
                for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
                  {
                    //The Temporary terms
                    //cout << "equation = " << ModelBlock->Block_List[j].Equation[i] << " variable = " << ModelBlock->Block_List[j].Variable[i] << " r[" << i << "] " << block_triangular.c_Equation_Type(ModelBlock->Block_List[j].Equation_Type[i]) << endl;
                    temporary_terms_type tt2;
                    tt2.clear();
                    for (temporary_terms_type::const_iterator it = ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->begin();
                         it != ModelBlock->Block_List[j].Temporary_Terms_in_Equation[i]->end(); it++)
                      {
                        (*it)->compile(code_file, false, tt2, map_idx, false);
                        code_file.write(&FSTPST, sizeof(FSTPST));
                        map_idx_type::const_iterator ii=map_idx.find((*it)->idx);
                        v=(int)ii->second;
                        code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                        // Insert current node into tt2
                        tt2.insert(*it);
                      }
                    switch (ModelBlock->Block_List[j].Simulation_Type)
                      {
    evaluation:
                      case EVALUATE_BACKWARD:
                      case EVALUATE_FORWARD:
                        if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE)
                          {
                          	eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                            lhs = eq_node->get_arg1();
                            rhs = eq_node->get_arg2();
                            rhs->compile(code_file, false, temporary_terms, map_idx, false);
                            lhs->compile(code_file, true, temporary_terms, map_idx, false);
                          }
                        else if (ModelBlock->Block_List[j].Equation_Type[i] == E_EVALUATE_S)
                          {
                            eq_node = (BinaryOpNode*)ModelBlock->Block_List[j].Equation_Normalized[i];
                            lhs = eq_node->get_arg1();
                            rhs = eq_node->get_arg2();
                            rhs->compile(code_file, false, temporary_terms, map_idx, false);
                            lhs->compile(code_file, true, temporary_terms, map_idx, false);
                          }
                        break;
                      case SOLVE_BACKWARD_COMPLETE:
                      case SOLVE_FORWARD_COMPLETE:
                        if (i<ModelBlock->Block_List[j].Nb_Recursives)
                          goto evaluation;
                        feedback_variables.push_back(ModelBlock->Block_List[j].Variable[i]);
                        v=ModelBlock->Block_List[j].Equation[i];
                        Uf[v].Ufl=NULL;
                        goto end;
                      default:
    end:
                        eq_node = equations[ModelBlock->Block_List[j].Equation[i]];
                        lhs = eq_node->get_arg1();
                        rhs = eq_node->get_arg2();
                        lhs->compile(code_file, false, temporary_terms, map_idx, false);
                        rhs->compile(code_file, false, temporary_terms, map_idx, false);
                        code_file.write(&FBINARY, sizeof(FBINARY));
                        int v=oMinus;
                        code_file.write(reinterpret_cast<char *>(&v),sizeof(v));
                        code_file.write(&FSTPR, sizeof(FSTPR));
                        v = i - ModelBlock->Block_List[j].Nb_Recursives;
                        code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                      }
                  }
                code_file.write(&FENDEQU, sizeof(FENDEQU));
                // The Jacobian if we have to solve the block
                if (ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_BACKWARD
                    && ModelBlock->Block_List[j].Simulation_Type!=EVALUATE_FORWARD)
                  {
                    switch (ModelBlock->Block_List[j].Simulation_Type)
                      {
                      case SOLVE_BACKWARD_SIMPLE:
                      case SOLVE_FORWARD_SIMPLE:
                        compileDerivative(code_file, ModelBlock->Block_List[j].Equation[0], ModelBlock->Block_List[j].Variable[0], 0, map_idx);
                        code_file.write(&FSTPG, sizeof(FSTPG));
                        v=0;
                        code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                        break;
    
                      case SOLVE_BACKWARD_COMPLETE:
                      case SOLVE_FORWARD_COMPLETE:
    										count_u = feedback_variables.size();
                        for(i=0; i<(int)ModelBlock->Block_List[j].Chain_Rule_Derivatives->size();i++)
    											{
                            pair< pair<int, pair<int, int> >, pair<int, int> > it = ModelBlock->Block_List[j].Chain_Rule_Derivatives->at(i);
                            k=it.first.first;
                            int eq=it.first.second.first;
                            int var=it.first.second.second;
                            int eqr=it.second.first;
                            int varr=it.second.second;
                            int v=ModelBlock->Block_List[j].Equation[eq];
                            if(eq>=ModelBlock->Block_List[j].Nb_Recursives and var>=ModelBlock->Block_List[j].Nb_Recursives)
    												  {
    												  	if (!Uf[v].Ufl)
                                  {
                                    Uf[v].Ufl=(Uff_l*)malloc(sizeof(Uff_l));
                                    Uf[v].Ufl_First=Uf[v].Ufl;
                                  }
                                else
                                  {
                                    Uf[v].Ufl->pNext=(Uff_l*)malloc(sizeof(Uff_l));
                                    Uf[v].Ufl=Uf[v].Ufl->pNext;
                                  }
                                Uf[v].Ufl->pNext=NULL;
                                Uf[v].Ufl->u=count_u;
                                Uf[v].Ufl->var=varr;
                                Uf[v].Ufl->lag=k;
                                compileChainRuleDerivative(code_file, eqr, varr, k, map_idx);
                                code_file.write(&FSTPSU, sizeof(FSTPSU));
                                code_file.write(reinterpret_cast<char *>(&count_u), sizeof(count_u));
                                count_u++;
    												  }
    											}
                        for (i = 0;i < ModelBlock->Block_List[j].Size;i++)
                          {
                          	if(i>=ModelBlock->Block_List[j].Nb_Recursives)
                          	  {
                                code_file.write(&FLDR, sizeof(FLDR));
                                v = i-ModelBlock->Block_List[j].Nb_Recursives;
                                code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                                code_file.write(&FLDZ, sizeof(FLDZ));
                                v=ModelBlock->Block_List[j].Equation[i];
                                for (Uf[v].Ufl=Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl=Uf[v].Ufl->pNext)
                                  {
                                    code_file.write(&FLDSU, sizeof(FLDSU));
                                    code_file.write(reinterpret_cast<char *>(&Uf[v].Ufl->u), sizeof(Uf[v].Ufl->u));
                                    code_file.write(&FLDSV, sizeof(FLDSV));
                                    char vc=eEndogenous;
                                    code_file.write(reinterpret_cast<char *>(&vc), sizeof(vc));
                                    int v1=Uf[v].Ufl->var;
                                    code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                                    code_file.write(&FBINARY, sizeof(FBINARY));
                                    v1=oTimes;
                                    code_file.write(reinterpret_cast<char *>(&v1), sizeof(v1));
                                    code_file.write(&FCUML, sizeof(FCUML));
                                  }
                                Uf[v].Ufl=Uf[v].Ufl_First;
                                while (Uf[v].Ufl)
                                  {
                                    Uf[v].Ufl_First=Uf[v].Ufl->pNext;
                                    free(Uf[v].Ufl);
                                    Uf[v].Ufl=Uf[v].Ufl_First;
                                  }
                                code_file.write(&FBINARY, sizeof(FBINARY));
                                v=oMinus;
                                code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                                code_file.write(&FSTPSU, sizeof(FSTPSU));
                                v = i - ModelBlock->Block_List[j].Nb_Recursives;
                                code_file.write(reinterpret_cast<char *>(&v), sizeof(v));
                          	  }
                          }
                        break;
                      default:
                        break;
                      }
                  }
          }
        code_file.write(&FENDBLOCK, sizeof(FENDBLOCK));
        code_file.write(&FEND, sizeof(FEND));
        code_file.close();
      }
    
    
    
    void
    StaticDllModel::Write_Inf_To_Bin_File(const string &static_basename, const string &bin_basename, const int &num,
                                        int &u_count_int, bool &file_open) const
      {
        int j;
        std::ofstream SaveCode;
        if (file_open)
          SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::in | ios::binary | ios ::ate );
        else
          SaveCode.open((bin_basename + "_static.bin").c_str(), ios::out | ios::binary);
        if (!SaveCode.is_open())
          {
            cout << "Error : Can't open file \"" << bin_basename << "_static.bin\" for writing\n";
            exit(EXIT_FAILURE);
          }
        u_count_int=0;
        int Size = block_triangular.ModelBlock->Block_List[num].Size - block_triangular.ModelBlock->Block_List[num].Nb_Recursives;
        for(int i=0; i<(int)block_triangular.ModelBlock->Block_List[num].Chain_Rule_Derivatives->size();i++)
    			{
            //Chain_Rule_Derivatives.insert(make_pair( make_pair(eq, eqr), make_pair(var, make_pair(varr, lag))));
            pair< pair<int, pair<int, int> >, pair<int, int> > it = block_triangular.ModelBlock->Block_List[num].Chain_Rule_Derivatives->at(i);
            int k=it.first.first;
            int eq=it.first.second.first;
    
            int var_init=it.first.second.second;
            /*int eqr=it.second.first;
            int varr=it.second.second;*/
            if(eq>=block_triangular.ModelBlock->Block_List[num].Nb_Recursives and var_init>=block_triangular.ModelBlock->Block_List[num].Nb_Recursives)
    					{
                int v=eq-block_triangular.ModelBlock->Block_List[num].Nb_Recursives;
                SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
    						int var=it.first.second.second-block_triangular.ModelBlock->Block_List[num].Nb_Recursives + k * Size;
    				    SaveCode.write(reinterpret_cast<char *>(&var), sizeof(var));
                SaveCode.write(reinterpret_cast<char *>(&k), sizeof(k));
                int u = u_count_int + Size;
                SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
                //cout << "eq=" << v << ", var=" << var << ", lag=" << k << " u=" << u << "\n";
                u_count_int++;
    					}
    			}
    		/*cout << "u_count_int=" << u_count_int << endl;
    		cout << "block_triangular.ModelBlock->Block_List[" << num << "].Nb_Recursives=" << block_triangular.ModelBlock->Block_List[num].Nb_Recursives << " block_triangular.ModelBlock->Block_List[" << num << "].Size=" << block_triangular.ModelBlock->Block_List[num].Size << endl;*/
        for (j=block_triangular.ModelBlock->Block_List[num].Nb_Recursives;j<block_triangular.ModelBlock->Block_List[num].Size;j++)
          {
            int varr=block_triangular.ModelBlock->Block_List[num].Variable[j];
            //cout << "j=" << j << " varr=" << varr << "\n";
            SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
          }
        for (j=block_triangular.ModelBlock->Block_List[num].Nb_Recursives;j<block_triangular.ModelBlock->Block_List[num].Size;j++)
          {
            int eqr1=block_triangular.ModelBlock->Block_List[num].Equation[j];
            SaveCode.write(reinterpret_cast<char *>(&eqr1), sizeof(eqr1));
          }
        SaveCode.close();
      }
    
    
    void
    StaticDllModel::evaluateJacobian(const eval_context_type &eval_context, jacob_map *j_m, bool dynamic)
    {
      int i=0;
      int j=0;
      bool *IM=NULL;
      int a_variable_lag=-9999;
      for (first_derivatives_type::iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          //cout << "it->first.second=" << it->first.second << " variable_table.getSymbolID(it->first.second)=" << variable_table.getSymbolID(it->first.second) << " Type=" << variable_table.getType(it->first.second) << " eEndogenous=" << eEndogenous << " eExogenous=" << eExogenous << " variable_table.getLag(it->first.second)=" << variable_table.getLag(it->first.second) << "\n";
          if (getTypeByDerivID(it->first.second) == eEndogenous)
            {
              NodeID Id = it->second;
              double val = 0;
              try
                {
                  val = Id->eval(eval_context);
                }
              catch (ExprNode::EvalException &e)
                {
                  cout << "evaluation of Jacobian failed for equation " << it->first.first+1 << " and variable " << symbol_table.getName(getSymbIDByDerivID(it->first.second)) << "(" << getLagByDerivID(it->first.second) << ") [" << getSymbIDByDerivID(it->first.second) << "] !" << endl;
                  Id->writeOutput(cout, oMatlabStaticModelSparse, temporary_terms);
                  cout << "\n";
                  cerr << "StaticDllModel::evaluateJacobian: evaluation of Jacobian failed for equation " << it->first.first+1 << " and variable " << symbol_table.getName(getSymbIDByDerivID(it->first.second)) << "(" << getLagByDerivID(it->first.second) << ")!" << endl;
                }
              int eq=it->first.first;
              int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(it->first.second));///symbol_table.getID(eEndogenous,it->first.second);//variable_table.getSymbolID(it->first.second);
              int k1 = getLagByDerivID(it->first.second);
              if (a_variable_lag!=k1)
                {
                  IM=block_triangular.incidencematrix.Get_IM(k1, eEndogenous);
                  a_variable_lag=k1;
                }
              if (k1==0 or !dynamic)
                {
                  j++;
                  (*j_m)[make_pair(eq,var)]+=val;
                }
              if (IM[eq*symbol_table.endo_nbr()+var] && (fabs(val) < cutoff))
                {
                  if (block_triangular.bt_verbose)
                    cout << "the coefficient related to variable " << var << " with lag " << k1 << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")\n";
                  block_triangular.incidencematrix.unfill_IM(eq, var, k1, eEndogenous);
                  i++;
                }
            }
        }
      //Get ride of the elements of the incidence matrix equal to Zero
      IM=block_triangular.incidencematrix.Get_IM(0, eEndogenous);
      for (int i=0;i<symbol_table.endo_nbr();i++)
        for (int j=0;j<symbol_table.endo_nbr();j++)
          if (IM[i*symbol_table.endo_nbr()+j])
            if (first_derivatives.find(make_pair(i,getDerivID(symbol_table.getID(eEndogenous, j), 0)))==first_derivatives.end())
              block_triangular.incidencematrix.unfill_IM(i, j, 0, eEndogenous);
      if (i>0)
        {
          cout << i << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded\n";
          cout << "the contemporaneous incidence matrix has " << j << " elements\n";
        }
    }
    
    void
    StaticDllModel::BlockLinear(Model_Block *ModelBlock)
    {
      int i,j,l,m,ll;
      for (j = 0;j < ModelBlock->Size;j++)
        {
          if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_BACKWARD_COMPLETE ||
              ModelBlock->Block_List[j].Simulation_Type==SOLVE_FORWARD_COMPLETE)
            {
              ll=ModelBlock->Block_List[j].Max_Lag;
              for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[ll].size;i++)
                {
                  int eq=ModelBlock->Block_List[j].IM_lead_lag[ll].Equ_Index[i];
                  int var=ModelBlock->Block_List[j].IM_lead_lag[ll].Var_Index[i];
                  //first_derivatives_type::const_iterator it=first_derivatives.find(make_pair(eq,variable_table.getID(var,0)));
                  first_derivatives_type::const_iterator it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var),0)));
                  if (it!= first_derivatives.end())
                    {
                      NodeID Id = it->second;
                      set<pair<int, int> > endogenous;
                      Id->collectEndogenous(endogenous);
                      if (endogenous.size() > 0)
                        {
                          for (l=0;l<ModelBlock->Block_List[j].Size;l++)
                            {
                              if (endogenous.find(make_pair(ModelBlock->Block_List[j].Variable[l], 0)) != endogenous.end())
                                {
                                  ModelBlock->Block_List[j].is_linear=false;
                                  goto follow;
                                }
                            }
                        }
                    }
                }
            }
          else if (ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE || ModelBlock->Block_List[j].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              for (m=0;m<=ModelBlock->Block_List[j].Max_Lead+ModelBlock->Block_List[j].Max_Lag;m++)
                {
                  int k1=m-ModelBlock->Block_List[j].Max_Lag;
                  for (i=0;i<ModelBlock->Block_List[j].IM_lead_lag[m].size;i++)
                    {
                      int eq=ModelBlock->Block_List[j].IM_lead_lag[m].Equ_Index[i];
                      int var=ModelBlock->Block_List[j].IM_lead_lag[m].Var_Index[i];
                      //first_derivatives_type::const_iterator it=first_derivatives.find(make_pair(eq,variable_table.getID(var,k1)));
                      first_derivatives_type::const_iterator it=first_derivatives.find(make_pair(eq,getDerivID(symbol_table.getID(eEndogenous, var),k1)));
                      NodeID Id = it->second;
                      if (it!= first_derivatives.end())
                        {
                          set<pair<int, int> > endogenous;
                          Id->collectEndogenous(endogenous);
                          if (endogenous.size() > 0)
                            {
                              for (l=0;l<ModelBlock->Block_List[j].Size;l++)
                                {
                                  if (endogenous.find(make_pair(ModelBlock->Block_List[j].Variable[l], k1)) != endogenous.end())
                                    {
                                      ModelBlock->Block_List[j].is_linear=false;
                                      goto follow;
                                    }
                                }
                            }
                        }
                    }
                }
            }
    follow:
          i=0;
        }
    }
    
    
    map<pair<int, pair<int, int > >, NodeID>
    StaticDllModel::collect_first_order_derivatives_endogenous()
    {
      map<pair<int, pair<int, int > >, NodeID> endo_derivatives;
      for (first_derivatives_type::iterator it2 = first_derivatives.begin();
           it2 != first_derivatives.end(); it2++)
        {
          if (getTypeByDerivID(it2->first.second)==eEndogenous)
            {
              int eq = it2->first.first;
              int var=symbol_table.getTypeSpecificID(getSymbIDByDerivID(it2->first.second));
              int lag=getLagByDerivID(it2->first.second);
              //if (lag==0)
              endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
            }
        }
      return  endo_derivatives;
    }
    
    
    
    void
    StaticDllModel::computingPass(const eval_context_type &eval_context, bool no_tmp_terms, bool block)
    {
      assert(block);
    
      // Computes static jacobian columns
      computeStatJacobianCols();
    
      // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
      set<int> vars;
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          SymbolType type = symbol_table.getType(it->first.first);
          if (type == eEndogenous)
            vars.insert(it->second);
        }
    
      // Launch computations
      cout << "Computing static model derivatives:" << endl
      << " - order 1" << endl;
      computeJacobian(vars);
      //cout << "mode=" << mode << " eSparseDLLMode=" << eSparseDLLMode << " eSparseMode=" << eSparseMode << "\n";
    
          BuildIncidenceMatrix();
    
          jacob_map j_m;
          evaluateJacobian(eval_context, &j_m, true);
    
    
          if (block_triangular.bt_verbose)
            {
              cout << "The gross incidence matrix \n";
              block_triangular.incidencematrix.Print_IM(eEndogenous);
            }
          t_etype equation_simulation_type;
          map<pair<int, pair<int, int> >, NodeID> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
    
          block_triangular.Normalize_and_BlockDecompose_Static_0_Model(j_m, equations, equation_simulation_type, first_order_endo_derivatives, mfs, cutoff);
          /*for (int j = 0;j < block_triangular.ModelBlock->Size;j++)
            {
              for (int i = 0;i < block_triangular.ModelBlock->Block_List[j].Size;i++)
                {
            	    if (i<block_triangular.ModelBlock->Block_List[j].Nb_Recursives )
            	    	cout << "block=" << j << " R i=" << i << " equation=" << block_triangular.ModelBlock->Block_List[j].Equation[i]+1 << " variable=" << block_triangular.ModelBlock->Block_List[j].Variable[i]+1 << endl;
    							else
    							  cout << "block=" << j << " S i=" << i << " equation=" << block_triangular.ModelBlock->Block_List[j].Equation[i]+1 << " variable=" << block_triangular.ModelBlock->Block_List[j].Variable[i]+1 << endl;
                }
            }*/
    
          BlockLinear(block_triangular.ModelBlock);
    
          computeChainRuleJacobian(block_triangular.ModelBlock);
    
          if (!no_tmp_terms)
            computeTemporaryTermsOrdered(block_triangular.ModelBlock);
    
    }
    
    void
    StaticDllModel::writeStaticFile(const string &basename, bool block) const
      {
        int r;
    
    		assert(block);
    
    #ifdef _WIN32
        r = mkdir(basename.c_str());
    #else
        r = mkdir(basename.c_str(), 0777);
    #endif
        if (r < 0 && errno != EEXIST)
          {
            perror("ERROR");
            exit(EXIT_FAILURE);
          }
        writeModelEquationsCodeOrdered(basename + "_static", block_triangular.ModelBlock, basename, map_idx);
        block_triangular.Free_Block(block_triangular.ModelBlock);
        block_triangular.incidencematrix.Free_IM();
      }
    
    int
    StaticDllModel::computeDerivID(int symb_id, int lag)
    {
      // Check if static variable already has a deriv_id
      pair<int, int> key = make_pair(symb_id, lag);
      deriv_id_table_t::const_iterator it = deriv_id_table.find(key);
      if (it != deriv_id_table.end())
        return it->second;
    
      // Create a new deriv_id
      int deriv_id = deriv_id_table.size();
    
      deriv_id_table[key] = deriv_id;
      inv_deriv_id_table.push_back(key);
    
      SymbolType type = symbol_table.getType(symb_id);
    
      if (type == eEndogenous)
        dynJacobianColsNbr++;
    
      return deriv_id;
    }
    
    SymbolType
    StaticDllModel::getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      return symbol_table.getType(getSymbIDByDerivID(deriv_id));
    }
    
    int
    StaticDllModel::getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].second;
    }
    
    int
    StaticDllModel::getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].first;
    }
    
    int
    StaticDllModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException)
    {
      deriv_id_table_t::const_iterator it = deriv_id_table.find(make_pair(symb_id, lag));
      if (it == deriv_id_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    void
    StaticDllModel::computeStatJacobianCols()
    {
      /* Sort the static endogenous variables by lexicographic order over (lag, type_specific_symbol_id)
         and fill the static columns for exogenous and exogenous deterministic */
      map<pair<int, int>, int> ordered_dyn_endo;
    
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          const int &symb_id = it->first.first;
          const int &lag = it->first.second;
          const int &deriv_id = it->second;
          SymbolType type = symbol_table.getType(symb_id);
          int tsid = symbol_table.getTypeSpecificID(symb_id);
    
          switch (type)
            {
            case eEndogenous:
              ordered_dyn_endo[make_pair(lag, tsid)] = deriv_id;
              break;
            case eExogenous:
              // At this point, dynJacobianColsNbr contains the number of static endogenous
              break;
            case eExogenousDet:
              // At this point, dynJacobianColsNbr contains the number of static endogenous
              break;
            case eParameter:
              // We don't assign a static jacobian column to parameters
              break;
            default:
              // Shut up GCC
              cerr << "StaticDllModel::computeStatJacobianCols: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      // Fill in static jacobian columns for endogenous
      int sorted_id = 0;
      for (map<pair<int, int>, int>::const_iterator it = ordered_dyn_endo.begin();
           it != ordered_dyn_endo.end(); it++)
        dyn_jacobian_cols_table[it->second] = sorted_id++;
    
    }
    
    int
    StaticDllModel::getDynJacobianCol(int deriv_id) const throw (UnknownDerivIDException)
    {
      map<int, int>::const_iterator it = dyn_jacobian_cols_table.find(deriv_id);
      if (it == dyn_jacobian_cols_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    
    void
    StaticDllModel::computeChainRuleJacobian(Model_Block *ModelBlock)
    {
      map<int, NodeID> recursive_variables;
      first_chain_rule_derivatives.clear();
      for(int blck = 0; blck<ModelBlock->Size; blck++)
        {
          recursive_variables.clear();
          if (ModelBlock->Block_List[blck].Simulation_Type==SOLVE_TWO_BOUNDARIES_COMPLETE or ModelBlock->Block_List[blck].Simulation_Type==SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              ModelBlock->Block_List[blck].Chain_Rule_Derivatives->clear();
              for(int i = 0; i < ModelBlock->Block_List[blck].Nb_Recursives; i++)
                {
                  if (ModelBlock->Block_List[blck].Equation_Type[i] == E_EVALUATE_S)
                    recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[blck].Variable[i]), 0)] = ModelBlock->Block_List[blck].Equation_Normalized[i];
                  else
                    recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[blck].Variable[i]), 0)] = equations[ModelBlock->Block_List[blck].Equation[i]];
                }
              map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives = block_triangular.get_Derivatives(ModelBlock, blck);
    
              map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator it = Derivatives.begin();
              //#pragma omp parallel for shared(it, blck)
              for(int i=0; i<(int)Derivatives.size(); i++)
                {
                	int Deriv_type = it->second;
                	pair<pair<int, pair<int, int> >, pair<int, int> > it_l(it->first);
                	it++;
                	int lag = it_l.first.first;
                	int eq = it_l.first.second.first;
                	int var = it_l.first.second.second;
                	int eqr = it_l.second.first;
                	int varr = it_l.second.second;
                	if(Deriv_type == 0)
                	  {
                	    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = first_derivatives[make_pair(eqr, getDerivID(symbol_table.getID(eEndogenous, varr), lag))];
                	  }
    							else if (Deriv_type == 1)
    							  {
    							    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = ModelBlock->Block_List[blck].Equation_Normalized[eq]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
    							  }
    							else if (Deriv_type == 2)
    							  {
    							  	if(ModelBlock->Block_List[blck].Equation_Type[eq] == E_EVALUATE_S && eq<ModelBlock->Block_List[blck].Nb_Recursives)
       						      first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = ModelBlock->Block_List[blck].Equation_Normalized[eq]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
    									else
    									  first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
    							  }
    							ModelBlock->Block_List[blck].Chain_Rule_Derivatives->push_back(make_pair( make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr)));
                }
            }
          else if(   ModelBlock->Block_List[blck].Simulation_Type==SOLVE_BACKWARD_SIMPLE or ModelBlock->Block_List[blck].Simulation_Type==SOLVE_FORWARD_SIMPLE
                  or ModelBlock->Block_List[blck].Simulation_Type==SOLVE_BACKWARD_COMPLETE or ModelBlock->Block_List[blck].Simulation_Type==SOLVE_FORWARD_COMPLETE)
            {
              ModelBlock->Block_List[blck].Chain_Rule_Derivatives->clear();
              for(int i = 0; i < ModelBlock->Block_List[blck].Nb_Recursives; i++)
                {
                  if (ModelBlock->Block_List[blck].Equation_Type[i] == E_EVALUATE_S)
                    recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[blck].Variable[i]), 0)] = ModelBlock->Block_List[blck].Equation_Normalized[i];
                  else
                    recursive_variables[getDerivID(symbol_table.getID(eEndogenous, ModelBlock->Block_List[blck].Variable[i]), 0)] = equations[ModelBlock->Block_List[blck].Equation[i]];
                }
              for(int eq = ModelBlock->Block_List[blck].Nb_Recursives; eq < ModelBlock->Block_List[blck].Size; eq++)
                {
                  int eqr = ModelBlock->Block_List[blck].Equation[eq];
                  for(int var = ModelBlock->Block_List[blck].Nb_Recursives; var < ModelBlock->Block_List[blck].Size; var++)
                    {
                      int varr = ModelBlock->Block_List[blck].Variable[var];
                      NodeID d1 = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), 0), recursive_variables);
                      if (d1 == Zero)
                        continue;
                      first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, 0))] = d1;
                      ModelBlock->Block_List[blck].Chain_Rule_Derivatives->push_back(make_pair( make_pair(0, make_pair(eq, var)), make_pair(eqr, varr)));
                    }
                }
            }
        }
    }
    
    
    
    void
    StaticDllModel::computeParamsDerivatives()
    {
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          if (symbol_table.getType(it->first.first) != eParameter)
            continue;
    
          int param = it->second;
    
          for (first_derivatives_type::const_iterator it2 = first_derivatives.begin();
               it2 != first_derivatives.end(); it2++)
            {
              int eq = it2->first.first;
              int var = it2->first.second;
              NodeID d1 = it2->second;
    
              NodeID d2 = d1->getDerivative(param);
              if (d2 == Zero)
                continue;
              params_derivatives[make_pair(eq, make_pair(var, param))] = d2;
            }
        }
    }
    
    void
    StaticDllModel::computeParamsDerivativesTemporaryTerms()
    {
      map<NodeID, int> reference_count;
      params_derivs_temporary_terms.clear();
    
      for (second_derivatives_type::iterator it = params_derivatives.begin();
           it != params_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    }
    
    void
    StaticDllModel::writeParamsDerivativesFile(const string &basename) const
      {
        if (!params_derivatives.size())
          return;
    
        string filename = basename + "_params_derivs.m";
    
        ofstream paramsDerivsFile;
        paramsDerivsFile.open(filename.c_str(), ios::out | ios::binary);
        if (!paramsDerivsFile.is_open())
          {
            cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
            exit(EXIT_FAILURE);
          }
        paramsDerivsFile << "function gp = " << basename << "_params_derivs(y, x, params, it_)" << endl
        << "%" << endl
        << "% Warning : this file is generated automatically by Dynare" << endl
        << "%           from model file (.mod)" << endl << endl;
    
    
        writeTemporaryTerms(params_derivs_temporary_terms, paramsDerivsFile, oMatlabStaticModel);
    
        paramsDerivsFile << "gp = zeros(" << equation_number() << ", " << dynJacobianColsNbr << ", "
        << symbol_table.param_nbr() << ");" << endl;
    
        for (second_derivatives_type::const_iterator it = params_derivatives.begin();
             it != params_derivatives.end(); it++)
          {
            int eq = it->first.first;
            int var = it->first.second.first;
            int param = it->first.second.second;
            NodeID d2 = it->second;
    
            int var_col = getDynJacobianCol(var) + 1;
            int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
            paramsDerivsFile << "gp(" << eq+1 << ", " << var_col << ", " << param_col << ") = ";
            d2->writeOutput(paramsDerivsFile, oMatlabStaticModel, params_derivs_temporary_terms);
            paramsDerivsFile << ";" << endl;
          }
    
        paramsDerivsFile.close();
      }
    
    
    
    void
    StaticDllModel::writeChainRuleDerivative(ostream &output, int eqr, int varr, int lag,
                               ExprNodeOutputType output_type,
                               const temporary_terms_type &temporary_terms) const
    {
      map<pair<int, pair<int, int> >, NodeID>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
      if (it != first_chain_rule_derivatives.end())
        (it->second)->writeOutput(output, output_type, temporary_terms);
      else
        output << 0;
    }
    
    
    void
    StaticDllModel::writeLatexFile(const string &basename) const
      {
        writeLatexModelFile(basename + "_static.tex", oLatexStaticModel);
      }
    
    void
    StaticDllModel::jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      output << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (IS_MATLAB(output_type))
        output << eq_nb + 1 << ", " << col_nb + 1;
      else
        output << eq_nb + col_nb * equations.size();
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }
    
    void
    StaticDllModel::hessianHelper(ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      output << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (IS_MATLAB(output_type))
        output << row_nb + 1 << ", " << col_nb + 1;
      else
        output << row_nb + col_nb * NNZDerivatives[1];
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }