Skip to content
Snippets Groups Projects
Select Git revision
  • d2e93452c3c8dea123a3318a8276713e516ad30c
  • master default protected
  • julia protected
  • 6.x protected
  • python-codegen
  • llvm-15
  • 5.x protected
  • 4.6 protected
  • uop
  • rework_pac
  • aux_vars_fix
  • julia-7.0.0
  • julia-6.4.0
  • julia-6.3.0
  • julia-6.2.0
15 results

ExprNode.hh

Blame
  • display_conditional_variance_decomposition.m 3.06 KiB
    function oo_ = display_conditional_variance_decomposition(Steps, SubsetOfVariables, dr,M_,options_,oo_)
    % This function computes the conditional variance decomposition of a given state space model
    % for a subset of endogenous variables.
    % 
    % INPUTS 
    %   StateSpaceModel     [structure]   Specification of the state space model.
    %   Steps               [integer]     1*h vector of dates.
    %   SubsetOfVariables   [integer]     1*q vector of indices.
    %    
    % OUTPUTS 
    %   PackedConditionalVarianceDecomposition  [double] n(n+1)/2*p matrix, where p is the number of state innovations and
    %                                                    n is equal to length(SubsetOfVariables).    
    %
    % SPECIAL REQUIREMENTS
    %
    % [1] The covariance matrix of the state innovations needs to be diagonal.
    % [2] In this version, absence of measurement errors is assumed...
    
    % Copyright (C) 2010-2013 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    endo_nbr = M_.endo_nbr;
    exo_nbr = M_.exo_nbr;
    StateSpaceModel.number_of_state_equations = M_.endo_nbr;
    StateSpaceModel.number_of_state_innovations = exo_nbr;
    StateSpaceModel.sigma_e_is_diagonal = M_.sigma_e_is_diagonal;
    
    iv = (1:endo_nbr)';
    ic = M_.nstatic+(1:M_.nspred)';
    
    [StateSpaceModel.transition_matrix,StateSpaceModel.impulse_matrix] = kalman_transition_matrix(dr,iv,ic,exo_nbr);
    StateSpaceModel.state_innovations_covariance_matrix = M_.Sigma_e;
    StateSpaceModel.order_var = dr.order_var;
    
    conditional_decomposition_array = conditional_variance_decomposition(StateSpaceModel,Steps,SubsetOfVariables );
    
    if options_.noprint == 0
      if options_.order == 2
        disp(' ')                
        disp('APPROXIMATED CONDITIONAL VARIANCE DECOMPOSITION (in percent)')
      else
        disp(' ')                
        disp('CONDITIONAL VARIANCE DECOMPOSITION (in percent)')
      end
    end
    
    vardec_i = zeros(length(SubsetOfVariables),exo_nbr);
    
    for i=1:length(Steps)
        disp(['Period ' int2str(Steps(i)) ':'])
        
        for j=1:exo_nbr
            vardec_i(:,j) = 100*conditional_decomposition_array(:, ...
                                                              i,j);
        end
        if options_.noprint == 0
            headers = M_.exo_names;
            headers(M_.exo_names_orig_ord,:) = headers;
            headers = char(' ',headers);
            lh = size(deblank(M_.endo_names(SubsetOfVariables,:)),2)+2;
            dyntable('',headers,...
                     deblank(M_.endo_names(SubsetOfVariables,:)),...
                     vardec_i,lh,8,2);
        end
    end
    
    oo_.conditional_variance_decomposition = conditional_decomposition_array;