Skip to content
Snippets Groups Projects
Select Git revision
5 results Searching

NumericalConstants.cc

Blame
  • DynamicModel.cc 186.85 KiB
    /*
     * Copyright (C) 2003-2014 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <iostream>
    #include <cmath>
    #include <cstdlib>
    #include <cassert>
    #include <cstdio>
    #include <cerrno>
    #include <algorithm>
    #include <iterator>
    #include "DynamicModel.hh"
    
    // For mkdir() and chdir()
    #ifdef _WIN32
    # include <direct.h>
    #else
    # include <unistd.h>
    # include <sys/stat.h>
    # include <sys/types.h>
    #endif
    
    DynamicModel::DynamicModel(SymbolTable &symbol_table_arg,
                               NumericalConstants &num_constants_arg,
                               ExternalFunctionsTable &external_functions_table_arg) :
      ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
      max_lag(0), max_lead(0),
      max_endo_lag(0), max_endo_lead(0),
      max_exo_lag(0), max_exo_lead(0),
      max_exo_det_lag(0), max_exo_det_lead(0),
      dynJacobianColsNbr(0),
      global_temporary_terms(true)
    {
    }
    
    VariableNode *
    DynamicModel::AddVariable(int symb_id, int lag)
    {
      return AddVariableInternal(symb_id, lag);
    }
    
    void
    DynamicModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, int lag, const map_idx_t &map_idx) const
    {
      first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag)));
      if (it != first_derivatives.end())
        (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    DynamicModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, const map_idx_t &map_idx) const
    {
      map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
      if (it != first_chain_rule_derivatives.end())
        (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    DynamicModel::computeTemporaryTermsOrdered()
    {
      map<expr_t, pair<int, int> > first_occurence;
      map<expr_t, int> reference_count;
      BinaryOpNode *eq_node;
      first_derivatives_t::const_iterator it;
      first_chain_rule_derivatives_t::const_iterator it_chr;
      ostringstream tmp_s;
      v_temporary_terms.clear();
      map_idx.clear();
    
      unsigned int nb_blocks = getNbBlocks();
      v_temporary_terms = vector<vector<temporary_terms_t> >(nb_blocks);
      v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
      temporary_terms.clear();
    
      if (!global_temporary_terms)
        {
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              reference_count.clear();
              temporary_terms.clear();
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
              set<int> temporary_terms_in_use;
              temporary_terms_in_use.clear();
              v_temporary_terms_inuse[block] = temporary_terms_in_use;
            }
        }
      else
        {
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              // Compute the temporary terms reordered
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
            }
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              // Collect the temporary terms reordered
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              set<int> temporary_terms_in_use;
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              v_temporary_terms_inuse[block] = temporary_terms_in_use;
            }
          computeTemporaryTermsMapping();
        }
    }
    
    void
    DynamicModel::computeTemporaryTermsMapping()
    {
      // Add a mapping form node ID to temporary terms order
      int j = 0;
      for (temporary_terms_t::const_iterator it = temporary_terms.begin();
           it != temporary_terms.end(); it++)
        map_idx[(*it)->idx] = j++;
    }
    
    void
    DynamicModel::writeModelEquationsOrdered_M(const string &dynamic_basename) const
    {
      string tmp_s, sps;
      ostringstream tmp_output, tmp1_output, global_output;
      expr_t lhs = NULL, rhs = NULL;
      BinaryOpNode *eq_node;
      ostringstream Ufoss;
      vector<string> Uf(symbol_table.endo_nbr(), "");
      map<expr_t, int> reference_count;
      temporary_terms_t local_temporary_terms;
      ofstream  output;
      int nze, nze_exo, nze_exo_det, nze_other_endo;
      vector<int> feedback_variables;
      ExprNodeOutputType local_output_type;
      Ufoss.str("");
    
      local_output_type = oMatlabDynamicModelSparse;
      if (global_temporary_terms)
        local_temporary_terms = temporary_terms;
    
      //----------------------------------------------------------------------
      //For each block
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
    
          //recursive_variables.clear();
          feedback_variables.clear();
          //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
          nze = derivative_endo[block].size();
          nze_other_endo = derivative_other_endo[block].size();
          nze_exo = derivative_exo[block].size();
          nze_exo_det = derivative_exo_det[block].size();
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          deriv_node_temp_terms_t tef_terms;
          local_output_type = oMatlabDynamicModelSparse;
          if (global_temporary_terms)
            local_temporary_terms = temporary_terms;
    
          int prev_lag;
          unsigned int prev_var, count_col, count_col_endo, count_col_exo, count_col_exo_det, count_col_other_endo;
          map<pair<int, pair<int, int> >, expr_t> tmp_block_endo_derivative;
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_endo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              //int eqr = getBlockInitialEquationID(block, eq);
              //int varr = getBlockInitialVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
            }
          map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_derivative;
          for (derivative_t::const_iterator it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
            tmp_block_exo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_exo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              //int eqr = getBlockInitialEquationID(block, eq);
              //int varr = getBlockInitialVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo++;
                }
            }
          map<pair<int, pair<int, int> >, expr_t> tmp_block_exo_det_derivative;
          for (derivative_t::const_iterator it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
            tmp_block_exo_det_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_exo_det = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              //int eqr = getBlockInitialEquationID(block, eq);
              //int varr = getBlockInitialVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo_det++;
                }
            }
          map<pair<int, pair<int, int> >, expr_t> tmp_block_other_endo_derivative;
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
            tmp_block_other_endo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_other_endo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              //int eqr = getBlockInitialEquationID(block, eq);
              //int varr = getBlockInitialVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_other_endo++;
                }
            }
    
          tmp1_output.str("");
          tmp1_output << dynamic_basename << "_" << block+1 << ".m";
          output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
          output << "%\n";
          output << "% " << tmp1_output.str() << " : Computes dynamic model for Dynare\n";
          output << "%\n";
          output << "% Warning : this file is generated automatically by Dynare\n";
          output << "%           from model file (.mod)\n\n";
          output << "%/\n";
          if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
            {
              output << "function [y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, jacobian_eval, y_kmin, periods)\n";
            }
          else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
            output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
          else if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE)
            output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
          else
            output << "function [residual, y, g1, g2, g3, b, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, periods, jacobian_eval, y_kmin, y_size)\n";
          BlockType block_type;
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            block_type = SIMULTAN;
          else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
            block_type = SIMULTANS;
          else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                    || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
                   && getBlockFirstEquation(block) < prologue)
            block_type = PROLOGUE;
          else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                    || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
                   && getBlockFirstEquation(block) >= equations.size() - epilogue)
            block_type = EPILOGUE;
          else
            block_type = SIMULTANS;
          output << "  % ////////////////////////////////////////////////////////////////////////" << endl
                 << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
                 << "          //" << endl
                 << "  % //                     Simulation type "
                 << BlockSim(simulation_type) << "  //" << endl
                 << "  % ////////////////////////////////////////////////////////////////////////" << endl;
          output << "  global options_ oo_;" << endl;
          //The Temporary terms
          if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
            {
              output << "  if(jacobian_eval)\n";
              output << "    g1 = spalloc(" << block_mfs  << ", " << count_col_endo << ", " << nze << ");\n";
              output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
              output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
              output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
              output << "  end;\n";
            }
          else
            {
              output << "  if(jacobian_eval)\n";
              output << "    g1 = spalloc(" << block_size << ", " << count_col_endo << ", " << nze << ");\n";
              output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
              output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
              output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
              output << "  else\n";
              if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                {
                  output << "    g1 = spalloc(" << block_mfs << "*options_.periods, "
                         << block_mfs << "*(options_.periods+" << max_leadlag_block[block].first+max_leadlag_block[block].second+1 << ")"
                         << ", " << nze << "*options_.periods);\n";
                }
              else
                {
                  output << "    g1 = spalloc(" << block_mfs
                         << ", " << block_mfs << ", " << nze << ");\n";
                }
              output << "  end;\n";
            }
    
          output << "  g2=0;g3=0;\n";
          if (v_temporary_terms_inuse[block].size())
            {
              tmp_output.str("");
              for (temporary_terms_inuse_t::const_iterator it = v_temporary_terms_inuse[block].begin();
                   it != v_temporary_terms_inuse[block].end(); it++)
                tmp_output << " T" << *it;
              output << "  global" << tmp_output.str() << ";\n";
            }
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              temporary_terms_t tt2;
              tt2.clear();
              for (int i = 0; i < (int) block_size; i++)
                {
                  if (v_temporary_terms[block][i].size() && global_temporary_terms)
                    {
                      output << "  " << "% //Temporary variables initialization" << endl
                             << "  " << "T_zeros = zeros(y_kmin+periods, 1);" << endl;
                      for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
                           it != v_temporary_terms[block][i].end(); it++)
                        {
                          output << "  ";
                          (*it)->writeOutput(output, oMatlabDynamicModel, local_temporary_terms);
                          output << " = T_zeros;" << endl;
                        }
                    }
                }
            }
          if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            output << "  residual=zeros(" << block_mfs << ",1);\n";
          else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            output << "  residual=zeros(" << block_mfs << ",y_kmin+periods);\n";
          if (simulation_type == EVALUATE_BACKWARD)
            output << "  for it_ = (y_kmin+periods):y_kmin+1\n";
          if (simulation_type == EVALUATE_FORWARD)
            output << "  for it_ = y_kmin+1:(y_kmin+periods)\n";
    
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              output << "  b = zeros(periods*y_size,1);" << endl
                     << "  for it_ = y_kmin+1:(periods+y_kmin)" << endl
                     << "    Per_y_=it_*y_size;" << endl
                     << "    Per_J_=(it_-y_kmin-1)*y_size;" << endl
                     << "    Per_K_=(it_-1)*y_size;" << endl;
              sps = "  ";
            }
          else
            if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
              sps = "  ";
            else
              sps = "";
          // The equations
          for (unsigned int i = 0; i < block_size; i++)
            {
              temporary_terms_t tt2;
              tt2.clear();
              if (v_temporary_terms[block].size())
                {
                  output << "  " << "% //Temporary variables" << endl;
                  for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
                       it != v_temporary_terms[block][i].end(); it++)
                    {
                      if (dynamic_cast<AbstractExternalFunctionNode *>(*it) != NULL)
                        (*it)->writeExternalFunctionOutput(output, local_output_type, tt2, tef_terms);
    
                      output << "  " <<  sps;
                      (*it)->writeOutput(output, local_output_type, local_temporary_terms, tef_terms);
                      output << " = ";
                      (*it)->writeOutput(output, local_output_type, tt2, tef_terms);
                      // Insert current node into tt2
                      tt2.insert(*it);
                      output << ";" << endl;
                    }
                }
    
              int variable_ID = getBlockVariableID(block, i);
              int equation_ID = getBlockEquationID(block, i);
              EquationType equ_type = getBlockEquationType(block, i);
              string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              tmp_output.str("");
              lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms);
              switch (simulation_type)
                {
                case EVALUATE_BACKWARD:
                case EVALUATE_FORWARD:
                evaluation:     if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                    output << "    % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                           << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
                  output << "    ";
                  if (equ_type == E_EVALUATE)
                    {
                      output << tmp_output.str();
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms);
                    }
                  else if (equ_type == E_EVALUATE_S)
                    {
                      output << "%" << tmp_output.str();
                      output << " = ";
                      if (isBlockEquationRenormalized(block, i))
                        {
                          rhs->writeOutput(output, local_output_type, local_temporary_terms);
                          output << "\n    ";
                          tmp_output.str("");
                          eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                          lhs = eq_node->get_arg1();
                          rhs = eq_node->get_arg2();
                          lhs->writeOutput(output, local_output_type, local_temporary_terms);
                          output << " = ";
                          rhs->writeOutput(output, local_output_type, local_temporary_terms);
                        }
                    }
                  else
                    {
                      cerr << "Type missmatch for equation " << equation_ID+1  << "\n";
                      exit(EXIT_FAILURE);
                    }
                  output << ";\n";
                  break;
                case SOLVE_BACKWARD_SIMPLE:
                case SOLVE_FORWARD_SIMPLE:
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                  if (i < block_recursive)
                    goto evaluation;
                  feedback_variables.push_back(variable_ID);
                  output << "  % equation " << equation_ID+1 << " variable : " << sModel
                         << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
                  output << "  " << "residual(" << i+1-block_recursive << ") = (";
                  goto end;
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  if (i < block_recursive)
                    goto evaluation;
                  feedback_variables.push_back(variable_ID);
                  output << "    % equation " << equation_ID+1 << " variable : " << sModel
                         << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
                  Ufoss << "    b(" << i+1-block_recursive << "+Per_J_) = -residual(" << i+1-block_recursive << ", it_)";
                  Uf[equation_ID] += Ufoss.str();
                  Ufoss.str("");
                  output << "    residual(" << i+1-block_recursive << ", it_) = (";
                  goto end;
                default:
                end:
                  output << tmp_output.str();
                  output << ") - (";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms);
                  output << ");\n";
    #ifdef CONDITION
                  if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                    output << "  condition(" << i+1 << ")=0;\n";
    #endif
                }
            }
          // The Jacobian if we have to solve the block
          if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
            output << "  " << sps << "% Jacobian  " << endl << "    if jacobian_eval" << endl;
          else
            if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
                || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
              output << "  % Jacobian  " << endl << "  if jacobian_eval" << endl;
            else
              output << "    % Jacobian  " << endl << "    if jacobian_eval" << endl;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockEquationID(block, eq);
              int varr = getBlockVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
    
              expr_t id = it->second;
    
              output << "      g1(" << eq+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << lag
                     << ") " << varr+1 << ", " << var+1
                     << ", equation=" << eqr+1 << ", " << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
              output << "      g1_x(" << eqr+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_exo_det_derivative.begin(); it != tmp_block_exo_det_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
              output << "      g1_xd(" << eqr+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
    
              output << "      g1_o(" << eqr+1 << ", " << /*var+1+(lag+block_max_lag)*block_size*/ count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms);
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          output << "      varargout{1}=g1_x;\n";
          output << "      varargout{2}=g1_xd;\n";
          output << "      varargout{3}=g1_o;\n";
    
          switch (simulation_type)
            {
            case EVALUATE_FORWARD:
            case EVALUATE_BACKWARD:
              output << "    end;" << endl;
              output << "  end;" << endl;
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              output << "  else" << endl;
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
                  expr_t id = it->second.second;
                  int lag = it->second.first;
                  if (lag == 0)
                    {
                      output << "    g1(" << eq+1 << ", " << var+1-block_recursive << ") = ";
                      id->writeOutput(output, local_output_type, local_temporary_terms);
                      output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                             << "(" << lag
                             << ") " << varr+1
                             << ", equation=" << eqr+1 << endl;
                    }
    
                }
              output << "  end;\n";
              break;
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
              output << "    else" << endl;
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
                  ostringstream tmp_output;
                  expr_t id = it->second.second;
                  int lag = it->second.first;
                  if (eq >= block_recursive && var >= block_recursive)
                    {
                      if (lag == 0)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+Per_K_)*y(it_, " << varr+1 << ")";
                      else if (lag == 1)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+Per_y_)*y(it_+1, " << varr+1 << ")";
                      else if (lag > 0)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+y_size*(it_+" << lag-1 << "))*y(it_+" << lag << ", " << varr+1 << ")";
                      else
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+y_size*(it_" << lag-1 << "))*y(it_" << lag << ", " << varr+1 << ")";
                      Uf[eqr] += Ufoss.str();
                      Ufoss.str("");
    
                      if (lag == 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+Per_K_) = ";
                      else if (lag == 1)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+Per_y_) = ";
                      else if (lag > 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+y_size*(it_+" << lag-1 << ")) = ";
                      else if (lag < 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+y_size*(it_" << lag-1 << ")) = ";
                      output << " " << tmp_output.str();
                      id->writeOutput(output, local_output_type, local_temporary_terms);
                      output << ";";
                      output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                             << "(" << lag << ") " << varr+1
                             << ", equation=" << eqr+1 << " (" << eq+1 << ")" << endl;
                    }
    
    #ifdef CONDITION
                  output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
                  output << "    condition(" << eqr << ")=u(" << u << "+Per_u_);\n";
    #endif
                }
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i >= block_recursive)
                    output << "  " << Uf[getBlockEquationID(block, i)] << ";\n";
    #ifdef CONDITION
                  output << "  if (fabs(condition(" << i+1 << "))<fabs(u(" << i << "+Per_u_)))\n";
                  output << "    condition(" << i+1 << ")=u(" << i+1 << "+Per_u_);\n";
    #endif
                }
    #ifdef CONDITION
              for (m = 0; m <= ModelBlock->Block_List[block].Max_Lead+ModelBlock->Block_List[block].Max_Lag; m++)
                {
                  k = m-ModelBlock->Block_List[block].Max_Lag;
                  for (i = 0; i < ModelBlock->Block_List[block].IM_lead_lag[m].size; i++)
                    {
                      unsigned int eq = ModelBlock->Block_List[block].IM_lead_lag[m].Equ_Index[i];
                      unsigned int var = ModelBlock->Block_List[block].IM_lead_lag[m].Var_Index[i];
                      unsigned int u = ModelBlock->Block_List[block].IM_lead_lag[m].u[i];
                      unsigned int eqr = ModelBlock->Block_List[block].IM_lead_lag[m].Equ[i];
                      output << "  u(" << u+1 << "+Per_u_) = u(" << u+1 << "+Per_u_) / condition(" << eqr+1 << ");\n";
                    }
                }
              for (i = 0; i < ModelBlock->Block_List[block].Size; i++)
                output << "  u(" << i+1 << "+Per_u_) = u(" << i+1 << "+Per_u_) / condition(" << i+1 << ");\n";
    #endif
              output << "    end;" << endl;
              output << "  end;" << endl;
              break;
            default:
              break;
            }
          output << "end" << endl;
          output.close();
        }
    }
    
    void
    DynamicModel::writeModelEquationsCode(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
    {
    
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      bool file_open = false;
      string main_name = file_name;
    
      main_name += ".cod";
      code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
          exit(EXIT_FAILURE);
        }
    
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type;
      if ((max_endo_lag > 0) && (max_endo_lead > 0))
        simulation_type = SOLVE_TWO_BOUNDARIES_COMPLETE;
      else if ((max_endo_lag >= 0) && (max_endo_lead == 0))
        simulation_type = SOLVE_FORWARD_COMPLETE;
      else
        simulation_type = SOLVE_BACKWARD_COMPLETE;
    
      Write_Inf_To_Bin_File(file_name, u_count_int, file_open, simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE, symbol_table.endo_nbr());
      file_open = true;
    
      //Temporary variables declaration
      FDIMT_ fdimt(temporary_terms.size());
      fdimt.write(code_file, instruction_number);
      int other_endo_size = 0;
    
      vector<unsigned int> exo, exo_det, other_endo;
    
      for (int i = 0; i < symbol_table.exo_det_nbr(); i++)
        exo_det.push_back(i);
      for (int i = 0; i < symbol_table.exo_nbr(); i++)
        exo.push_back(i);
    
      map<pair< int, pair<int, int> >, expr_t> first_derivatives_reordered_endo;
      map<pair< pair<int, int>, pair<int, int> >, expr_t>  first_derivatives_reordered_exo;
      for (first_derivatives_t::const_iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          int deriv_id = it->first.second;
          unsigned int eq = it->first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            first_derivatives_reordered_endo[make_pair(lag, make_pair(var, eq))] = it->second;
          else if (getTypeByDerivID(deriv_id) == eExogenous || getTypeByDerivID(deriv_id) == eExogenousDet)
            first_derivatives_reordered_exo[make_pair(make_pair(lag, getTypeByDerivID(deriv_id)), make_pair(var, eq))] = it->second;
        }
      int prev_var = -1;
      int prev_lag = -999999999;
      int count_col_endo = 0;
      for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
           it != first_derivatives_reordered_endo.end(); it++)
        {
          int var = it->first.second.first;
          int lag = it->first.first;
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
        }
      prev_var = -1;
      prev_lag = -999999999;
      int prev_type = -1;
      int count_col_exo = 0;
    
      for (map<pair< pair<int, int>, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
           it != first_derivatives_reordered_exo.end(); it++)
        {
          int var = it->first.second.first;
          int lag = it->first.first.first;
          int type = it->first.first.second;
          if (prev_var != var || prev_lag != lag || prev_type != type)
            {
              prev_var = var;
              prev_lag = lag;
              prev_type = type;
              count_col_exo++;
            }
        }
      
      FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                               simulation_type,
                               0,
                               symbol_table.endo_nbr(),
                               variable_reordered,
                               equation_reordered,
                               false,
                               symbol_table.endo_nbr(),
                               0,
                               0,
                               u_count_int,
                               count_col_endo,
                               symbol_table.exo_det_nbr(),
                               count_col_exo,
                               other_endo_size,
                               0,
                               exo_det,
                               exo,
                               other_endo
                               );
      fbeginblock.write(code_file, instruction_number);
    
      compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, true, false);
    
      compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, true, false);
    
      FENDEQU_ fendequ;
      fendequ.write(code_file, instruction_number);
    
      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;
    
      vector<vector<pair<pair<int, int>, int > > > derivatives;
      derivatives.resize(symbol_table.endo_nbr());
      count_u = symbol_table.endo_nbr();
      for (first_derivatives_t::const_iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          int deriv_id = it->first.second;
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            {
              expr_t d1 = it->second;
              unsigned int eq = it->first.first;
              int symb = getSymbIDByDerivID(deriv_id);
              unsigned int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
              fnumexpr.write(code_file, instruction_number);
              if (!derivatives[eq].size())
                derivatives[eq].clear();
              derivatives[eq].push_back(make_pair(make_pair(var, lag), count_u));
              d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
    
              FSTPU_ fstpu(count_u);
              fstpu.write(code_file, instruction_number);
              count_u++;
            }
        }
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          FLDR_ fldr(i);
          fldr.write(code_file, instruction_number);
          if (derivatives[i].size())
            {
              for (vector<pair<pair<int, int>, int> >::const_iterator it = derivatives[i].begin();
                   it != derivatives[i].end(); it++)
                {
                  FLDU_ fldu(it->second);
                  fldu.write(code_file, instruction_number);
                  FLDV_ fldv(eEndogenous, it->first.first, it->first.second);
                  fldv.write(code_file, instruction_number);
                  FBINARY_ fbinary(oTimes);
                  fbinary.write(code_file, instruction_number);
                  if (it != derivatives[i].begin())
                    {
                      FBINARY_ fbinary(oPlus);
                      fbinary.write(code_file, instruction_number);
                    }
                }
              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);
            }
          FSTPU_ fstpu(i);
          fstpu.write(code_file, instruction_number);
        }
    
      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number;
    
      // The Jacobian
      prev_var = -1;
      prev_lag = -999999999;
      count_col_endo = 0;
      for (map<pair< int, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
           it != first_derivatives_reordered_endo.end(); it++)
        {
          unsigned int eq = it->first.second.second;
          int var = it->first.second.first;
          int lag = it->first.first;
          expr_t d1 = it->second;
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
          fnumexpr.write(code_file, instruction_number);
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
          FSTPG3_ fstpg3(eq, var, lag, count_col_endo-1);
          fstpg3.write(code_file, instruction_number);
        }
      prev_var = -1;
      prev_lag = -999999999;
      count_col_exo = 0;
      for (map<pair< pair<int, int>, pair<int, int> >, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
           it != first_derivatives_reordered_exo.end(); it++)
        {
          unsigned int eq = it->first.second.second;
          int var = it->first.second.first;
          int lag = it->first.first.first;
          expr_t d1 = it->second;
          FNUMEXPR_ fnumexpr(FirstExoDerivative, eq, var, lag);
          fnumexpr.write(code_file, instruction_number);
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo++;
            }
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
          FSTPG3_ fstpg3(eq, var, lag, count_col_exo-1);
          fstpg3.write(code_file, instruction_number);
        }
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
    
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    DynamicModel::writeModelEquationsCode_Block(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
    {
      struct Uff_l
      {
        int u, var, lag;
        Uff_l *pNext;
      };
    
      struct Uff
      {
        Uff_l *Ufl, *Ufl_First;
      };
    
      int i, v;
      string tmp_s;
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      expr_t lhs = NULL, rhs = NULL;
      BinaryOpNode *eq_node;
      Uff Uf[symbol_table.endo_nbr()];
      map<expr_t, int> reference_count;
      deriv_node_temp_terms_t tef_terms;
      vector<int> feedback_variables;
      bool file_open = false;
    
      string main_name = file_name;
      main_name += ".cod";
      code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cout << "Error : Can't open file \"" << main_name << "\" for writing\n";
          exit(EXIT_FAILURE);
        }
      //Temporary variables declaration
    
      FDIMT_ fdimt(temporary_terms.size());
      fdimt.write(code_file, instruction_number);
    
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
          feedback_variables.clear();
          if (block > 0)
            {
              FENDBLOCK_ fendblock;
              fendblock.write(code_file, instruction_number);
            }
          int count_u;
          int u_count_int = 0;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          unsigned int block_exo_det_size = exo_det_block[block].size();
          unsigned int block_other_endo_size = other_endo_block[block].size();
          int block_max_lag = max_leadlag_block[block].first;
    
          if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
              || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            {
              Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open,
                                          simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE);
              file_open = true;
            }
          map<pair<int, pair<int, int> >, expr_t> tmp_block_endo_derivative;
          for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
          map<pair<int, pair<int, int> >, expr_t> tmp_exo_derivative;
          for (derivative_t::const_iterator it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
            tmp_exo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          map<pair<int, pair<int, int> >, expr_t> tmp_exo_det_derivative;
          for (derivative_t::const_iterator it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
            tmp_exo_det_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          map<pair<int, pair<int, int> >, expr_t> tmp_other_endo_derivative;
          for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
            tmp_other_endo_derivative[make_pair(it->first.first, make_pair(it->first.second.second, it->first.second.first))] = it->second;
          int prev_var = -1;
          int prev_lag = -999999999;
          int count_col_endo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int var = it->first.second.first;
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
            }
          vector<unsigned int> exo_det;
          for (lag_var_t::const_iterator it = exo_det_block[block].begin(); it != exo_det_block[block].end(); it++)
            exo_det.push_back(it->first);
          vector<unsigned int> exo;
          for (lag_var_t::const_iterator it = exo_block[block].begin(); it != exo_block[block].end(); it++)
            exo.push_back(it->first);
          vector<unsigned int> other_endo;
          unsigned int count_col_other_endo = 0;
          for (lag_var_t::const_iterator it = other_endo_block[block].begin(); it != other_endo_block[block].end(); it++)
            {
              other_endo.push_back(it->first);
              count_col_other_endo += it->second.size();
            }
          FBEGINBLOCK_ fbeginblock(block_mfs,
                                   simulation_type,
                                   getBlockFirstEquation(block),
                                   block_size,
                                   variable_reordered,
                                   equation_reordered,
                                   blocks_linear[block],
                                   symbol_table.endo_nbr(),
                                   block_max_lag,
                                   block_max_lag,
                                   u_count_int,
                                   count_col_endo,
                                   block_exo_det_size,
                                   getBlockExoColSize(block),
                                   block_other_endo_size,
                                   count_col_other_endo,
                                   exo_det,
                                   exo,
                                   other_endo
                                   );
          fbeginblock.write(code_file, instruction_number);
    
          // The equations
          for (i = 0; i < (int) block_size; i++)
            {
              //The Temporary terms
              temporary_terms_t tt2;
              tt2.clear();
              if (v_temporary_terms[block][i].size())
                {
                  for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
                       it != v_temporary_terms[block][i].end(); it++)
                    {
                      if (dynamic_cast<AbstractExternalFunctionNode *>(*it) != NULL)
                        (*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, true, false, tef_terms);
    
                      FNUMEXPR_ fnumexpr(TemporaryTerm, (int) (map_idx.find((*it)->idx)->second));
                      fnumexpr.write(code_file, instruction_number);
                      (*it)->compile(code_file, instruction_number, false, tt2, map_idx, true, false, tef_terms);
                      FSTPT_ fstpt((int) (map_idx.find((*it)->idx)->second));
                      fstpt.write(code_file, instruction_number);
                      // Insert current node into tt2
                      tt2.insert(*it);
    #ifdef DEBUGC
                      cout << "FSTPT " << v << "\n";
                      instruction_number++;
                      code_file.write(&FOK, sizeof(FOK));
                      code_file.write(reinterpret_cast<char *>(&k), sizeof(k));
                      ki++;
    #endif
    
                    }
                }
    #ifdef DEBUGC
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  map_idx_t::const_iterator ii = map_idx.find((*it)->idx);
                  cout << "map_idx[" << (*it)->idx <<"]=" << ii->second << "\n";
                }
    #endif
    
              int variable_ID, equation_ID;
              EquationType equ_type;
    
              switch (simulation_type)
                {
                evaluation:
                case EVALUATE_BACKWARD:
                case EVALUATE_FORWARD:
                  equ_type = getBlockEquationType(block, i);
                  {
                    FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                    fnumexpr.write(code_file, instruction_number);
                  }
                  if (equ_type == E_EVALUATE)
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, true, false);
                    }
                  else if (equ_type == E_EVALUATE_S)
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, true, false);
                    }
                  break;
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  if (i < (int) block_recursive)
                    goto evaluation;
                  variable_ID = getBlockVariableID(block, i);
                  equation_ID = getBlockEquationID(block, i);
                  feedback_variables.push_back(variable_ID);
                  Uf[equation_ID].Ufl = NULL;
                  goto end;
                default:
                end:
                  FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                  fnumexpr.write(code_file, instruction_number);
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
    
                  FBINARY_ fbinary(oMinus);
                  fbinary.write(code_file, instruction_number);
                  FSTPR_ fstpr(i - block_recursive);
                  fstpr.write(code_file, instruction_number);
                }
            }
          FENDEQU_ fendequ;
          fendequ.write(code_file, instruction_number);
    
          // Get the current code_file position and jump if eval = true
          streampos pos1 = code_file.tellp();
          FJMPIFEVAL_ fjmp_if_eval(0);
          fjmp_if_eval.write(code_file, instruction_number);
          int prev_instruction_number = instruction_number;
          // The Jacobian if we have to solve the block determinsitic block
          if    (simulation_type != EVALUATE_BACKWARD
                 && simulation_type != EVALUATE_FORWARD)
            {
              switch (simulation_type)
                {
                case SOLVE_BACKWARD_SIMPLE:
                case SOLVE_FORWARD_SIMPLE:
                  {
                    FNUMEXPR_ fnumexpr(FirstEndoDerivative, getBlockEquationID(block, 0), getBlockVariableID(block, 0), 0);
                    fnumexpr.write(code_file, instruction_number);
                  }
                  compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), 0, map_idx);
                  {
                    FSTPG_ fstpg(0);
                    fstpg.write(code_file, instruction_number);
                  }
                  break;
    
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  count_u = feedback_variables.size();
                  for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                    {
                      int lag = it->second.first;
                      unsigned int eq = it->first.first;
                      unsigned int var = it->first.second;
                      unsigned int eqr = getBlockEquationID(block, eq);
                      unsigned int varr = getBlockVariableID(block, var);
                      if (eq >= block_recursive and var >= block_recursive)
                        {
                          if (lag != 0 && (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE))
                            continue;
                          if (!Uf[eqr].Ufl)
                            {
                              Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                              Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                            }
                          else
                            {
                              Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                              Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                            }
                          Uf[eqr].Ufl->pNext = NULL;
                          Uf[eqr].Ufl->u = count_u;
                          Uf[eqr].Ufl->var = varr;
                          Uf[eqr].Ufl->lag = lag;
                          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, lag);
                          fnumexpr.write(code_file, instruction_number);
                          compileChainRuleDerivative(code_file, instruction_number, eqr, varr, lag, map_idx);
                          FSTPU_ fstpu(count_u);
                          fstpu.write(code_file, instruction_number);
                          count_u++;
                        }
                    }
                  for (i = 0; i < (int) block_size; i++)
                    {
                      if (i >= (int) block_recursive)
                        {
                          FLDR_ fldr(i-block_recursive);
                          fldr.write(code_file, instruction_number);
    
                          FLDZ_ fldz;
                          fldz.write(code_file, instruction_number);
    
                          v = getBlockEquationID(block, i);
                          for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                            {
                              FLDU_ fldu(Uf[v].Ufl->u);
                              fldu.write(code_file, instruction_number);
                              FLDV_ fldv(eEndogenous, Uf[v].Ufl->var, Uf[v].Ufl->lag);
                              fldv.write(code_file, instruction_number);
    
                              FBINARY_ fbinary(oTimes);
                              fbinary.write(code_file, instruction_number);
    
                              FCUML_ fcuml;
                              fcuml.write(code_file, instruction_number);
                            }
                          Uf[v].Ufl = Uf[v].Ufl_First;
                          while (Uf[v].Ufl)
                            {
                              Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                              free(Uf[v].Ufl);
                              Uf[v].Ufl = Uf[v].Ufl_First;
                            }
                          FBINARY_ fbinary(oMinus);
                          fbinary.write(code_file, instruction_number);
    
                          FSTPU_ fstpu(i - block_recursive);
                          fstpu.write(code_file, instruction_number);
                        }
                    }
                  break;
                default:
                  break;
                }
            }
          // Get the current code_file position and jump = true
          streampos pos2 = code_file.tellp();
          FJMP_ fjmp(0);
          fjmp.write(code_file, instruction_number);
          // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
          streampos pos3 = code_file.tellp();
          code_file.seekp(pos1);
          FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
          fjmp_if_eval1.write(code_file, instruction_number);
          code_file.seekp(pos3);
          prev_instruction_number = instruction_number;
          // The Jacobian if we have to solve the block determinsitic block
    
          prev_var = -1;
          prev_lag = -999999999;
          count_col_endo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int eq = it->first.second.second;
              int var = it->first.second.first;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              compileDerivative(code_file, instruction_number, eqr, varr, lag, map_idx);
              FSTPG3_ fstpg3(eq, var, lag, count_col_endo-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          int count_col_exo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_exo_derivative.begin(); it != tmp_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialExogenousID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstExoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, /*var*/ count_col_exo-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          int count_col_exo_det = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_exo_det_derivative.begin(); it != tmp_exo_det_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialDetExogenousID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo_det++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstExodetDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, count_col_exo_det-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          count_col_other_endo = 0;
          for (map<pair<int, pair<int, int> >, expr_t>::const_iterator it = tmp_other_endo_derivative.begin(); it != tmp_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialOtherEndogenousID(block, var);;
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_other_endo++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstOtherEndoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, count_col_other_endo-1);
              fstpg3.write(code_file, instruction_number);
            }
    
          // Set codefile position to previous JMP_ and set the number of instructions to jump
          pos1 = code_file.tellp();
          code_file.seekp(pos2);
          FJMP_ fjmp1(instruction_number - prev_instruction_number);
          fjmp1.write(code_file, instruction_number);
          code_file.seekp(pos1);
        }
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    DynamicModel::writeDynamicMFile(const string &dynamic_basename) const
    {
      string filename = dynamic_basename + ".m";
    
      ofstream mDynamicModelFile;
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "function [residual, g1, g2, g3] = " << dynamic_basename << "(y, x, params, steady_state, it_)" << endl
                        << "%" << endl
                        << "% Status : Computes dynamic model for Dynare" << endl
                        << "%" << endl
                        << "% Inputs :" << endl
                        << "%   y         [#dynamic variables by 1] double    vector of endogenous variables in the order stored" << endl
                        << "%                                                 in M_.lead_lag_incidence; see the Manual" << endl
                        << "%   x         [nperiods by M_.exo_nbr] double     matrix of exogenous variables (in declaration order)" << endl
                        << "%                                                 for all simulation periods" << endl
                        << "%   params    [M_.param_nbr by 1] double          vector of parameter values in declaration order" << endl
                        << "%   it_       scalar double                       time period for exogenous variables for which to evaluate the model" << endl
                        << "%" << endl
                        << "% Outputs:" << endl
                        << "%   residual  [M_.endo_nbr by 1] double    vector of residuals of the dynamic model equations in order of " << endl
                        << "%                                          declaration of the equations." << endl
    					<< "%                                          Dynare may prepend auxiliary equations, see M_.aux_vars" << endl
                        << "%   g1        [M_.endo_nbr by #dynamic variables] double    Jacobian matrix of the dynamic model equations;" << endl
                        << "%                                                           rows: equations in order of declaration" << endl
                        << "%                                                           columns: variables in order stored in M_.lead_lag_incidence" << endl
                        << "%   g2        [M_.endo_nbr by (#dynamic variables)^2] double   Hessian matrix of the dynamic model equations;" << endl
                        << "%                                                              rows: equations in order of declaration" << endl
                        << "%                                                              columns: variables in order stored in M_.lead_lag_incidence" << endl
                        << "%   g3        [M_.endo_nbr by (#dynamic variables)^3] double   Third order derivative matrix of the dynamic model equations;" << endl
                        << "%                                                              rows: equations in order of declaration" << endl
                        << "%                                                              columns: variables in order stored in M_.lead_lag_incidence" << endl
                        << "%" << endl
                        << "%" << endl                    
                        << "% Warning : this file is generated automatically by Dynare" << endl
                        << "%           from model file (.mod)" << endl << endl;
    
      writeDynamicModel(mDynamicModelFile, false);
      mDynamicModelFile << "end" << endl; // Close *_dynamic function
      mDynamicModelFile.close();
    }
    
    void
    DynamicModel::writeDynamicCFile(const string &dynamic_basename, const int order) const
    {
      string filename = dynamic_basename + ".c";
      string filename_mex = dynamic_basename + "_mex.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes dynamic model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model file (.mod)" << endl
                        << " */" << endl
                        << "#include <math.h>" << endl;
    
      if (external_functions_table.get_total_number_of_unique_model_block_external_functions())
        // External Matlab function, implies Dynamic function will call mex
        mDynamicModelFile << "#include \"mex.h\"" << endl;
      else
        mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
    
      // Writing the function body
      writeDynamicModel(mDynamicModelFile, true);
    
      writePowerDeriv(mDynamicModelFile, true);
      mDynamicModelFile.close();
    
      mDynamicMexFile.open(filename_mex.c_str(), ios::out | ios::binary);
      if (!mDynamicMexFile.is_open())
        {
          cerr << "Error: Can't open file " << filename_mex << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      // Writing the gateway routine
      mDynamicMexFile << "/*" << endl
                      << " * " << filename_mex << " : The gateway routine used to call the Dynamic function "
                      << "located in " << filename << endl
                      << " *" << endl
                      << " * Warning : this file is generated automatically by Dynare" << endl
                      << " *           from model file (.mod)" << endl
                      << endl
                      << " */" << endl << endl
                      << "#include \"mex.h\"" << endl << endl
                      << "void Dynamic(double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3);" << endl
                      << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
                      << "{" << endl
                      << "  double *y, *x, *params, *steady_state;" << endl
                      << "  double *residual, *g1, *v2, *v3;" << endl
                      << "  int nb_row_x, it_;" << endl
                      << endl
                      << "  /* Check that no derivatives of higher order than computed are being requested */" << endl
                      << "  if (nlhs > " << order + 1 << ")" << endl
                      << "    mexErrMsgTxt(\"Derivatives of higher order than computed have been requested\");" << endl
                      << "  /* Create a pointer to the input matrix y. */" << endl
                      << "  y = mxGetPr(prhs[0]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix x. */" << endl
                      << "  x = mxGetPr(prhs[1]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix params. */" << endl
                      << "  params = mxGetPr(prhs[2]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix steady_state. */" << endl
                      << "  steady_state = mxGetPr(prhs[3]);" << endl
                      << endl
                      << "  /* Fetch time index */" << endl
                      << "  it_ = (int) mxGetScalar(prhs[4]) - 1;" << endl
                      << endl
                      << "  /* Gets number of rows of matrix x. */" << endl
                      << "  nb_row_x = mxGetM(prhs[1]);" << endl
                      << endl
                      << "  residual = NULL;" << endl
                      << "  if (nlhs >= 1)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix residual. */" << endl
                      << "     plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl
                      << "     /* Create a C pointer to a copy of the output matrix residual. */" << endl
                      << "     residual = mxGetPr(plhs[0]);" << endl
                      << "  }" << endl
                      << endl
                      << "  g1 = NULL;" << endl
                      << "  if (nlhs >= 2)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix g1. */" << endl
                      << "     plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << dynJacobianColsNbr << ", mxREAL);" << endl
                      << "     /* Create a C pointer to a copy of the output matrix g1. */" << endl
                      << "     g1 = mxGetPr(plhs[1]);" << endl
                      << "  }" << endl
                      << endl
                      << "  v2 = NULL;" << endl
                      << " if (nlhs >= 3)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix v2. */" << endl
                      << "     plhs[2] = mxCreateDoubleMatrix(" << NNZDerivatives[1] << ", " << 3
                      << ", mxREAL);" << endl
                      << "     v2 = mxGetPr(plhs[2]);" << endl
                      << "  }" << endl
                      << endl
                      << "  v3 = NULL;" << endl
                      << " if (nlhs >= 4)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix v3. */" << endl
                      << "     plhs[3] = mxCreateDoubleMatrix(" << NNZDerivatives[2] << ", " << 3 << ", mxREAL);" << endl
                      << "     v3 = mxGetPr(plhs[3]);" << endl
                      << "  }" << endl
                      << endl
                      << "  /* Call the C subroutines. */" << endl
                      << "  Dynamic(y, x, nb_row_x, params, steady_state, it_, residual, g1, v2, v3);" << endl
                      << "}" << endl;
      mDynamicMexFile.close();
    }
    
    string
    DynamicModel::reform(const string name1) const
    {
      string name = name1;
      int pos = name.find("\\", 0);
      while (pos >= 0)
        {
          if (name.substr(pos + 1, 1) != "\\")
            {
              name = name.insert(pos, "\\");
              pos++;
            }
          pos++;
          pos = name.find("\\", pos);
        }
      return (name);
    }
    
    void
    DynamicModel::Write_Inf_To_Bin_File_Block(const string &dynamic_basename, const string &bin_basename, const int &num,
                                              int &u_count_int, bool &file_open, bool is_two_boundaries) const
    {
      int j;
      std::ofstream SaveCode;
      if (file_open)
        SaveCode.open((bin_basename + "_dynamic.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
      else
        SaveCode.open((bin_basename + "_dynamic.bin").c_str(), ios::out | ios::binary);
      if (!SaveCode.is_open())
        {
          cout << "Error : Can't open file \"" << bin_basename << "_dynamic.bin\" for writing\n";
          exit(EXIT_FAILURE);
        }
      u_count_int = 0;
      unsigned int block_size = getBlockSize(num);
      unsigned int block_mfs = getBlockMfs(num);
      unsigned int block_recursive = block_size - block_mfs;
      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
        {
          unsigned int eq = it->first.first;
          unsigned int var = it->first.second;
          int lag = it->second.first;
          if (lag != 0 && !is_two_boundaries)
            continue;
          if (eq >= block_recursive && var >= block_recursive)
            {
              int v = eq - block_recursive;
              SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
              int varr = var - block_recursive + lag * block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
              SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
              int u = u_count_int + block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
              u_count_int++;
            }
        }
    
      if (is_two_boundaries)
        u_count_int += block_mfs;
      for (j = block_recursive; j < (int) block_size; j++)
        {
          unsigned int varr = getBlockVariableID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
        }
      for (j = block_recursive; j < (int) block_size; j++)
        {
          unsigned int eqr = getBlockEquationID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
        }
      SaveCode.close();
    }
    
    void
    DynamicModel::writeSparseDynamicMFile(const string &dynamic_basename, const string &basename) const
    {
      string sp;
      ofstream mDynamicModelFile;
      ostringstream tmp, tmp1, tmp_eq;
      int prev_Simulation_Type;
      bool OK;
      chdir(basename.c_str());
      string filename = dynamic_basename + ".m";
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "%\n";
      mDynamicModelFile << "% " << filename << " : Computes dynamic model for Dynare\n";
      mDynamicModelFile << "%\n";
      mDynamicModelFile << "% Warning : this file is generated automatically by Dynare\n";
      mDynamicModelFile << "%           from model file (.mod)\n\n";
      mDynamicModelFile << "%/\n";
    
      int Nb_SGE = 0;
      bool skip_head, open_par = false;
    
      mDynamicModelFile << "function [varargout] = " << dynamic_basename << "(varargin)\n";
      mDynamicModelFile << "  global oo_ options_ M_ ;\n";
      mDynamicModelFile << "  g2=[];g3=[];\n";
      //Temporary variables declaration
      OK = true;
      ostringstream tmp_output;
      for (temporary_terms_t::const_iterator it = temporary_terms.begin();
           it != temporary_terms.end(); it++)
        {
          if (OK)
            OK = false;
          else
            tmp_output << " ";
          (*it)->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms);
        }
      if (tmp_output.str().length() > 0)
        mDynamicModelFile << "  global " << tmp_output.str() << " M_ ;\n";
    
      mDynamicModelFile << "  T_init=zeros(1,options_.periods+M_.maximum_lag+M_.maximum_lead);\n";
      tmp_output.str("");
      for (temporary_terms_t::const_iterator it = temporary_terms.begin();
           it != temporary_terms.end(); it++)
        {
          tmp_output << "  ";
          (*it)->writeOutput(tmp_output, oMatlabDynamicModel, temporary_terms);
          tmp_output << "=T_init;\n";
        }
      if (tmp_output.str().length() > 0)
        mDynamicModelFile << tmp_output.str();
    
      mDynamicModelFile << "  y_kmin=M_.maximum_lag;" << endl
                        << "  y_kmax=M_.maximum_lead;" << endl
                        << "  y_size=M_.endo_nbr;" << endl
                        << "  if(length(varargin)>0)" << endl
                        << "    %it is a simple evaluation of the dynamic model for time _it" << endl
                        << "    y=varargin{1};" << endl
                        << "    x=varargin{2};" << endl
                        << "    params=varargin{3};" << endl
                        << "    steady_state=varargin{4};" << endl
                        << "    it_=varargin{5};" << endl
                        << "    dr=varargin{6};" << endl
                        << "    Per_u_=0;" << endl
                        << "    Per_y_=it_*y_size;" << endl
                        << "    ys=y(it_,:);" << endl;
      prev_Simulation_Type = -1;
      tmp.str("");
      tmp_eq.str("");
      unsigned int nb_blocks = getNbBlocks();
      unsigned int block = 0;
      for (int count_call = 1; block < nb_blocks; block++, count_call++)
        {
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
    
          if (simulation_type == EVALUATE_FORWARD || simulation_type == EVALUATE_BACKWARD)
            {
              for (unsigned int ik = 0; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                  tmp_eq << " " << getBlockEquationID(block, ik)+1;
                }
            }
          else
            {
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                  tmp_eq << " " << getBlockEquationID(block, ik)+1;
                }
            }
          mDynamicModelFile << "    y_index_eq=[" << tmp_eq.str() << "];\n";
          mDynamicModelFile << "    y_index=[" << tmp.str() << "];\n";
    
          switch (simulation_type)
            {
            case EVALUATE_FORWARD:
            case EVALUATE_BACKWARD:
              mDynamicModelFile << "    [y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 1, it_-1, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=ys(y_index)-y(it_, y_index);\n";
              break;
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_SIMPLE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, it_, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=r;\n";
              break;
            case SOLVE_FORWARD_COMPLETE:
            case SOLVE_BACKWARD_COMPLETE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, it_, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=r;\n";
              break;
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, b, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" <<  block + 1 << "(y, x, params, steady_state, it_-" << max_lag << ", 1, " << max_lag << ", " << block_recursive << ");\n";
              mDynamicModelFile << "    residual(y_index_eq)=r(:,M_.maximum_lag+1);\n";
              break;
            default:
              break;
            }
          tmp_eq.str("");
          tmp.str("");
        }
      if (tmp1.str().length())
        {
          mDynamicModelFile << tmp1.str();
          tmp1.str("");
        }
      mDynamicModelFile << "    varargout{1}=residual;" << endl
                        << "    varargout{2}=dr;" << endl
                        << "    return;" << endl
                        << "  end;" << endl
                        << "  %it is the deterministic simulation of the block decomposed dynamic model" << endl
                        << "  if(options_.stack_solve_algo==0)" << endl
                        << "    mthd='Sparse LU';" << endl
                        << "  elseif(options_.stack_solve_algo==1)" << endl
                        << "    mthd='Relaxation';" << endl
                        << "  elseif(options_.stack_solve_algo==2)" << endl
                        << "    mthd='GMRES';" << endl
                        << "  elseif(options_.stack_solve_algo==3)" << endl
                        << "    mthd='BICGSTAB';" << endl
                        << "  elseif(options_.stack_solve_algo==4)" << endl
                        << "    mthd='OPTIMPATH';" << endl
                        << "  else" << endl
                        << "    mthd='UNKNOWN';" << endl
                        << "  end;" << endl
                        << "  disp (['-----------------------------------------------------']) ;" << endl
                        << "  disp (['MODEL SIMULATION: (method=' mthd ')']) ;" << endl
                        << "  fprintf('\\n') ;" << endl
                        << "  periods=options_.periods;" << endl
                        << "  maxit_=options_.simul.maxit;" << endl
                        << "  solve_tolf=options_.solve_tolf;" << endl
                        << "  y=oo_.endo_simul';" << endl
                        << "  x=oo_.exo_simul;" << endl;
    
      prev_Simulation_Type = -1;
      mDynamicModelFile << "  params=M_.params;\n";
      mDynamicModelFile << "  steady_state=oo_.steady_state;\n";
      mDynamicModelFile << "  oo_.deterministic_simulation.status = 0;\n";
      for (block = 0; block < nb_blocks; block++)
        {
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
    
          if (BlockSim(prev_Simulation_Type) == BlockSim(simulation_type)
              && (simulation_type == EVALUATE_FORWARD || simulation_type == EVALUATE_BACKWARD))
            skip_head = true;
          else
            skip_head = false;
          if ((simulation_type == EVALUATE_FORWARD) && (block_size))
            {
              if (!skip_head)
                {
                  if (open_par)
                    {
                      mDynamicModelFile << "  end\n";
                    }
                  mDynamicModelFile << "  oo_.deterministic_simulation.status = 1;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.error = 0;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.iterations = 0;\n";
                  mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
                  mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
                  mDynamicModelFile << "  else\n";
                  mDynamicModelFile << "    blck_num = 1;\n";
                  mDynamicModelFile << "  end;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).status = 1;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).error = 0;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).iterations = 0;\n";
                  mDynamicModelFile << "  g1=[];g2=[];g3=[];\n";
                  mDynamicModelFile << "  y=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 0, y_kmin, periods);\n";
                  mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
                  mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
                  mDynamicModelFile << "    disp(['Inf or Nan value during the evaluation of block " << block <<"']);\n";
                  mDynamicModelFile << "    return;\n";
                  mDynamicModelFile << "  end;\n";
                }
            }
          else if ((simulation_type == EVALUATE_BACKWARD) && (block_size))
            {
              if (!skip_head)
                {
                  if (open_par)
                    {
                      mDynamicModelFile << "  end\n";
                    }
                  mDynamicModelFile << "  oo_.deterministic_simulation.status = 1;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.error = 0;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.iterations = 0;\n";
                  mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
                  mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
                  mDynamicModelFile << "  else\n";
                  mDynamicModelFile << "    blck_num = 1;\n";
                  mDynamicModelFile << "  end;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).status = 1;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).error = 0;\n";
                  mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).iterations = 0;\n";
                  mDynamicModelFile << "  g1=[];g2=[];g3=[];\n";
                  mDynamicModelFile << "  " << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 0, y_kmin, periods);\n";
                  mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
                  mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
                  mDynamicModelFile << "    disp(['Inf or Nan value during the evaluation of block " << block <<"']);\n";
                  mDynamicModelFile << "    return;\n";
                  mDynamicModelFile << "  end;\n";
                }
            }
          else if ((simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_FORWARD_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              mDynamicModelFile << "  g1=0;\n";
              mDynamicModelFile << "  r=0;\n";
              tmp.str("");
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  y_index = [" << tmp.str() << "];\n";
              int nze = blocks_derivatives[block].size();
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  y = solve_one_boundary('"  << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << blocks_linear[block]
                                <<", blck_num, y_kmin, options_.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, 1, 1, 0);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              mDynamicModelFile << "  g1=0;\n";
              mDynamicModelFile << "  r=0;\n";
              tmp.str("");
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  y_index = [" << tmp.str() << "];\n";
              int nze = blocks_derivatives[block].size();
    
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  y = solve_one_boundary('"  << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << blocks_linear[block]
                                <<", blck_num, y_kmin, options.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, 1, 1, 0);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              Nb_SGE++;
              int nze = blocks_derivatives[block].size();
              mDynamicModelFile << "  y_index=[";
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  mDynamicModelFile << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  ];\n";
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  [y oo_] = solve_two_boundaries('" << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << max_leadlag_block[block].first
                                <<", " << max_leadlag_block[block].second
                                <<", " << blocks_linear[block]
                                <<", blck_num, y_kmin, options_.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, M_, oo_);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          prev_Simulation_Type = simulation_type;
        }
      if (open_par)
        mDynamicModelFile << "  end;\n";
      open_par = false;
      mDynamicModelFile << "  oo_.endo_simul = y';\n";
      mDynamicModelFile << "return;\n";
      mDynamicModelFile << "end" << endl;
    
      mDynamicModelFile.close();
    
      writeModelEquationsOrdered_M(dynamic_basename);
    
      chdir("..");
    }
    
    void
    DynamicModel::writeDynamicModel(ostream &DynamicOutput, bool use_dll) const
    {
      ostringstream model_output;    // Used for storing model equations
      ostringstream jacobian_output; // Used for storing jacobian equations
      ostringstream hessian_output;  // Used for storing Hessian equations
      ostringstream third_derivatives_output;
    
      ExprNodeOutputType output_type = (use_dll ? oCDynamicModel : oMatlabDynamicModel);
    
      deriv_node_temp_terms_t tef_terms;
      writeModelLocalVariables(model_output, output_type, tef_terms);
    
      writeTemporaryTerms(temporary_terms, model_output, output_type, tef_terms);
    
      writeModelEquations(model_output, output_type);
    
      int nrows = equations.size();
      int hessianColsNbr = dynJacobianColsNbr * dynJacobianColsNbr;
    
      // Writing Jacobian
      for (first_derivatives_t::const_iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int var = it->first.second;
          expr_t d1 = it->second;
    
          jacobianHelper(jacobian_output, eq, getDynJacobianCol(var), output_type);
          jacobian_output << "=";
          d1->writeOutput(jacobian_output, output_type, temporary_terms, tef_terms);
          jacobian_output << ";" << endl;
        }
    
      // Writing Hessian
      int k = 0; // Keep the line of a 2nd derivative in v2
      for (second_derivatives_t::const_iterator it = second_derivatives.begin();
           it != second_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int var1 = it->first.second.first;
          int var2 = it->first.second.second;
          expr_t d2 = it->second;
    
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
    
          int col_nb = id1 * dynJacobianColsNbr + id2;
          int col_nb_sym = id2 * dynJacobianColsNbr + id1;
    
          sparseHelper(2, hessian_output, k, 0, output_type);
          hessian_output << "=" << eq + 1 << ";" << endl;
    
          sparseHelper(2, hessian_output, k, 1, output_type);
          hessian_output << "=" << col_nb + 1 << ";" << endl;
    
          sparseHelper(2, hessian_output, k, 2, output_type);
          hessian_output << "=";
          d2->writeOutput(hessian_output, output_type, temporary_terms, tef_terms);
          hessian_output << ";" << endl;
    
          k++;
    
          // Treating symetric elements
          if (id1 != id2)
            {
              sparseHelper(2, hessian_output, k, 0, output_type);
              hessian_output << "=" << eq + 1 << ";" << endl;
    
              sparseHelper(2, hessian_output, k, 1, output_type);
              hessian_output << "=" << col_nb_sym + 1 << ";" << endl;
    
              sparseHelper(2, hessian_output, k, 2, output_type);
              hessian_output << "=";
              sparseHelper(2, hessian_output, k-1, 2, output_type);
              hessian_output << ";" << endl;
    
              k++;
            }
        }
    
      // Writing third derivatives
      k = 0; // Keep the line of a 3rd derivative in v3
      for (third_derivatives_t::const_iterator it = third_derivatives.begin();
           it != third_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int var1 = it->first.second.first;
          int var2 = it->first.second.second.first;
          int var3 = it->first.second.second.second;
          expr_t d3 = it->second;
    
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
          int id3 = getDynJacobianCol(var3);
    
          // Reference column number for the g3 matrix
          int ref_col = id1 * hessianColsNbr + id2 * dynJacobianColsNbr + id3;
    
          sparseHelper(3, third_derivatives_output, k, 0, output_type);
          third_derivatives_output << "=" << eq + 1 << ";" << endl;
    
          sparseHelper(3, third_derivatives_output, k, 1, output_type);
          third_derivatives_output << "=" << ref_col + 1 << ";" << endl;
    
          sparseHelper(3, third_derivatives_output, k, 2, output_type);
          third_derivatives_output << "=";
          d3->writeOutput(third_derivatives_output, output_type, temporary_terms, tef_terms);
          third_derivatives_output << ";" << endl;
    
          // Compute the column numbers for the 5 other permutations of (id1,id2,id3) and store them in a set (to avoid duplicates if two indexes are equal)
          set<int> cols;
          cols.insert(id1 * hessianColsNbr + id3 * dynJacobianColsNbr + id2);
          cols.insert(id2 * hessianColsNbr + id1 * dynJacobianColsNbr + id3);
          cols.insert(id2 * hessianColsNbr + id3 * dynJacobianColsNbr + id1);
          cols.insert(id3 * hessianColsNbr + id1 * dynJacobianColsNbr + id2);
          cols.insert(id3 * hessianColsNbr + id2 * dynJacobianColsNbr + id1);
    
          int k2 = 1; // Keeps the offset of the permutation relative to k
          for (set<int>::iterator it2 = cols.begin(); it2 != cols.end(); it2++)
            if (*it2 != ref_col)
              {
                sparseHelper(3, third_derivatives_output, k+k2, 0, output_type);
                third_derivatives_output << "=" << eq + 1 << ";" << endl;
    
                sparseHelper(3, third_derivatives_output, k+k2, 1, output_type);
                third_derivatives_output << "=" << *it2 + 1 << ";" << endl;
    
                sparseHelper(3, third_derivatives_output, k+k2, 2, output_type);
                third_derivatives_output << "=";
                sparseHelper(3, third_derivatives_output, k, 2, output_type);
                third_derivatives_output << ";" << endl;
    
                k2++;
              }
          k += k2;
        }
    
      if (!use_dll)
        {
          DynamicOutput << "%" << endl
                        << "% Model equations" << endl
                        << "%" << endl
                        << endl
                        << "residual = zeros(" << nrows << ", 1);" << endl
                        << model_output.str()
            // Writing initialization instruction for matrix g1
                        << "if nargout >= 2," << endl
                        << "  g1 = zeros(" << nrows << ", " << dynJacobianColsNbr << ");" << endl
                        << endl
                        << "  %" << endl
                        << "  % Jacobian matrix" << endl
                        << "  %" << endl
                        << endl
                        << jacobian_output.str()
                        << "end" << endl;
    
          // Initialize g2 matrix
          DynamicOutput << "if nargout >= 3," << endl
                        << "  %" << endl
                        << "  % Hessian matrix" << endl
                        << "  %" << endl
                        << endl;
          if (second_derivatives.size())
            DynamicOutput << "  v2 = zeros(" << NNZDerivatives[1] << ",3);" << endl
                          << hessian_output.str()
                          << "  g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << nrows << "," << hessianColsNbr << ");" << endl;
          else // Either hessian is all zero, or we didn't compute it
            DynamicOutput << "  g2 = sparse([],[],[]," << nrows << "," << hessianColsNbr << ");" << endl;
          DynamicOutput << "end" << endl;
    
          // Initialize g3 matrix
          DynamicOutput << "if nargout >= 4," << endl
                        << "  %" << endl
                        << "  % Third order derivatives" << endl
                        << "  %" << endl
                        << endl;
          int ncols = hessianColsNbr * dynJacobianColsNbr;
          if (third_derivatives.size())
            DynamicOutput << "  v3 = zeros(" << NNZDerivatives[2] << ",3);" << endl
                          << third_derivatives_output.str()
                          << "  g3 = sparse(v3(:,1),v3(:,2),v3(:,3)," << nrows << "," << ncols << ");" << endl;
          else // Either 3rd derivatives is all zero, or we didn't compute it
            DynamicOutput << "  g3 = sparse([],[],[]," << nrows << "," << ncols << ");" << endl;
    
          DynamicOutput << "end" << endl;
        }
      else
        {
          DynamicOutput << "void Dynamic(double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3)" << endl
                        << "{" << endl
                        << "  double lhs, rhs;" << endl
                        << endl
                        << "  /* Residual equations */" << endl
                        << model_output.str()
                        << "  /* Jacobian  */" << endl
                        << "  if (g1 == NULL)" << endl
                        << "    return;" << endl
                        << "  else" << endl
                        << "    {" << endl
                        << jacobian_output.str()
                        << "    }" << endl;
    
          if (second_derivatives.size())
            DynamicOutput << "  /* Hessian for endogenous and exogenous variables */" << endl
                          << "  if (v2 == NULL)" << endl
                          << "    return;" << endl
                          << "  else" << endl
                          << "    {" << endl
                          << hessian_output.str()
                          << "    }" << endl;
    
          if (third_derivatives.size())
            DynamicOutput << "  /* Third derivatives for endogenous and exogenous variables */" << endl
                          << "  if (v3 == NULL)" << endl
                          << "    return;" << endl
                          << "  else" << endl
                          << "    {" << endl
                          << third_derivatives_output.str()
                          << "    }" << endl;
    
          DynamicOutput << "}" << endl << endl;
        }
    }
    
    void
    DynamicModel::writeOutput(ostream &output, const string &basename, bool block_decomposition, bool byte_code, bool use_dll, int order, bool estimation_present) const
    {
      /* Writing initialisation for M_.lead_lag_incidence matrix
         M_.lead_lag_incidence is a matrix with as many columns as there are
         endogenous variables and as many rows as there are periods in the
         models (nbr of rows = M_.max_lag+M_.max_lead+1)
    
         The matrix elements are equal to zero if a variable isn't present in the
         model at a given period.
      */
    
      output << "M_.lead_lag_incidence = [";
      // Loop on endogenous variables
      int nstatic = 0, 
          nfwrd   = 0,
          npred   = 0,
          nboth   = 0;
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        {
          output << endl;
          int sstatic = 1, 
              sfwrd   = 0,
              spred   = 0,
              sboth   = 0;
          // Loop on periods
          for (int lag = -max_endo_lag; lag <= max_endo_lead; lag++)
            {
              // Print variableID if exists with current period, otherwise print 0
              try
                {
                  int varID = getDerivID(symbol_table.getID(eEndogenous, endoID), lag);
                  output << " " << getDynJacobianCol(varID) + 1;
                  if (lag == -1)
                    {
                      sstatic = 0;
                      spred = 1;
                    }
                  else if (lag == 1)
                    {
                      if (spred == 1)
                        {
                          sboth = 1;
                          spred = 0;
                        }
                      else
                        {
                          sstatic = 0;
                          sfwrd = 1;
                        }
                    }
                }
              catch (UnknownDerivIDException &e)
                {
                  output << " 0";
                }
            }
          nstatic += sstatic;
          nfwrd   += sfwrd;
          npred   += spred;
          nboth   += sboth;
          output << ";";
        }
      output << "]';" << endl;
      output << "M_.nstatic = " << nstatic << ";" << endl
             << "M_.nfwrd   = " << nfwrd   << ";" << endl
             << "M_.npred   = " << npred   << ";" << endl
             << "M_.nboth   = " << nboth   << ";" << endl
             << "M_.nsfwrd   = " << nfwrd+nboth   << ";" << endl
             << "M_.nspred   = " << npred+nboth   << ";" << endl
             << "M_.ndynamic   = " << npred+nboth+nfwrd << ";" << endl;
    
      // Write equation tags
      output << "M_.equations_tags = {" << endl;
      for (size_t i = 0; i < equation_tags.size(); i++)
        output << "  " << equation_tags[i].first + 1 << " , '"
               << equation_tags[i].second.first << "' , '"
               << equation_tags[i].second.second << "' ;" << endl;
      output << "};" << endl;
    
      /* Say if static and dynamic models differ (because of [static] and [dynamic]
         equation tags) */
      output << "M_.static_and_dynamic_models_differ = "
             << (static_only_equations.size() > 0 ? "1" : "0")
             << ";" << endl;
    
      //In case of sparse model, writes the block_decomposition structure of the model
      if (block_decomposition)
        {
          vector<int> state_var, state_equ;
          for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
            // Loop on periods
            for (int lag = -max_endo_lag; lag < 0; lag++)
              try
                {
                  getDerivID(symbol_table.getID(eEndogenous, variable_reordered[endoID]), lag);
                  if (lag < 0 && find(state_var.begin(), state_var.end(), variable_reordered[endoID]+1) == state_var.end())
                    state_var.push_back(variable_reordered[endoID]+1);
                }
              catch (UnknownDerivIDException &e)
                {
                }
    
          int count_lead_lag_incidence = 0;
          int max_lead, max_lag, max_lag_endo, max_lead_endo, max_lag_exo, max_lead_exo, max_lag_exo_det, max_lead_exo_det;
          unsigned int nb_blocks = getNbBlocks();
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
              count_lead_lag_incidence = 0;
              BlockSimulationType simulation_type = getBlockSimulationType(block);
              int block_size = getBlockSize(block);
              max_lag  = max_leadlag_block[block].first;
              max_lead = max_leadlag_block[block].second;
              max_lag_endo = endo_max_leadlag_block[block].first;
              max_lead_endo = endo_max_leadlag_block[block].second;
              max_lag_exo = exo_max_leadlag_block[block].first;
              max_lead_exo = exo_max_leadlag_block[block].second;
              max_lag_exo_det = exo_det_max_leadlag_block[block].first;
              max_lead_exo_det = exo_det_max_leadlag_block[block].second;
              ostringstream tmp_s, tmp_s_eq;
              tmp_s.str("");
              tmp_s_eq.str("");
              for (int i = 0; i < block_size; i++)
                {
                  tmp_s << " " << getBlockVariableID(block, i)+1;
                  tmp_s_eq << " " << getBlockEquationID(block, i)+1;
                }
              set<int> exogenous;
              exogenous.clear();
              for (lag_var_t::const_iterator it = exo_block[block].begin(); it != exo_block[block].end(); it++)
                for (var_t::const_iterator it1 = it->second.begin(); it1 != it->second.end(); it1++)
                  exogenous.insert(*it1);
              set<int> exogenous_det;
              exogenous_det.clear();
              for (lag_var_t::const_iterator it = exo_det_block[block].begin(); it != exo_det_block[block].end(); it++)
                for (var_t::const_iterator it1 = it->second.begin(); it1 != it->second.end(); it1++)
                  exogenous_det.insert(*it1);
              set<int> other_endogenous;
              other_endogenous.clear();
              for (lag_var_t::const_iterator it = other_endo_block[block].begin(); it != other_endo_block[block].end(); it++)
                for (var_t::const_iterator it1 = it->second.begin(); it1 != it->second.end(); it1++)
                  other_endogenous.insert(*it1);
              output << "block_structure.block(" << block+1 << ").Simulation_Type = " << simulation_type << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_lag = " << max_lag << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_lead = " << max_lead << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_endo_lag = " << max_lag_endo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_endo_lead = " << max_lead_endo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_lag = " << max_lag_exo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_lead = " << max_lead_exo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_det_lag = " << max_lag_exo_det << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_det_lead = " << max_lead_exo_det << ";\n";
              output << "block_structure.block(" << block+1 << ").endo_nbr = " << block_size << ";\n";
              output << "block_structure.block(" << block+1 << ").mfs = " << getBlockMfs(block) << ";\n";
              output << "block_structure.block(" << block+1 << ").equation = [" << tmp_s_eq.str() << "];\n";
              output << "block_structure.block(" << block+1 << ").variable = [" << tmp_s.str() << "];\n";
              output << "block_structure.block(" << block+1 << ").exo_nbr = " << getBlockExoSize(block) << ";\n";
              output << "block_structure.block(" << block+1 << ").exogenous = [";
              int i = 0;
              for (set<int>::iterator it_exogenous = exogenous.begin(); it_exogenous != exogenous.end(); it_exogenous++)
                if (*it_exogenous >= 0)
                  {
                    output << " " << *it_exogenous+1;
                    i++;
                  }
              output << "];\n";
    
              output << "block_structure.block(" << block+1 << ").exogenous_det = [";
              i = 0;
              for (set<int>::iterator it_exogenous_det = exogenous_det.begin(); it_exogenous_det != exogenous_det.end(); it_exogenous_det++)
                if (*it_exogenous_det >= 0)
                  {
                    output << " " << *it_exogenous_det+1;
                    i++;
                  }
              output << "];\n";
              output << "block_structure.block(" << block+1 << ").exo_det_nbr = " << i << ";\n";
    
              output << "block_structure.block(" << block+1 << ").other_endogenous = [";
              i = 0;
              for (set<int>::iterator it_other_endogenous = other_endogenous.begin(); it_other_endogenous != other_endogenous.end(); it_other_endogenous++)
                if (*it_other_endogenous >= 0)
                  {
                    output << " " << *it_other_endogenous+1;
                    i++;
                  }
              output << "];\n";
              output << "block_structure.block(" << block+1 << ").other_endogenous_block = [";
              i = 0;
              for (set<int>::iterator it_other_endogenous = other_endogenous.begin(); it_other_endogenous != other_endogenous.end(); it_other_endogenous++)
                if (*it_other_endogenous >= 0)
                  {
                    bool OK = true;
                    unsigned int j;
                    for (j = 0; j < block && OK; j++)
                      for (unsigned int k = 0; k < getBlockSize(j) && OK; k++)
                        {
                          //printf("*it_other_endogenous=%d, getBlockVariableID(%d, %d)=%d\n",*it_other_endogenous, j, k, getBlockVariableID(j, k));
                          OK = *it_other_endogenous != getBlockVariableID(j, k);
                        }
                    if (!OK)
                      output << " " << j;
                    i++;
                  }
              output << "];\n";
              
              //vector<int> inter_state_var;
              output << "block_structure.block(" << block+1 << ").tm1 = zeros(" << i << ", " << state_var.size() << ");\n";
              int count_other_endogenous = 1;
              for (set<int>::const_iterator it_other_endogenous = other_endogenous.begin(); it_other_endogenous != other_endogenous.end(); it_other_endogenous++)
                {
                  for (vector<int>::const_iterator it=state_var.begin(); it != state_var.end(); it++)
                    {
                      //cout << "block = " << block+1 << " state_var = " << *it << " it_other_endogenous=" << *it_other_endogenous + 1 << "\n";
                      if (*it == *it_other_endogenous + 1)
                        {
                          output << "block_structure.block(" << block+1 << ").tm1(" 
                                 << count_other_endogenous << ", " 
                                 << it - state_var.begin()+1 << ") = 1;\n";
                          /*output << "block_structure.block(" << block+1 << ").tm1(" 
                                 << it - state_var.begin()+1 << ", " 
                                 << count_other_endogenous << ") = 1;\n";*/
                          //cout << "=>\n";
                        }
                    }
                  count_other_endogenous++;
                }
                
              output << "block_structure.block(" << block+1 << ").other_endo_nbr = " << i << ";\n";
    
              tmp_s.str("");
              count_lead_lag_incidence = 0;
              dynamic_jacob_map_t reordered_dynamic_jacobian;
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != blocks_derivatives[block].end(); it++)
                reordered_dynamic_jacobian[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
              output << "block_structure.block(" << block+1 << ").lead_lag_incidence = [];\n";
              int last_var = -1;
              vector<int> local_state_var;
              vector<int> local_stat_var;
              int n_static = 0, n_backward = 0, n_forward = 0, n_mixed = 0;
              for (int lag = -1; lag < 1+1; lag++)
                {
                  last_var = -1;
                  for (dynamic_jacob_map_t::const_iterator it = reordered_dynamic_jacobian.begin(); it != reordered_dynamic_jacobian.end(); it++)
                    {
                      if (lag == it->first.first && last_var != it->first.second.first)
                        {
                          if (lag == -1)
                            {
                              local_state_var.push_back(getBlockVariableID(block, it->first.second.first)+1);
                              n_backward++;
                            }
                          else if (lag == 0)
                            {
                              if (find( local_state_var.begin(), local_state_var.end(), getBlockVariableID(block, it->first.second.first)+1) == local_state_var.end())
                                {
                                   local_stat_var.push_back(getBlockVariableID(block, it->first.second.first)+1);
                                   n_static++;
                                }
                            }
                          else
                            {
                              if (find(local_state_var.begin(), local_state_var.end(), getBlockVariableID(block, it->first.second.first)+1) != local_state_var.end())
                                {
                                  n_backward--;
                                  n_mixed++;
                                }
                              else
                                {
                                  if (find(local_stat_var.begin(), local_stat_var.end(),getBlockVariableID(block, it->first.second.first)+1) != local_stat_var.end())
                                    n_static--;
                                  n_forward++;
                                }
                            }
                          count_lead_lag_incidence++;
                          for (int i = last_var; i < it->first.second.first-1; i++)
                            tmp_s << " 0";
                          if (tmp_s.str().length())
                            tmp_s << " ";
                          tmp_s << count_lead_lag_incidence;
                          last_var = it->first.second.first;
                        }
                    }
                  for (int i = last_var + 1; i < block_size; i++)
                    tmp_s << " 0";
                  output << "block_structure.block(" << block+1 << ").lead_lag_incidence = [ block_structure.block(" << block+1 << ").lead_lag_incidence; " << tmp_s.str() << "]; %lag = " << lag << "\n";
                  tmp_s.str("");
                }
              vector<int> inter_state_var;
              for (vector<int>::const_iterator it_l=local_state_var.begin(); it_l != local_state_var.end(); it_l++)
                for (vector<int>::const_iterator it=state_var.begin(); it != state_var.end(); it++)
                  if (*it == *it_l)
                    inter_state_var.push_back(it - state_var.begin()+1);
              output << "block_structure.block(" << block+1 << ").sorted_col_dr_ghx = [";
              for (vector<int>::const_iterator it=inter_state_var.begin(); it != inter_state_var.end(); it++)
                  output << *it << " ";
              output << "];\n";
              count_lead_lag_incidence = 0;
              output << "block_structure.block(" << block+1 << ").lead_lag_incidence_other = [];\n";
              for (int lag = -1; lag <= 1; lag++)
                {
                  tmp_s.str("");
                  for (set<int>::iterator it_other_endogenous = other_endogenous.begin(); it_other_endogenous != other_endogenous.end(); it_other_endogenous++)
                    {
                      bool done = false;
                      for (int i = 0; i < block_size; i++)
                        {
                          unsigned int eq = getBlockEquationID(block, i);
                          derivative_t::const_iterator it = derivative_other_endo[block].find(make_pair(lag, make_pair(eq, *it_other_endogenous)));
                          if (it != derivative_other_endo[block].end())
                            {
                              count_lead_lag_incidence++;
                              tmp_s << " " << count_lead_lag_incidence;
                              done = true;
                              break;
                            }
                        }
                      if (!done)
                        tmp_s << " 0";
                    }
                  output << "block_structure.block(" << block+1 << ").lead_lag_incidence_other = [ block_structure.block(" << block+1 << ").lead_lag_incidence_other; " << tmp_s.str() << "]; %lag = " << lag << "\n";
                }
              output << "block_structure.block(" << block+1 << ").n_static = " << n_static << ";\n";
              output << "block_structure.block(" << block+1 << ").n_forward = " << n_forward << ";\n";
              output << "block_structure.block(" << block+1 << ").n_backward = " << n_backward << ";\n";
              output << "block_structure.block(" << block+1 << ").n_mixed = " << n_mixed << ";\n";
            }
          output << "M_.block_structure.block = block_structure.block;\n";
          string cst_s;
          int nb_endo = symbol_table.endo_nbr();
          output << "M_.block_structure.variable_reordered = [";
          for (int i = 0; i < nb_endo; i++)
            output << " " << variable_reordered[i]+1;
          output << "];\n";
          output << "M_.block_structure.equation_reordered = [";
          for (int i = 0; i < nb_endo; i++)
            output << " " << equation_reordered[i]+1;
          output << "];\n";
          vector<int> variable_inv_reordered(nb_endo);
    
          for (int i = 0; i< nb_endo; i++)
            variable_inv_reordered[variable_reordered[i]] = i;
     
          for (vector<int>::const_iterator it=state_var.begin(); it != state_var.end(); it++)
            state_equ.push_back(equation_reordered[variable_inv_reordered[*it - 1]]+1);
    
          map<pair< int, pair<int, int> >,  int>  lag_row_incidence;
          for (first_derivatives_t::const_iterator it = first_derivatives.begin();
               it != first_derivatives.end(); it++)
            {
              int deriv_id = it->first.second;
              if (getTypeByDerivID(deriv_id) == eEndogenous)
                {
                  int eq = it->first.first;
                  int symb = getSymbIDByDerivID(deriv_id);
                  int var = symbol_table.getTypeSpecificID(symb);
                  int lag = getLagByDerivID(deriv_id);
                  lag_row_incidence[make_pair(lag, make_pair(eq, var))] = 1;
                }
            }
          int prev_lag = -1000000;
          for (map<pair< int, pair<int, int> >,  int>::const_iterator it = lag_row_incidence.begin(); it != lag_row_incidence.end(); it++)
            {
              if (prev_lag != it->first.first)
                {
                  if (prev_lag != -1000000)
                    output << "];\n";
                  prev_lag = it->first.first;
                  output << "M_.block_structure.incidence(" << max_endo_lag+it->first.first+1 << ").lead_lag = " << prev_lag << ";\n";
                  output << "M_.block_structure.incidence(" << max_endo_lag+it->first.first+1 << ").sparse_IM = [";
                }
              output << it->first.second.first+1 << " " << it->first.second.second+1 << ";\n";
            }
          output << "];\n";
          if (estimation_present)
            {
              ofstream KF_index_file;
              string main_name = basename;
              main_name += ".kfi";
              KF_index_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
              int n_obs = symbol_table.observedVariablesNbr();
              int n_state = state_var.size();
              for (vector<int>::const_iterator it = state_var.begin(); it != state_var.end(); it++)
                if (symbol_table.isObservedVariable(symbol_table.getID(eEndogenous, *it-1)))
                  n_obs--;
    
              int n = n_obs + n_state;
              output << "M_.nobs_non_statevar = " << n_obs << ";" << endl;
              int nb_diag = 0;
              //map<pair<int,int>, int>::const_iterator  row_state_var_incidence_it = row_state_var_incidence.begin();
    
              vector<int> i_nz_state_var(n);
              for (int i = 0; i < n_obs; i++)
                i_nz_state_var[i] = n;
              unsigned int lp = n_obs;
    
              for (unsigned int block = 0;  block < nb_blocks; block++)
                {
                  int block_size = getBlockSize(block);
                  int nze = 0;
                  
                  for (int i = 0; i < block_size; i++)
                    {
                      int var = getBlockVariableID(block, i);
                      vector<int>::const_iterator it_state_var = find(state_var.begin(), state_var.end(), var+1);
                      if (it_state_var != state_var.end())
                        nze++;
                    }
                  if (block == 0)
                    {
                      set<pair<int, int> > row_state_var_incidence;
                      for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                        {
                          vector<int>::const_iterator it_state_var = find(state_var.begin(), state_var.end(), getBlockVariableID(block, it->first.second)+1);
                          if (it_state_var != state_var.end())
                            {
                              vector<int>::const_iterator it_state_equ = find(state_equ.begin(), state_equ.end(), getBlockEquationID(block, it->first.first)+1);
                              if (it_state_equ != state_equ.end())
                                row_state_var_incidence.insert(make_pair(it_state_equ - state_equ.begin(), it_state_var - state_var.begin()));
                            }  
                          
                          
                        }
                      /*tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
                      if (block == 0)
                            {
                              
                              vector<int>::const_iterator it_state_equ = find(state_equ.begin(), state_equ.end(), getBlockEquationID(block, i)+1);
                              if (it_state_equ != state_equ.end())
                                {
                                  cout << "row_state_var_incidence[make_pair([" << *it_state_equ << "] " << it_state_equ - state_equ.begin() << ", [" << *it_state_var << "] " << it_state_var - state_var.begin() << ")] =  1;\n";
                                  row_state_var_incidence.insert(make_pair(it_state_equ - state_equ.begin(), it_state_var - state_var.begin()));
                                }
                            }*/
                      set<pair<int,int> >::const_iterator  row_state_var_incidence_it = row_state_var_incidence.begin();
                      bool diag = true;
                      int nb_diag_r = 0;
                      while (row_state_var_incidence_it != row_state_var_incidence.end() && diag)
                        {
                          diag = (row_state_var_incidence_it->first == row_state_var_incidence_it->second);
                          if (diag)
                            {
                              int equ = row_state_var_incidence_it->first;
                              row_state_var_incidence_it++;
                              if (equ != row_state_var_incidence_it->first)
                                nb_diag_r++;
                            }
                            
                        }
                      set<pair<int,int> >  col_state_var_incidence;
                      for(set<pair<int,int> >::const_iterator row_state_var_incidence_it = row_state_var_incidence.begin();row_state_var_incidence_it != row_state_var_incidence.end(); row_state_var_incidence_it++)
                        col_state_var_incidence.insert(make_pair(row_state_var_incidence_it->second, row_state_var_incidence_it->first));
                      set<pair<int,int> >::const_iterator  col_state_var_incidence_it = col_state_var_incidence.begin();
                      diag = true;
                      int nb_diag_c = 0;
                      while (col_state_var_incidence_it != col_state_var_incidence.end() && diag)
                        {
                          diag = (col_state_var_incidence_it->first == col_state_var_incidence_it->second);
                          if (diag)
                            {
                              int var = col_state_var_incidence_it->first;
                              col_state_var_incidence_it++;
                              if (var != col_state_var_incidence_it->first)
                                nb_diag_c++;
                            }
                        }
                      nb_diag = min( nb_diag_r, nb_diag_c);
                      row_state_var_incidence.clear();
                      col_state_var_incidence.clear();
                    }
                  for (int i = 0; i < nze; i++)
                    i_nz_state_var[lp + i] = lp + nze; 
                  lp += nze; 
                }
              output << "M_.nz_state_var = [";
              for (unsigned int i = 0; i < lp; i++)
                output << i_nz_state_var[i] << " ";
              output << "];" << endl;
              output << "M_.n_diag = " << nb_diag << ";" << endl;
              KF_index_file.write(reinterpret_cast<char *>(&nb_diag), sizeof(nb_diag));
              
              
              typedef pair<int, pair<int, int > > index_KF;
              vector<index_KF> v_index_KF;
              
              /*   DO 170, J = 1, N
                    TEMP1 = ALPHA*A( J, J )
                    DO 110, I = 1, M
                       C( I, J ) = TEMP1*B( I, J )
      11  110       CONTINUE
                    DO 140, K = 1, J - 1
                       TEMP1 = ALPHA*A( K, J )
                       DO 130, I = 1, M
                          C( I, J ) = C( I, J ) + TEMP1*B( I, K )
      13  130          CONTINUE
      14  140       CONTINUE
                    DO 160, K = J + 1, N
                       TEMP1 = ALPHA*A( J, K )
                       DO 150, I = 1, M
                          C( I, J ) = C( I, J ) + TEMP1*B( I, K )
      15  150          CONTINUE
      16  160       CONTINUE
      17  170    CONTINUE
              for(int j = 0; j < n; j++)
                {
                  double temp1 = P_t_t1[j + j * n];
                  for (int i = 0; i < n; i++)
                    tmp[i + j * n] = tmp1 * T[i + j * n];
                  for (int k = 0; k < j - 1; k++)
                    {
                      temp1 = P_t_t1[k + j * n];
                      for (int i = 0; i < n; i++)
                        tmp[i + j * n] += temp1 * T[i + k * n];
                    }
                  for (int k = j + 1; k < n; k++)
                    {
                      temp1 = P_t_t1[j + k * n];
                      for (int i = 0; i < n; i++)
                        tmp[i + j * n] += temp1 * T[i + k * n];
                    }
                }
    
              for(int j = n_obs; j < n; j++)
                {
                  int j1 = j - n_obs;
                  double temp1 = P_t_t1[j1 + j1 * n_state];
                  for (int i = 0; i < n; i++)
                    tmp[i + j1 * n] = tmp1 * T[i + j * n];
                  for (int k = n_obs; k < j - 1; k++)
                    {
                      int k1 = k - n_obs;
                      temp1 = P_t_t1[k1 + j1 * n_state];
                      for (int i = 0; i < n; i++)
                        tmp[i + j1 * n] += temp1 * T[i + k * n];
                    }
                  for (int k = max(j + 1, n_obs); k < n; k++)
                    {
                      int k1 = k - n_obs;
                      temp1 = P_t_t1[j1 + k1 * n_state];
                      for (int i = 0; i < n; i++)
                        tmp[i + j1 * n] += temp1 * T[i + k * n];
                    }
                }
              
              for(int j = n_obs; j < n; j++)
                {
                  int j1 = j - n_obs;
                  double temp1 = P_t_t1[j1 + j1 * n_state];
                  for (int i = 0; i < n; i++)
                    tmp[i + j1 * n] = tmp1 * T[i + j * n];
                  for (int k = n_obs; k < j - 1; k++)
                    {
                      int k1 = k - n_obs;
                      temp1 = P_t_t1[k1 + j1 * n_state];
                      for (int i = 0; i < n; i++)
                      if ((i < n_obs) || (i >= nb_diag + n_obs) || (j1 >= nb_diag))
                          tmp[i + j1 * n] += temp1 * T[i + k * n];
                    }
                  for (int k = max(j + 1, n_obs); k < n; k++)
                    {
                      int k1 = k - n_obs;
                      temp1 = P_t_t1[j1 + k1 * n_state];
                      for (int i = 0; i < n; i++)
                        if ((i < n_obs) || (i >= nb_diag + n_obs) || (j1 >= nb_diag))
                          tmp[i + j1 * n] += temp1 * T[i + k * n];
                    }
                }*/
              for (int i = 0; i < n; i++)
                //int i = 0;
                for (int j = n_obs; j < n; j++)
                  {
                    int j1 = j - n_obs;
                    int j1_n_state = j1 * n_state - n_obs ;
                    if ((i < n_obs) || (i >= nb_diag + n_obs) || (j1 >= nb_diag))
                      for (int k = n_obs; k < i_nz_state_var[i]; k++)
                        {
                          v_index_KF.push_back(make_pair(i + j1 * n, make_pair(i + k * n, k + j1_n_state)));
                        }
                  }
              int size_v_index_KF = v_index_KF.size();
    
              KF_index_file.write(reinterpret_cast<char *>(&size_v_index_KF), sizeof(size_v_index_KF));      
              for (vector<index_KF>::iterator it = v_index_KF.begin(); it != v_index_KF.end(); it++)
                KF_index_file.write(reinterpret_cast<char *>(&(*it)), sizeof(index_KF));
    
              //typedef pair<pair<int, int>, pair<int, int > > index_KF_2;
              vector<index_KF> v_index_KF_2;
              int n_n_obs = n * n_obs;
              for (int i = 0; i < n; i++)
              //i = 0;
                for (int j = i; j < n; j++)
                  {
                    if ((i < n_obs) || (i >= nb_diag + n_obs) || (j < n_obs) || (j >= nb_diag + n_obs))
                      for (int k = n_obs; k < i_nz_state_var[j]; k++)
                        {
                          int k_n = k * n;
                          v_index_KF_2.push_back(make_pair(i * n + j,  make_pair(i + k_n - n_n_obs, j + k_n)));
                        }
                  }
              int size_v_index_KF_2 = v_index_KF_2.size();
    
              KF_index_file.write(reinterpret_cast<char *>(&size_v_index_KF_2), sizeof(size_v_index_KF_2));      
              for (vector<index_KF>::iterator it = v_index_KF_2.begin(); it != v_index_KF_2.end(); it++)
                KF_index_file.write(reinterpret_cast<char *>(&(*it)), sizeof(index_KF));      
              KF_index_file.close();
            }
            output << "M_.state_var = [";
    
            for (vector<int>::const_iterator it=state_var.begin(); it != state_var.end(); it++)
              output << *it << " ";
            output << "];" << endl;
        }
    
      // Writing initialization for some other variables
      output << "M_.exo_names_orig_ord = [1:" << symbol_table.exo_nbr() << "];" << endl
             << "M_.maximum_lag = " << max_lag << ";" << endl
             << "M_.maximum_lead = " << max_lead << ";" << endl;
    
      output << "M_.maximum_endo_lag = " << max_endo_lag << ";" << endl
             << "M_.maximum_endo_lead = " << max_endo_lead << ";" << endl
             << "oo_.steady_state = zeros(" << symbol_table.endo_nbr() << ", 1);" << endl;
    
      output << "M_.maximum_exo_lag = " << max_exo_lag << ";" << endl
             << "M_.maximum_exo_lead = " << max_exo_lead << ";" << endl
             << "oo_.exo_steady_state = zeros(" << symbol_table.exo_nbr() << ", 1);" << endl;
    
      if (symbol_table.exo_det_nbr())
        {
          output << "M_.maximum_exo_det_lag = " << max_exo_det_lag << ";" << endl
                 << "M_.maximum_exo_det_lead = " << max_exo_det_lead << ";" << endl
                 << "oo_.exo_det_steady_state = zeros(" << symbol_table.exo_det_nbr() << ", 1);" << endl;
        }
    
      output << "M_.params = NaN(" << symbol_table.param_nbr() << ", 1);" << endl;
    
      // Write number of non-zero derivatives
      // Use -1 if the derivatives have not been computed
      output << "M_.NNZDerivatives = zeros(3, 1);" << endl
             << "M_.NNZDerivatives(1) = " << NNZDerivatives[0] << ";" << endl;
      if (order > 1)
        {
          output << "M_.NNZDerivatives(2) = " << NNZDerivatives[1] << ";" << endl;
          if (order > 2)
            output << "M_.NNZDerivatives(3) = " << NNZDerivatives[2] << ";" << endl;
          else
            output << "M_.NNZDerivatives(3) = -1;" << endl;
        }
      else
        output << "M_.NNZDerivatives(2) = -1;" << endl
               << "M_.NNZDerivatives(3) = -1;" << endl;
    
    }
    
    map<pair<int, pair<int, int > >, expr_t>
    DynamicModel::collect_first_order_derivatives_endogenous()
    {
      map<pair<int, pair<int, int > >, expr_t> endo_derivatives;
      for (first_derivatives_t::iterator it2 = first_derivatives.begin();
           it2 != first_derivatives.end(); it2++)
        {
          if (getTypeByDerivID(it2->first.second) == eEndogenous)
            {
              int eq = it2->first.first;
              int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(it2->first.second));
              int lag = getLagByDerivID(it2->first.second);
              endo_derivatives[make_pair(eq, make_pair(var, lag))] = it2->second;
            }
        }
      return endo_derivatives;
    }
    
    void
    DynamicModel::runTrendTest(const eval_context_t &eval_context)
    {
      computeDerivIDs();
      testTrendDerivativesEqualToZero(eval_context);
    }
    
    void
    DynamicModel::computingPass(bool jacobianExo, bool hessian, bool thirdDerivatives, bool paramsDerivatives,
                                const eval_context_t &eval_context, bool no_tmp_terms, bool block, bool use_dll, bool bytecode)
    {
      assert(jacobianExo || !(hessian || thirdDerivatives || paramsDerivatives));
    
      initializeVariablesAndEquations();
      
      // Prepare for derivation
      computeDerivIDs();
    
      // Computes dynamic jacobian columns, must be done after computeDerivIDs()
      computeDynJacobianCols(jacobianExo);
    
      // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
      set<int> vars;
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          SymbolType type = symbol_table.getType(it->first.first);
          if (type == eEndogenous || (jacobianExo && (type == eExogenous || type == eExogenousDet)))
            vars.insert(it->second);
        }
    
      // Launch computations
      cout << "Computing dynamic model derivatives:" << endl
           << " - order 1" << endl;
      computeJacobian(vars);
    
      if (hessian)
        {
          cout << " - order 2" << endl;
          computeHessian(vars);
        }
    
      if (paramsDerivatives)
        {
          cout << " - derivatives of Jacobian/Hessian w.r. to parameters" << endl;
          computeParamsDerivatives();
    
          if (!no_tmp_terms)
            computeParamsDerivativesTemporaryTerms();
        }
    
      if (thirdDerivatives)
        {
          cout << " - order 3" << endl;
          computeThirdDerivatives(vars);
        }
    
      if (block)
        {
          vector<unsigned int> n_static, n_forward, n_backward, n_mixed;
          jacob_map_t contemporaneous_jacobian, static_jacobian;
    
          // for each block contains pair<Size, Feddback_variable>
          vector<pair<int, int> > blocks;
    
          evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);
    
          computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
    
          computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
    
          map<pair<int, pair<int, int> >, expr_t> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
    
          equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
    
          cout << "Finding the optimal block decomposition of the model ...\n";
    
          lag_lead_vector_t equation_lag_lead, variable_lag_lead;
    
          computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, true, mfs, inv_equation_reordered, inv_variable_reordered, equation_lag_lead, variable_lag_lead, n_static, n_forward, n_backward, n_mixed);
    
          block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered, n_static, n_forward, n_backward, n_mixed, block_col_type);
    
          printBlockDecomposition(blocks);
    
          computeChainRuleJacobian(blocks_derivatives);
    
          blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);
    
          collect_block_first_order_derivatives();
    
          collectBlockVariables();
    
          global_temporary_terms = true;
          if (!no_tmp_terms)
            computeTemporaryTermsOrdered();
          int k = 0;
          equation_block = vector<int>(equation_number());
          variable_block_lead_lag = vector< pair< int, pair< int, int> > >(equation_number());
          for (unsigned int i = 0; i < getNbBlocks(); i++)
            {
              for (unsigned int j = 0; j < getBlockSize(i); j++)
                {
                  equation_block[equation_reordered[k]] = i;
                  int l = variable_reordered[k];
                  variable_block_lead_lag[l] = make_pair(i, make_pair(variable_lag_lead[l].first, variable_lag_lead[l].second));
                  k++;
                }
            }
        }
      else
        if (!no_tmp_terms)
          {
            computeTemporaryTerms(!use_dll);
            if (bytecode)
              computeTemporaryTermsMapping();
          }
    }
    
    map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>
    DynamicModel::get_Derivatives(int block)
    {
      int max_lag, max_lead;
      map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives;
      Derivatives.clear();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
          max_lag  = 1;
          max_lead = 1;
          setBlockLeadLag(block, max_lag, max_lead);
        }
      else
        {
          max_lag  = getBlockMaxLag(block);
          max_lead = getBlockMaxLead(block);
        }
      int block_size = getBlockSize(block);
      int block_nb_recursive = block_size - getBlockMfs(block);
      for (int lag = -max_lag; lag <= max_lead; lag++)
        {
          for (int eq = 0; eq < block_size; eq++)
            {
              int eqr = getBlockEquationID(block, eq);
              for (int var = 0; var < block_size; var++)
                {
                  int varr = getBlockVariableID(block, var);
                  if (dynamic_jacobian.find(make_pair(lag, make_pair(eqr, varr))) != dynamic_jacobian.end())
                    {
                      bool OK = true;
                      map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator its = Derivatives.find(make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr)));
                      if (its != Derivatives.end())
                        {
                          if (its->second == 2)
                            OK = false;
                        }
    
                      if (OK)
                        {
                          if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursive)
                            //It's a normalized equation, we have to recompute the derivative using chain rule derivative function
                            Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 1;
                          else
                            //It's a feedback equation we can use the derivatives
                            Derivatives[make_pair(make_pair(lag, make_pair(eq, var)), make_pair(eqr, varr))] = 0;
                        }
                      if (var < block_nb_recursive)
                        {
                          int eqs = getBlockEquationID(block, var);
                          for (int vars = block_nb_recursive; vars < block_size; vars++)
                            {
                              int varrs = getBlockVariableID(block, vars);
                              //A new derivative needs to be computed using the chain rule derivative function (a feedback variable appears in a recursive equation)
                              if (Derivatives.find(make_pair(make_pair(lag, make_pair(var, vars)), make_pair(eqs, varrs))) != Derivatives.end())
                                Derivatives[make_pair(make_pair(lag, make_pair(eq, vars)), make_pair(eqr, varrs))] = 2;
                            }
                        }
                    }
                }
            }
        }
      return (Derivatives);
    }
    
    void
    DynamicModel::computeChainRuleJacobian(blocks_derivatives_t &blocks_endo_derivatives)
    {
      map<int, expr_t> recursive_variables;
      unsigned int nb_blocks = getNbBlocks();
      blocks_endo_derivatives = blocks_derivatives_t(nb_blocks);
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          block_derivatives_equation_variable_laglead_nodeid_t tmp_derivatives;
          recursive_variables.clear();
          int block_size = getBlockSize(block);
          int block_nb_mfs = getBlockMfs(block);
          int block_nb_recursives = block_size - block_nb_mfs;
          blocks_endo_derivatives.push_back(block_derivatives_equation_variable_laglead_nodeid_t(0));
          for (int i = 0; i < block_nb_recursives; i++)
            {
              if (getBlockEquationType(block, i) == E_EVALUATE_S)
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedExpr(block, i);
              else
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationExpr(block, i);
            }
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int> Derivatives = get_Derivatives(block);
          map<pair<pair<int, pair<int, int> >, pair<int, int> >, int>::const_iterator it = Derivatives.begin();
          for (int i = 0; i < (int) Derivatives.size(); i++)
            {
              int Deriv_type = it->second;
              pair<pair<int, pair<int, int> >, pair<int, int> > it_l(it->first);
              it++;
              int lag = it_l.first.first;
              int eq = it_l.first.second.first;
              int var = it_l.first.second.second;
              int eqr = it_l.second.first;
              int varr = it_l.second.second;
              if (Deriv_type == 0)
                first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = first_derivatives[make_pair(eqr, getDerivID(symbol_table.getID(eEndogenous, varr), lag))];
              else if (Deriv_type == 1)
                first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
              else if (Deriv_type == 2)
                {
                  if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursives)
                    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
                  else
                    first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))] = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
                }
              tmp_derivatives.push_back(make_pair(make_pair(eq, var), make_pair(lag, first_chain_rule_derivatives[make_pair(eqr, make_pair(varr, lag))])));
            }
          blocks_endo_derivatives[block] = tmp_derivatives;
        }
    }
    
    void
    DynamicModel::collect_block_first_order_derivatives()
    {
      //! vector for an equation or a variable indicates the block number
      vector<int> equation_2_block, variable_2_block;
      unsigned int nb_blocks = getNbBlocks();
      equation_2_block = vector<int>(equation_reordered.size());
      variable_2_block = vector<int>(variable_reordered.size());
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          unsigned int block_size = getBlockSize(block);
          for (unsigned int i = 0; i < block_size; i++)
            {
              equation_2_block[getBlockEquationID(block, i)] = block;
              variable_2_block[getBlockVariableID(block, i)] = block;
            }
        }
      other_endo_block = vector<lag_var_t>(nb_blocks);
      exo_block = vector<lag_var_t>(nb_blocks);
      exo_det_block = vector<lag_var_t>(nb_blocks);
      derivative_endo = vector<derivative_t>(nb_blocks);
      derivative_other_endo = vector<derivative_t>(nb_blocks);
      derivative_exo = vector<derivative_t>(nb_blocks);
      derivative_exo_det = vector<derivative_t>(nb_blocks);
      endo_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
      other_endo_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
      exo_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
      exo_det_max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
      max_leadlag_block = vector<pair<int, int> >(nb_blocks, make_pair(0, 0));
      for (first_derivatives_t::iterator it2 = first_derivatives.begin();
           it2 != first_derivatives.end(); it2++)
        {
          int eq = it2->first.first;
          int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(it2->first.second));
          int lag = getLagByDerivID(it2->first.second);
          int block_eq = equation_2_block[eq];
          int block_var = variable_2_block[var];
          derivative_t tmp_derivative;
          lag_var_t lag_var;
          switch (getTypeByDerivID(it2->first.second))
            {
            case eEndogenous:
              if (block_eq == block_var)
                {
                  if (lag < 0 && lag < -endo_max_leadlag_block[block_eq].first)
                    endo_max_leadlag_block[block_eq] = make_pair(-lag, endo_max_leadlag_block[block_eq].second);
                  if (lag > 0 && lag > endo_max_leadlag_block[block_eq].second)
                    endo_max_leadlag_block[block_eq] = make_pair(endo_max_leadlag_block[block_eq].first, lag);
                  tmp_derivative = derivative_endo[block_eq];
                  tmp_derivative[make_pair(lag, make_pair(eq, var))] = first_derivatives[make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, var), lag))];
                  derivative_endo[block_eq] = tmp_derivative;
                }
              else
                {
                  if (lag < 0 && lag < -other_endo_max_leadlag_block[block_eq].first)
                    other_endo_max_leadlag_block[block_eq] = make_pair(-lag, other_endo_max_leadlag_block[block_eq].second);
                  if (lag > 0 && lag > other_endo_max_leadlag_block[block_eq].second)
                    other_endo_max_leadlag_block[block_eq] = make_pair(other_endo_max_leadlag_block[block_eq].first, lag);
                  tmp_derivative = derivative_other_endo[block_eq];
                  {
                    map< int, map<int, int> >::const_iterator it = block_other_endo_index.find(block_eq);
                    if (it == block_other_endo_index.end())
                      block_other_endo_index[block_eq][var] = 0;
                    else
                      {
                        map<int, int>::const_iterator it1 = it->second.find(var);
                        if (it1 == it->second.end())
                          {
                            int size = block_other_endo_index[block_eq].size();
                            block_other_endo_index[block_eq][var] = size;
                          }
                      }
                  }
                  tmp_derivative[make_pair(lag, make_pair(eq, var))] = first_derivatives[make_pair(eq, getDerivID(symbol_table.getID(eEndogenous, var), lag))];
                  derivative_other_endo[block_eq] = tmp_derivative;
                  lag_var = other_endo_block[block_eq];
                  if (lag_var.find(lag) == lag_var.end())
                    lag_var[lag].clear();
                  lag_var[lag].insert(var);
                  other_endo_block[block_eq] = lag_var;
                }
              break;
            case eExogenous:
              if (lag < 0 && lag < -exo_max_leadlag_block[block_eq].first)
                exo_max_leadlag_block[block_eq] = make_pair(-lag, exo_max_leadlag_block[block_eq].second);
              if (lag > 0 && lag > exo_max_leadlag_block[block_eq].second)
                exo_max_leadlag_block[block_eq] = make_pair(exo_max_leadlag_block[block_eq].first, lag);
              tmp_derivative = derivative_exo[block_eq];
              {
                map< int, map<int, int> >::const_iterator it = block_exo_index.find(block_eq);
                if (it == block_exo_index.end())
                  block_exo_index[block_eq][var] = 0;
                else
                  {
                    map<int, int>::const_iterator it1 = it->second.find(var);
                    if (it1 == it->second.end())
                      {
                        int size = block_exo_index[block_eq].size();
                        block_exo_index[block_eq][var] = size;
                      }
                  }
              }
              tmp_derivative[make_pair(lag, make_pair(eq, var))] = first_derivatives[make_pair(eq, getDerivID(symbol_table.getID(eExogenous, var), lag))];
              derivative_exo[block_eq] = tmp_derivative;
              lag_var = exo_block[block_eq];
              if (lag_var.find(lag) == lag_var.end())
                lag_var[lag].clear();
              lag_var[lag].insert(var);
              exo_block[block_eq] = lag_var;
              break;
            case eExogenousDet:
              if (lag < 0 && lag < -exo_det_max_leadlag_block[block_eq].first)
                exo_det_max_leadlag_block[block_eq] = make_pair(-lag, exo_det_max_leadlag_block[block_eq].second);
              if (lag > 0 && lag > exo_det_max_leadlag_block[block_eq].second)
                exo_det_max_leadlag_block[block_eq] = make_pair(exo_det_max_leadlag_block[block_eq].first, lag);
              tmp_derivative = derivative_exo_det[block_eq];
              {
                map< int, map<int, int> >::const_iterator it = block_det_exo_index.find(block_eq);
                if (it == block_det_exo_index.end())
                  block_det_exo_index[block_eq][var] = 0;
                else
                  {
                    map<int, int>::const_iterator it1 = it->second.find(var);
                    if (it1 == it->second.end())
                      {
                        int size = block_det_exo_index[block_eq].size();
                        block_det_exo_index[block_eq][var] = size;
                      }
                  }
              }
              tmp_derivative[make_pair(lag, make_pair(eq, var))] = first_derivatives[make_pair(eq, getDerivID(symbol_table.getID(eExogenous, var), lag))];
              derivative_exo_det[block_eq] = tmp_derivative;
              lag_var = exo_det_block[block_eq];
              if (lag_var.find(lag) == lag_var.end())
                lag_var[lag].clear();
              lag_var[lag].insert(var);
              exo_det_block[block_eq] = lag_var;
              break;
            default:
              break;
            }
          if (lag < 0 && lag < -max_leadlag_block[block_eq].first)
            max_leadlag_block[block_eq] = make_pair(-lag, max_leadlag_block[block_eq].second);
          if (lag > 0 && lag > max_leadlag_block[block_eq].second)
            max_leadlag_block[block_eq] = make_pair(max_leadlag_block[block_eq].first, lag);
        }
    
    }
    
    void
    DynamicModel::collectBlockVariables()
    {
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
          int prev_var = -1;
          int prev_lag = -999999999;
          int count_col_exo = 0;
          var_t tmp_var_exo;
          for (lag_var_t::const_iterator it = exo_block[block].begin(); it != exo_block[block].end(); it++)
            {
              int lag = it->first;
              for (var_t::const_iterator it2 = it->second.begin(); it2 != it->second.end(); it2++)
                {
                  int var = *it2;
                  tmp_var_exo.insert(var);
                  if (prev_var != var || prev_lag != lag)
                    {
                      prev_var = var;
                      prev_lag = lag;
                      count_col_exo++;
                    }
                }
            }
          block_var_exo.push_back(make_pair(tmp_var_exo, count_col_exo));
        }
    }
    
    void
    DynamicModel::writeDynamicFile(const string &basename, bool block, bool bytecode, bool use_dll, int order) const
    {
      int r;
      string t_basename = basename + "_dynamic";
      if (block && bytecode)
        writeModelEquationsCode_Block(t_basename, basename, map_idx);
      else if (!block && bytecode)
        writeModelEquationsCode(t_basename, basename, map_idx);
      else if (block && !bytecode)
        {
    #ifdef _WIN32
          r = mkdir(basename.c_str());
    #else
          r = mkdir(basename.c_str(), 0777);
    #endif
          if (r < 0 && errno != EEXIST)
            {
              perror("ERROR");
              exit(EXIT_FAILURE);
            }
          writeSparseDynamicMFile(t_basename, basename);
        }
      else if (use_dll)
        writeDynamicCFile(t_basename, order);
      else
        writeDynamicMFile(t_basename);
    }
    
    void
    DynamicModel::cloneDynamic(DynamicModel &dynamic_model) const
    {
      /* Ensure that we are using the same symbol table, because at many places we manipulate
         symbol IDs rather than strings */
      assert(&symbol_table == &dynamic_model.symbol_table);
    
      // Convert model local variables (need to be done first)
      for (map<int, expr_t>::const_iterator it = local_variables_table.begin();
           it != local_variables_table.end(); it++)
        dynamic_model.AddLocalVariable(it->first, it->second->cloneDynamic(dynamic_model));
    
      // Convert equations
      for (size_t i = 0; i < equations.size(); i++)
        dynamic_model.addEquation(equations[i]->cloneDynamic(dynamic_model), equations_lineno[i]);
    
      // Convert auxiliary equations
      for (deque<BinaryOpNode *>::const_iterator it = aux_equations.begin();
           it != aux_equations.end(); it++)
        dynamic_model.addAuxEquation((*it)->cloneDynamic(dynamic_model));
    
      // Convert static_only equations
      for (size_t i = 0; i < static_only_equations.size(); i++)
        dynamic_model.addStaticOnlyEquation(static_only_equations[i]->cloneDynamic(dynamic_model),
                                            static_only_equations_lineno[i]);
    }
    
    void
    DynamicModel::replaceMyEquations(DynamicModel &dynamic_model) const
    {
      dynamic_model.equations.clear();
      for (size_t i = 0; i < equations.size(); i++)
        dynamic_model.addEquation(equations[i]->cloneDynamic(dynamic_model),
                                  equations_lineno[i]);
    }
    
    void
    DynamicModel::computeRamseyPolicyFOCs(const StaticModel &static_model)
    {
      // Add aux LM to constraints in equations
      // equation[i]->lhs = rhs becomes equation[i]->MULT_(i+1)*(lhs-rhs) = 0
      int i;
      for (i = 0; i < (int) equations.size(); i++)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->addMultipliersToConstraints(i));
          assert(substeq != NULL);
          equations[i] = substeq;
        }
    
      cout << "Ramsey Problem: added " << i << " Multipliers." << endl;
    
      // Add Planner Objective to equations to include in computeDerivIDs
      assert(static_model.equations.size() == 1);
      addEquation(static_model.equations[0]->cloneDynamic(*this), static_model.equations_lineno[0]);
    
      // Get max endo lead and max endo lag
      set<pair<int, int> > dynvars;
      int max_eq_lead = 0;
      int max_eq_lag = 0;
      for (int i = 0; i < (int) equations.size(); i++)
        equations[i]->collectDynamicVariables(eEndogenous, dynvars);
    
      for (set<pair<int, int> >::const_iterator it = dynvars.begin();
           it != dynvars.end(); it++)
        {
          int lag = it->second;
          if (max_eq_lead < lag)
            max_eq_lead = lag;
          else if (-max_eq_lag > lag)
            max_eq_lag = -lag;
        }
    
      // Get Discount Factor
      assert(symbol_table.exists("optimal_policy_discount_factor"));
      int symb_id = symbol_table.getID("optimal_policy_discount_factor");
      assert(symbol_table.getType(symb_id) == eParameter);
      expr_t discount_factor_node = AddVariable(symb_id, 0);
    
      // Create (modified) Lagrangian (so that we can take the derivative once at time t)
      expr_t lagrangian = Zero;
      for (i = 0; i < (int) equations.size(); i++)
        for (int lag = -max_eq_lag; lag <= max_eq_lead; lag++)
          {
            expr_t dfpower = NULL;
            std::stringstream lagstream;
            lagstream << abs(lag);
            if (lag < 0)
              dfpower = AddNonNegativeConstant(lagstream.str());
            else if (lag == 0)
              dfpower = Zero;
            else
              dfpower = AddMinus(Zero, AddNonNegativeConstant(lagstream.str()));
    
            lagrangian = AddPlus(AddTimes(AddPower(discount_factor_node, dfpower),
                                          equations[i]->getNonZeroPartofEquation()->decreaseLeadsLags(lag)), lagrangian);
          }
    
      equations.clear();
      addEquation(AddEqual(lagrangian, Zero), -1);
      computeDerivIDs();
    
      //Compute derivatives and overwrite equations
      vector<expr_t> neweqs;
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        // For all endogenous variables with zero lag
        if (symbol_table.getType(it->first.first)  == eEndogenous && it->first.second == 0)
          neweqs.push_back(AddEqual(equations[0]->getNonZeroPartofEquation()->getDerivative(it->second), Zero));
    
      // Add new equations
      equations.clear();
      for (int i = 0; i < (int) neweqs.size(); i++)
        addEquation(neweqs[i], -1);
    }
    
    void
    DynamicModel::toStatic(StaticModel &static_model) const
    {
      /* Ensure that we are using the same symbol table, because at many places we manipulate
         symbol IDs rather than strings */
      assert(&symbol_table == &static_model.symbol_table);
    
      // Convert model local variables (need to be done first)
      for (map<int, expr_t>::const_iterator it = local_variables_table.begin();
           it != local_variables_table.end(); it++)
        static_model.AddLocalVariable(it->first, it->second->toStatic(static_model));
    
      // Convert equations
      int static_only_index = 0;
      for (int i = 0; i < (int) equations.size(); i++)
        {
          // Detect if equation is marked [dynamic]
          bool is_dynamic_only = false;
          for (vector<pair<int, pair<string, string> > >::const_iterator it = equation_tags.begin();
               it != equation_tags.end(); ++it)
            if (it->first == i && it->second.first == "dynamic")
              {
                is_dynamic_only = true;
                break;
              }
    
          // If yes, replace it by an equation marked [static]
          if (is_dynamic_only)
            {
              static_model.addEquation(static_only_equations[static_only_index]->toStatic(static_model), static_only_equations_lineno[static_only_index]);
              static_only_index++;
            }
          else
            static_model.addEquation(equations[i]->toStatic(static_model), equations_lineno[i]);
        }
    
      // Convert auxiliary equations
      for (deque<BinaryOpNode *>::const_iterator it = aux_equations.begin();
           it != aux_equations.end(); it++)
        static_model.addAuxEquation((*it)->toStatic(static_model));
    }
    
    set<int>
    DynamicModel::findUnusedEndogenous()
    {
      set<int> usedEndo, unusedEndo;
      for (int i = 0; i < (int) equations.size(); i++)
        equations[i]->collectVariables(eEndogenous, usedEndo);
      set<int> allEndo = symbol_table.getEndogenous();
      set_difference(allEndo.begin(), allEndo.end(),
                     usedEndo.begin(), usedEndo.end(),
                     inserter(unusedEndo, unusedEndo.begin()));
      return unusedEndo;
    }
    
    set<int>
    DynamicModel::findUnusedExogenous()
    {
      set<int> usedExo, unusedExo;
      for (int i = 0; i < (int) equations.size(); i++)
        equations[i]->collectVariables(eExogenous, usedExo);
      set<int> allExo = symbol_table.getExogenous();
      set_difference(allExo.begin(), allExo.end(),
                     usedExo.begin(), usedExo.end(),
                     inserter(unusedExo, unusedExo.begin()));
      return unusedExo;
    }
    
    void
    DynamicModel::computeDerivIDs()
    {
      set<pair<int, int> > dynvars;
    
      for (int i = 0; i < (int) equations.size(); i++)
        equations[i]->collectDynamicVariables(eEndogenous, dynvars);
    
      dynJacobianColsNbr = dynvars.size();
    
      for (int i = 0; i < (int) equations.size(); i++)
        {
          equations[i]->collectDynamicVariables(eExogenous, dynvars);
          equations[i]->collectDynamicVariables(eExogenousDet, dynvars);
          equations[i]->collectDynamicVariables(eParameter, dynvars);
          equations[i]->collectDynamicVariables(eTrend, dynvars);
          equations[i]->collectDynamicVariables(eLogTrend, dynvars);
        }
    
      for (set<pair<int, int> >::const_iterator it = dynvars.begin();
           it != dynvars.end(); it++)
        {
          int lag = it->second;
          SymbolType type = symbol_table.getType(it->first);
    
          /* Setting maximum and minimum lags.
    
             We don't want these to be affected by lead/lags on parameters: they
             are accepted for facilitating variable flipping, but are simply
             ignored. */
          if (max_lead < lag && type != eParameter)
            max_lead = lag;
          else if (-max_lag > lag && type != eParameter)
            max_lag = -lag;
    
          switch (type)
            {
            case eEndogenous:
              if (max_endo_lead < lag)
                max_endo_lead = lag;
              else if (-max_endo_lag > lag)
                max_endo_lag = -lag;
              break;
            case eExogenous:
              if (max_exo_lead < lag)
                max_exo_lead = lag;
              else if (-max_exo_lag > lag)
                max_exo_lag = -lag;
              break;
            case eExogenousDet:
              if (max_exo_det_lead < lag)
                max_exo_det_lead = lag;
              else if (-max_exo_det_lag > lag)
                max_exo_det_lag = -lag;
              break;
            default:
              break;
            }
    
          // Create a new deriv_id
          int deriv_id = deriv_id_table.size();
    
          deriv_id_table[*it] = deriv_id;
          inv_deriv_id_table.push_back(*it);
        }
    }
    
    SymbolType
    DynamicModel::getTypeByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      return symbol_table.getType(getSymbIDByDerivID(deriv_id));
    }
    
    int
    DynamicModel::getLagByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].second;
    }
    
    int
    DynamicModel::getSymbIDByDerivID(int deriv_id) const throw (UnknownDerivIDException)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].first;
    }
    
    int
    DynamicModel::getDerivID(int symb_id, int lag) const throw (UnknownDerivIDException)
    {
      deriv_id_table_t::const_iterator it = deriv_id_table.find(make_pair(symb_id, lag));
      if (it == deriv_id_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    void
    DynamicModel::addAllParamDerivId(set<int> &deriv_id_set)
    {
      for (size_t i = 0; i < inv_deriv_id_table.size(); i++)
        if (symbol_table.getType(inv_deriv_id_table[i].first) == eParameter)
          deriv_id_set.insert(i);
    }
    
    void
    DynamicModel::computeDynJacobianCols(bool jacobianExo)
    {
      /* Sort the dynamic endogenous variables by lexicographic order over (lag, type_specific_symbol_id)
         and fill the dynamic columns for exogenous and exogenous deterministic */
      map<pair<int, int>, int> ordered_dyn_endo;
    
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          const int &symb_id = it->first.first;
          const int &lag = it->first.second;
          const int &deriv_id = it->second;
          SymbolType type = symbol_table.getType(symb_id);
          int tsid = symbol_table.getTypeSpecificID(symb_id);
    
          switch (type)
            {
            case eEndogenous:
              ordered_dyn_endo[make_pair(lag, tsid)] = deriv_id;
              break;
            case eExogenous:
              // At this point, dynJacobianColsNbr contains the number of dynamic endogenous
              if (jacobianExo)
                dyn_jacobian_cols_table[deriv_id] = dynJacobianColsNbr + tsid;
              break;
            case eExogenousDet:
              // At this point, dynJacobianColsNbr contains the number of dynamic endogenous
              if (jacobianExo)
                dyn_jacobian_cols_table[deriv_id] = dynJacobianColsNbr + symbol_table.exo_nbr() + tsid;
              break;
            case eParameter:
            case eTrend:
            case eLogTrend:
              // We don't assign a dynamic jacobian column to parameters or trend variables
              break;
            default:
              // Shut up GCC
              cerr << "DynamicModel::computeDynJacobianCols: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      // Fill in dynamic jacobian columns for endogenous
      int sorted_id = 0;
      for (map<pair<int, int>, int>::const_iterator it = ordered_dyn_endo.begin();
           it != ordered_dyn_endo.end(); it++)
        dyn_jacobian_cols_table[it->second] = sorted_id++;
    
      // Set final value for dynJacobianColsNbr
      if (jacobianExo)
        dynJacobianColsNbr += symbol_table.exo_nbr() + symbol_table.exo_det_nbr();
    }
    
    int
    DynamicModel::getDynJacobianCol(int deriv_id) const throw (UnknownDerivIDException)
    {
      map<int, int>::const_iterator it = dyn_jacobian_cols_table.find(deriv_id);
      if (it == dyn_jacobian_cols_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    void
    DynamicModel::testTrendDerivativesEqualToZero(const eval_context_t &eval_context)
    {
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        if (symbol_table.getType(it->first.first) == eTrend
            || symbol_table.getType(it->first.first) == eLogTrend)
          for (int eq = 0; eq < (int) equations.size(); eq++)
            {
              expr_t homogeneq = AddMinus(equations[eq]->get_arg1(),
                                          equations[eq]->get_arg2());
    
              // Do not run the test if the term inside the log is zero
              if (fabs(homogeneq->eval(eval_context)) > ZERO_BAND)
                {
                  expr_t testeq = AddLog(homogeneq); // F = log(lhs-rhs)
                  testeq = testeq->getDerivative(it->second); // d F / d Trend
                  for (deriv_id_table_t::const_iterator endogit = deriv_id_table.begin();
                       endogit != deriv_id_table.end(); endogit++)
                    if (symbol_table.getType(endogit->first.first) == eEndogenous)
                      {
                        double nearZero = testeq->getDerivative(endogit->second)->eval(eval_context); // eval d F / d Trend d Endog
                        if (fabs(nearZero) > ZERO_BAND)
                          {
                            cerr << "ERROR: trends not compatible with balanced growth path; the second-order cross partial of equation " << eq + 1 << " (line "
                                 << equations_lineno[eq] << ") w.r.t. trend variable "
                                 << symbol_table.getName(it->first.first) << " and endogenous variable "
                                 << symbol_table.getName(endogit->first.first) << " is not null. " << endl;
                            exit(EXIT_FAILURE);
                          }
                      }
                }
            }
    }
    
    void
    DynamicModel::writeParamsDerivativesFile(const string &basename) const
    {
      if (!residuals_params_derivatives.size()
          && !residuals_params_second_derivatives.size()
          && !jacobian_params_derivatives.size()
          && !jacobian_params_second_derivatives.size()
          && !hessian_params_derivatives.size())
        return;
    
      string filename = basename + "_params_derivs.m";
    
      ofstream paramsDerivsFile;
      paramsDerivsFile.open(filename.c_str(), ios::out | ios::binary);
      if (!paramsDerivsFile.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      paramsDerivsFile << "function [rp, gp, rpp, gpp, hp] = " << basename << "_params_derivs(y, x, params, steady_state, it_, ss_param_deriv, ss_param_2nd_deriv)" << endl
                       << "%" << endl
                       << "% Warning : this file is generated automatically by Dynare" << endl
                       << "%           from model file (.mod)" << endl << endl;
    
      deriv_node_temp_terms_t tef_terms;
      writeModelLocalVariables(paramsDerivsFile, oMatlabDynamicModel, tef_terms);
    
      writeTemporaryTerms(params_derivs_temporary_terms, paramsDerivsFile, oMatlabDynamicModel, tef_terms);
    
      // Write parameter derivative
      paramsDerivsFile << "rp = zeros(" << equation_number() << ", "
                       << symbol_table.param_nbr() << ");" << endl;
    
      for (first_derivatives_t::const_iterator it = residuals_params_derivatives.begin();
           it != residuals_params_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int param = it->first.second;
          expr_t d1 = it->second;
    
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          paramsDerivsFile << "rp(" << eq+1 << ", " << param_col << ") = ";
          d1->writeOutput(paramsDerivsFile, oMatlabDynamicModel, params_derivs_temporary_terms, tef_terms);
          paramsDerivsFile << ";" << endl;
        }
    
      // Write jacobian derivatives
      paramsDerivsFile << "gp = zeros(" << equation_number() << ", " << dynJacobianColsNbr << ", "
                       << symbol_table.param_nbr() << ");" << endl;
    
      for (second_derivatives_t::const_iterator it = jacobian_params_derivatives.begin();
           it != jacobian_params_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int var = it->first.second.first;
          int param = it->first.second.second;
          expr_t d2 = it->second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          paramsDerivsFile << "gp(" << eq+1 << ", " << var_col << ", " << param_col << ") = ";
          d2->writeOutput(paramsDerivsFile, oMatlabDynamicModel, params_derivs_temporary_terms, tef_terms);
          paramsDerivsFile << ";" << endl;
        }
    
      // If nargout >= 3...
      paramsDerivsFile << "if nargout >= 3" << endl;
    
      // Write parameter second derivatives (only if nargout >= 3)
      paramsDerivsFile << "rpp = zeros(" << residuals_params_second_derivatives.size()
                       << ",4);" << endl;
    
      int i = 1;
      for (second_derivatives_t::const_iterator it = residuals_params_second_derivatives.begin();
           it != residuals_params_second_derivatives.end(); ++it, i++)
        {
          int eq = it->first.first;
          int param1 = it->first.second.first;
          int param2 = it->first.second.second;
          expr_t d2 = it->second;
    
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          paramsDerivsFile << "rpp(" << i << ",1)=" << eq+1 << ";" << endl
                           << "rpp(" << i << ",2)=" << param1_col << ";" << endl
                           << "rpp(" << i << ",3)=" << param2_col << ";" << endl
                           << "rpp(" << i << ",4)=";
          d2->writeOutput(paramsDerivsFile, oMatlabDynamicModel, params_derivs_temporary_terms, tef_terms);
          paramsDerivsFile << ";" << endl;
        }
    
      // Write jacobian second derivatives  (only if nargout >= 3)
      paramsDerivsFile << "gpp = zeros(" << jacobian_params_second_derivatives.size()
                       << ",5);" << endl;
    
      i = 1;
      for (third_derivatives_t::const_iterator it = jacobian_params_second_derivatives.begin();
           it != jacobian_params_second_derivatives.end(); ++it, i++)
        {
          int eq = it->first.first;
          int var = it->first.second.first;
          int param1 = it->first.second.second.first;
          int param2 = it->first.second.second.second;
          expr_t d2 = it->second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          paramsDerivsFile << "gpp(" << i << ",1)=" << eq+1 << ";" << endl
                           << "gpp(" << i << ",2)=" << var_col << ";" << endl
                           << "gpp(" << i << ",3)=" << param1_col << ";" << endl
                           << "gpp(" << i << ",4)=" << param2_col << ";" << endl
                           << "gpp(" << i << ",5)=";
          d2->writeOutput(paramsDerivsFile, oMatlabDynamicModel, params_derivs_temporary_terms, tef_terms);
          paramsDerivsFile << ";" << endl;
        }
    
      // If nargout >= 5...
      paramsDerivsFile << "end" << endl
                       << "if nargout >= 5" << endl;
    
      // Write hessian derivatives (only if nargout >= 5)
      paramsDerivsFile << "hp = zeros(" << hessian_params_derivatives.size() << ",5);" << endl;
    
      i = 1;
      for (third_derivatives_t::const_iterator it = hessian_params_derivatives.begin();
           it != hessian_params_derivatives.end(); ++it, i++)
        {
          int eq = it->first.first;
          int var1 = it->first.second.first;
          int var2 = it->first.second.second.first;
          int param = it->first.second.second.second;
          expr_t d2 = it->second;
    
          int var1_col = getDynJacobianCol(var1) + 1;
          int var2_col = getDynJacobianCol(var2) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          paramsDerivsFile << "hp(" << i << ",1)=" << eq+1 << ";" << endl
                           << "hp(" << i << ",2)=" << var1_col << ";" << endl
                           << "hp(" << i << ",3)=" << var2_col << ";" << endl
                           << "hp(" << i << ",4)=" << param_col << ";" << endl
                           << "hp(" << i << ",5)=";
          d2->writeOutput(paramsDerivsFile, oMatlabDynamicModel, params_derivs_temporary_terms, tef_terms);
          paramsDerivsFile << ";" << endl;
        }
    
      paramsDerivsFile << "end" << endl
                       << "end" << endl;
      paramsDerivsFile.close();
    }
    
    void
    DynamicModel::writeChainRuleDerivative(ostream &output, int eqr, int varr, int lag,
                                           ExprNodeOutputType output_type,
                                           const temporary_terms_t &temporary_terms) const
    {
      map<pair<int, pair<int, int> >, expr_t>::const_iterator it = first_chain_rule_derivatives.find(make_pair(eqr, make_pair(varr, lag)));
      if (it != first_chain_rule_derivatives.end())
        (it->second)->writeOutput(output, output_type, temporary_terms);
      else
        output << 0;
    }
    
    void
    DynamicModel::writeLatexFile(const string &basename) const
    {
      writeLatexModelFile(basename + "_dynamic.tex", oLatexDynamicModel);
    }
    
    void
    DynamicModel::substituteEndoLeadGreaterThanTwo(bool deterministic_model)
    {
      substituteLeadLagInternal(avEndoLead, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteEndoLagGreaterThanTwo(bool deterministic_model)
    {
      substituteLeadLagInternal(avEndoLag, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteExoLead(bool deterministic_model)
    {
      substituteLeadLagInternal(avExoLead, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteExoLag(bool deterministic_model)
    {
      substituteLeadLagInternal(avExoLag, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteLeadLagInternal(aux_var_t type, bool deterministic_model, const vector<string> &subset)
    {
      ExprNode::subst_table_t subst_table;
      vector<BinaryOpNode *> neweqs;
    
      // Substitute in used model local variables
      set<int> used_local_vars;
      for (size_t i = 0; i < equations.size(); i++)
        equations[i]->collectVariables(eModelLocalVariable, used_local_vars);
    
      for (set<int>::const_iterator it = used_local_vars.begin();
           it != used_local_vars.end(); ++it)
        {
          const expr_t value = local_variables_table.find(*it)->second;
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = value->substituteEndoLeadGreaterThanTwo(subst_table, neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = value->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = value->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = value->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = value->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          local_variables_table[*it] = subst;
        }
    
      // Substitute in equations
      for (int i = 0; i < (int) equations.size(); i++)
        {
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = equations[i]->substituteEndoLeadGreaterThanTwo(subst_table, neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = equations[i]->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = equations[i]->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = equations[i]->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = equations[i]->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(subst);
          assert(substeq != NULL);
          equations[i] = substeq;
        }
    
      // Add new equations
      for (int i = 0; i < (int) neweqs.size(); i++)
        addEquation(neweqs[i], -1);
    
      // Order of auxiliary variable definition equations:
      //  - expectation (entered before this function is called)
      //  - lead variables from lower lead to higher lead
      //  - lag variables from lower lag to higher lag
      copy(neweqs.begin(), neweqs.end(), back_inserter(aux_equations));
    
      if (neweqs.size() > 0)
        {
          cout << "Substitution of ";
          switch (type)
            {
            case avEndoLead:
              cout << "endo leads >= 2";
              break;
            case avEndoLag:
              cout << "endo lags >= 2";
              break;
            case avExoLead:
              cout << "exo leads";
              break;
            case avExoLag:
              cout << "exo lags";
              break;
            case avExpectation:
              cout << "expectation";
              break;
            case avDiffForward:
              cout << "forward vars";
              break;
            case avMultiplier:
              cerr << "avMultiplier encountered: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          cout << ": added " << neweqs.size() << " auxiliary variables and equations." << endl;
        }
    }
    
    void
    DynamicModel::substituteExpectation(bool partial_information_model)
    {
      ExprNode::subst_table_t subst_table;
      vector<BinaryOpNode *> neweqs;
    
      // Substitute in model local variables
      for (map<int, expr_t>::iterator it = local_variables_table.begin();
           it != local_variables_table.end(); it++)
        it->second = it->second->substituteExpectation(subst_table, neweqs, partial_information_model);
    
      // Substitute in equations
      for (int i = 0; i < (int) equations.size(); i++)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->substituteExpectation(subst_table, neweqs, partial_information_model));
          assert(substeq != NULL);
          equations[i] = substeq;
        }
    
      // Add new equations
      for (int i = 0; i < (int) neweqs.size(); i++)
        addEquation(neweqs[i], -1);
    
      // Add the new set of equations at the *beginning* of aux_equations
      copy(neweqs.rbegin(), neweqs.rend(), front_inserter(aux_equations));
    
      if (subst_table.size() > 0)
        {
          if (partial_information_model)
            cout << "Substitution of Expectation operator: added " << subst_table.size() << " auxiliary variables and " << neweqs.size() << " auxiliary equations." << endl;
          else
            cout << "Substitution of Expectation operator: added " << neweqs.size() << " auxiliary variables and equations." << endl;
        }
    }
    
    void
    DynamicModel::transformPredeterminedVariables()
    {
      for (int i = 0; i < (int) equations.size(); i++)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->decreaseLeadsLagsPredeterminedVariables());
          assert(substeq != NULL);
          equations[i] = substeq;
        }
    }
    
    void
    DynamicModel::detrendEquations()
    {
      // We go backwards in the list of trend_vars, to deal correctly with I(2) processes
      for (nonstationary_symbols_map_t::const_reverse_iterator it = nonstationary_symbols_map.rbegin();
           it != nonstationary_symbols_map.rend(); ++it)
        for (int i = 0; i < (int) equations.size(); i++)
          {
            BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->detrend(it->first, it->second.first, it->second.second));
            assert(substeq != NULL);
            equations[i] = dynamic_cast<BinaryOpNode *>(substeq);
          }
    
      for (int i = 0; i < (int) equations.size(); i++)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->removeTrendLeadLag(trend_symbols_map));
          assert(substeq != NULL);
          equations[i] = dynamic_cast<BinaryOpNode *>(substeq);
        }
    }
    
    void
    DynamicModel::removeTrendVariableFromEquations()
    {
      for (int i = 0; i < (int) equations.size(); i++)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->replaceTrendVar());
          assert(substeq != NULL);
          equations[i] = dynamic_cast<BinaryOpNode *>(substeq);
        }
    }
    
    void
    DynamicModel::differentiateForwardVars(const vector<string> &subset)
    {
      substituteLeadLagInternal(avDiffForward, true, subset);
    }
    
    void
    DynamicModel::fillEvalContext(eval_context_t &eval_context) const
    {
      // First, auxiliary variables
      for (deque<BinaryOpNode *>::const_iterator it = aux_equations.begin();
           it != aux_equations.end(); it++)
        {
          assert((*it)->get_op_code() == oEqual);
          VariableNode *auxvar = dynamic_cast<VariableNode *>((*it)->get_arg1());
          assert(auxvar != NULL);
          try
            {
              double val = (*it)->get_arg2()->eval(eval_context);
              eval_context[auxvar->get_symb_id()] = val;
            }
          catch (ExprNode::EvalException &e)
            {
              // Do nothing
            }
        }
    
      // Second, model local variables
      for (map<int, expr_t>::const_iterator it = local_variables_table.begin();
           it != local_variables_table.end(); it++)
        {
          try
            {
              const expr_t expression = it->second;
              double val = expression->eval(eval_context);
              eval_context[it->first] = val;
            }
          catch (ExprNode::EvalException &e)
            {
              // Do nothing
            }
        }
    
      //Third, trend variables
      vector <int> trendVars = symbol_table.getTrendVarIds();
      for (vector <int>::const_iterator it = trendVars.begin();
           it != trendVars.end(); it++)
        eval_context[*it] = 2;  //not <= 0 bc of log, not 1 bc of powers
    }
    
    bool
    DynamicModel::isModelLocalVariableUsed() const
    {
      set<int> used_local_vars;
      size_t i = 0;
      while (i < equations.size() && used_local_vars.size() == 0)
        {
          equations[i]->collectVariables(eModelLocalVariable, used_local_vars);
          i++;
        }
      return used_local_vars.size() > 0;
    }
    
    void
    DynamicModel::addStaticOnlyEquation(expr_t eq, int lineno)
    {
      BinaryOpNode *beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq != NULL && beq->get_op_code() == oEqual);
    
      static_only_equations.push_back(beq);
      static_only_equations_lineno.push_back(lineno);
    }
    
    size_t
    DynamicModel::staticOnlyEquationsNbr() const
    {
      return static_only_equations.size();
    }
    
    size_t
    DynamicModel::dynamicOnlyEquationsNbr() const
    {
      set<int> eqs;
    
      for (vector<pair<int, pair<string, string> > >::const_iterator it = equation_tags.begin();
           it != equation_tags.end(); ++it)
        if (it->second.first == "dynamic")
          eqs.insert(it->first);
    
      return eqs.size();
    }