Skip to content
Snippets Groups Projects
Select Git revision
  • b3735b65063cd8dca2bc48ca44f4d73b10eb95d6
  • master default protected
  • nlf-fixes
  • DSMH
  • OneStep2
  • SMC
  • online-filter-as-a-sampler
  • nonlinear-filter-fixes
  • SMCsamplers
  • smc-sampler
  • 4.5
  • dynamic-striated
  • occbin
  • exo_steady_state
  • filter_initial_state
  • declare_vars_in_model_block
  • exceptions
  • rmExtraExo
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
  • 4.2.2
41 results

initial_estimation_checks.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    dynare_solve.m 6.90 KiB
    function [x,info] = dynare_solve(func,x,options,varargin)
    % function [x,info] = dynare_solve(func,x,options,varargin)
    % proposes different solvers
    %
    % INPUTS
    %    func:             name of the function to be solved
    %    x:                guess values
    %    options:          struct of Dynare options
    %    varargin:         list of arguments following jacobian_flag
    %
    % OUTPUTS
    %    x:                solution
    %    info=1:           the model can not be solved
    %
    % SPECIAL REQUIREMENTS
    %    none
    
    % Copyright (C) 2001-2015 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    % jacobian_flag=1:  jacobian given by the 'func' function
    % jacobian_flag=0:  jacobian obtained numerically
    jacobian_flag = options.jacobian_flag;
    
    % Set tolerance parameter depending the the caller function.
    stack = dbstack;
    if strcmp(stack(2).file,'simulation_core.m')
        tolf = options.dynatol.f;
    else
        tolf = options.solve_tolf;
    end
    
    info = 0;
    nn = size(x,1);
    
    % checking initial values
    if jacobian_flag
        [fvec,fjac] = feval(func,x,varargin{:});
        if any(any(isinf(fjac) | isnan(fjac)))
            [infrow,infcol]=find(isinf(fjac) | isnan(fjac));
            M=evalin('base','M_'); %get variable names from workspace
            fprintf('\nSTEADY:  The Jacobian contains Inf or NaN. The problem arises from: \n\n')
            display_problematic_vars_Jacobian(infrow,infcol,M,x,'static','STEADY: ')
            error('An element of the Jacobian is not finite or NaN')
        end
    else
        fvec = feval(func,x,varargin{:});
        fjac = zeros(nn,nn) ;
    end
    
    i = find(~isfinite(fvec));
    
    if ~isempty(i)
        disp(['STEADY:  numerical initial values or parameters incompatible with the following' ...
              ' equations'])
        disp(i')
        disp('Please check for example')
        disp('   i) if all parameters occurring in these equations are defined')
        disp('  ii) that no division by an endogenous variable initialized to 0 occurs')
        info = 1;
        x = NaN(size(fvec));
        return;
    end
    
    % this test doesn't check complementarity conditions and is not used for
    % mixed complementarity problems
    if (options.solve_algo ~= 10) && (max(abs(fvec)) < tolf)
        return ;
    end
    
    if options.solve_algo == 0
        if ~isoctave
            if ~user_has_matlab_license('optimization_toolbox')
                error('You can''t use solve_algo=0 since you don''t have MATLAB''s Optimization Toolbox')
            end
        end
        options4fsolve=optimset('fsolve');
        options4fsolve.MaxFunEvals = 50000;
        options4fsolve.MaxIter = options.steady.maxit;
        options4fsolve.TolFun = tolf;
        options4fsolve.Display = 'iter';
        if jacobian_flag
            options4fsolve.Jacobian = 'on';
        else
            options4fsolve.Jacobian = 'off';
        end
        if ~isoctave
            [x,fval,exitval,output] = fsolve(func,x,options4fsolve,varargin{:});
        else
            % Under Octave, use a wrapper, since fsolve() does not have a 4th arg
            func2 = str2func(func);
            func = @(x) func2(x, varargin{:});
            % The Octave version of fsolve does not converge when it starts from the solution
            fvec = feval(func,x);
            if max(abs(fvec)) >= tolf
                [x,fval,exitval,output] = fsolve(func,x,options4fsolve);
            else
                exitval = 3;
            end;
        end
    
        if exitval == 1
            info = 0;
        elseif exitval > 1
            func2 = str2func(func);
            func = @(x) func2(x, varargin{:});
            fvec = feval(func,x);
            if max(abs(fvec)) >= tolf
                info = 1;
            else
                info = 0;        
            end
        else
            info = 1;
        end
    elseif options.solve_algo == 1
            [x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag,options.gstep, ...
                        tolf,options.solve_tolx, ...
                        options.steady.maxit,options.debug,varargin{:});
    elseif options.solve_algo == 9
            [x,info]=trust_region(func,x,1:nn,1:nn,jacobian_flag,options.gstep, ...
                        tolf,options.solve_tolx, ...
                        options.steady.maxit,options.debug,varargin{:});
    elseif options.solve_algo == 2 || options.solve_algo == 4
    
        if options.solve_algo == 2
            solver = @solve1;
        else
            solver = @trust_region;
        end
    
        if ~jacobian_flag
            fjac = zeros(nn,nn) ;
            dh = max(abs(x),options.gstep(1)*ones(nn,1))*eps^(1/3);
            for j = 1:nn
                xdh = x ;
                xdh(j) = xdh(j)+dh(j) ;
                fjac(:,j) = (feval(func,xdh,varargin{:}) - fvec)./dh(j) ;
            end
        end
    
        [j1,j2,r,s] = dmperm(fjac);
    
        if options.debug
            disp(['DYNARE_SOLVE (solve_algo=2|4): number of blocks = ' num2str(length(r))]);
        end
    
        for i=length(r)-1:-1:1
            if options.debug
                disp(['DYNARE_SOLVE (solve_algo=2|4): solving block ' num2str(i) ', of size ' num2str(r(i+1)-r(i)) ]);
            end
            [x,info]=solver(func,x,j1(r(i):r(i+1)-1),j2(r(i):r(i+1)-1),jacobian_flag, ...
                            options.gstep, ...
                            tolf,options.solve_tolx, ...
                            options.steady.maxit,options.debug,varargin{:});
            if info
                return
            end
        end
        fvec = feval(func,x,varargin{:});
        if max(abs(fvec)) > tolf
            [x,info]=solver(func,x,1:nn,1:nn,jacobian_flag, ...
                            options.gstep, tolf,options.solve_tolx, ...
                            options.steady.maxit,options.debug,varargin{:});
        end
    elseif options.solve_algo == 3
        if jacobian_flag
            [x,info] = csolve(func,x,func,1e-6,500,varargin{:});
        else
            [x,info] = csolve(func,x,[],1e-6,500,varargin{:});
        end
    elseif options.solve_algo == 10
        % LMMCP
        olmmcp = options.lmmcp;
    
        [x,fval,exitflag] = lmmcp(func,x,olmmcp.lb,olmmcp.ub,olmmcp,varargin{:});
        if exitflag == 1
            info = 0;
        else
            info = 1;
        end
    elseif options.solve_algo == 11
        % PATH mixed complementary problem
        % PATH linear mixed complementary problem
        if ~exist('mcppath')
            error(['PATH can''t be provided with Dynare. You need to install it ' ...
                   'yourself and add its location to Matlab/Octave path before ' ...
                   'running Dynare'])
        end
        omcppath = options.mcppath;
        global mcp_data
        mcp_data.func = func;
        mcp_data.args = varargin;
    
        [x,fval,jac,mu,status] = pathmcp(x,omcppath.lb,omcppath.ub,'mcp_func',omcppath.A,omcppath.b,omcppath.t,omcppath.mu0);
        info = ~status;
    else
        error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4,9,10:11]')
    end