Skip to content
Snippets Groups Projects
Select Git revision
  • cbbaf112e34f5c73459bf0cabb58ddcb007fffdc
  • master default protected
  • nlf-fixes
  • DSMH
  • OneStep2
  • SMC
  • online-filter-as-a-sampler
  • nonlinear-filter-fixes
  • SMCsamplers
  • smc-sampler
  • 4.5
  • dynamic-striated
  • occbin
  • exo_steady_state
  • filter_initial_state
  • declare_vars_in_model_block
  • exceptions
  • rmExtraExo
  • julia
  • error_msg_undeclared_model_vars
  • static_aux_vars
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
  • 4.2.2
41 results

NumericalInitialization.cc

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    DynamicModel.cc 291.26 KiB
    /*
     * Copyright (C) 2003-2018 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <iostream>
    #include <cmath>
    #include <cstdlib>
    #include <cassert>
    #include <cstdio>
    #include <cerrno>
    #include <algorithm>
    #include <iterator>
    #include <numeric>
    #include "DynamicModel.hh"
    
    // For mkdir() and chdir()
    #ifdef _WIN32
    # include <direct.h>
    #else
    # include <unistd.h>
    # include <sys/stat.h>
    # include <sys/types.h>
    #endif
    
    DynamicModel::DynamicModel(SymbolTable &symbol_table_arg,
                               NumericalConstants &num_constants_arg,
                               ExternalFunctionsTable &external_functions_table_arg) :
      ModelTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
      max_lag(0), max_lead(0),
      max_endo_lag(0), max_endo_lead(0),
      max_exo_lag(0), max_exo_lead(0),
      max_exo_det_lag(0), max_exo_det_lead(0),
      max_lag_orig(0), max_lead_orig(0),
      max_endo_lag_orig(0), max_endo_lead_orig(0),
      max_exo_lag_orig(0), max_exo_lead_orig(0),
      max_exo_det_lag_orig(0), max_exo_det_lead_orig(0),
      dynJacobianColsNbr(0),
      global_temporary_terms(true)
    {
    }
    
    VariableNode *
    DynamicModel::AddVariable(int symb_id, int lag)
    {
      return AddVariableInternal(symb_id, lag);
    }
    
    void
    DynamicModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, int lag, const map_idx_t &map_idx) const
    {
      auto it = first_derivatives.find({ eq, getDerivID(symbol_table.getID(eEndogenous, symb_id), lag) });
      if (it != first_derivatives.end())
        (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    DynamicModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int eqr, int varr, int lag, const map_idx_t &map_idx) const
    {
      auto it = first_chain_rule_derivatives.find({ eqr, { varr, lag } });
      if (it != first_chain_rule_derivatives.end())
        (it->second)->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    DynamicModel::computeTemporaryTermsOrdered()
    {
      map<expr_t, pair<int, int>> first_occurence;
      map<expr_t, int> reference_count;
      BinaryOpNode *eq_node;
      first_derivatives_t::const_iterator it;
      first_chain_rule_derivatives_t::const_iterator it_chr;
      ostringstream tmp_s;
      v_temporary_terms.clear();
      map_idx.clear();
    
      unsigned int nb_blocks = getNbBlocks();
      v_temporary_terms = vector<vector<temporary_terms_t>>(nb_blocks);
      v_temporary_terms_inuse = vector<temporary_terms_inuse_t>(nb_blocks);
      temporary_terms.clear();
    
      if (!global_temporary_terms)
        {
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              reference_count.clear();
              temporary_terms.clear();
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  block_size-1);
              set<int> temporary_terms_in_use;
              temporary_terms_in_use.clear();
              v_temporary_terms_inuse[block] = temporary_terms_in_use;
            }
        }
      else
        {
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              // Compute the temporary terms reordered
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              v_temporary_terms[block] = vector<temporary_terms_t>(block_size);
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms,  i);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, i);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->computeTemporaryTerms(reference_count, temporary_terms, first_occurence, block, v_temporary_terms, block_size-1);
            }
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              // Collect the temporary terms reordered
              unsigned int block_size = getBlockSize(block);
              unsigned int block_nb_mfs = getBlockMfs(block);
              unsigned int block_nb_recursives = block_size - block_nb_mfs;
              set<int> temporary_terms_in_use;
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i < block_nb_recursives && isBlockEquationRenormalized(block, i))
                    getBlockEquationRenormalizedExpr(block, i)->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                  else
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      eq_node->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                    }
                }
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  expr_t id = it->second.second;
                  id->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
                }
              for (derivative_t::const_iterator it = derivative_endo[block].begin(); it != derivative_endo[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              for (derivative_t::const_iterator it = derivative_other_endo[block].begin(); it != derivative_other_endo[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              for (derivative_t::const_iterator it = derivative_exo[block].begin(); it != derivative_exo[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              for (derivative_t::const_iterator it = derivative_exo_det[block].begin(); it != derivative_exo_det[block].end(); it++)
                it->second->collectTemporary_terms(temporary_terms, temporary_terms_in_use, block);
              v_temporary_terms_inuse[block] = temporary_terms_in_use;
            }
          computeTemporaryTermsMapping();
        }
    }
    
    void
    DynamicModel::computeTemporaryTermsMapping()
    {
      // Add a mapping form node ID to temporary terms order
      int j = 0;
      for (auto temporary_term : temporary_terms)
        map_idx[temporary_term->idx] = j++;
    }
    
    void
    DynamicModel::writeModelEquationsOrdered_M(const string &dynamic_basename) const
    {
      string tmp_s, sps;
      ostringstream tmp_output, tmp1_output, global_output;
      expr_t lhs = nullptr, rhs = nullptr;
      BinaryOpNode *eq_node;
      ostringstream Ufoss;
      vector<string> Uf(symbol_table.endo_nbr(), "");
      map<expr_t, int> reference_count;
      temporary_terms_t local_temporary_terms;
      ofstream  output;
      int nze, nze_exo, nze_exo_det, nze_other_endo;
      vector<int> feedback_variables;
      ExprNodeOutputType local_output_type;
      Ufoss.str("");
    
      local_output_type = oMatlabDynamicModelSparse;
      if (global_temporary_terms)
        local_temporary_terms = temporary_terms;
    
      //----------------------------------------------------------------------
      //For each block
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
    
          //recursive_variables.clear();
          feedback_variables.clear();
          //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
          nze = derivative_endo[block].size();
          nze_other_endo = derivative_other_endo[block].size();
          nze_exo = derivative_exo[block].size();
          nze_exo_det = derivative_exo_det[block].size();
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          deriv_node_temp_terms_t tef_terms;
          local_output_type = oMatlabDynamicModelSparse;
          if (global_temporary_terms)
            local_temporary_terms = temporary_terms;
    
          int prev_lag;
          unsigned int prev_var, count_col, count_col_endo, count_col_exo, count_col_exo_det, count_col_other_endo;
          map<pair<int, pair<int, int>>, expr_t> tmp_block_endo_derivative;
          for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            tmp_block_endo_derivative[{ it->second.first, { it->first.second, it->first.first } }] = it->second.second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_endo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
            }
          map<pair<int, pair<int, int>>, expr_t> tmp_block_exo_derivative;
          for (auto it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
            tmp_block_exo_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_exo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo++;
                }
            }
          map<pair<int, pair<int, int>>, expr_t> tmp_block_exo_det_derivative;
          for (auto it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
            tmp_block_exo_det_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_exo_det = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo_det++;
                }
            }
          map<pair<int, pair<int, int>>, expr_t> tmp_block_other_endo_derivative;
          for (auto it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
            tmp_block_other_endo_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col_other_endo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_other_endo++;
                }
            }
    
          tmp1_output.str("");
          tmp1_output << dynamic_basename << "_" << block+1 << ".m";
          output.open(tmp1_output.str().c_str(), ios::out | ios::binary);
          output << "%\n";
          output << "% " << tmp1_output.str() << " : Computes dynamic model for Dynare\n";
          output << "%\n";
          output << "% Warning : this file is generated automatically by Dynare\n";
          output << "%           from model file (.mod)\n\n";
          output << "%/\n";
          if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
            {
              output << "function [y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, jacobian_eval, y_kmin, periods)\n";
            }
          else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
            output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
          else if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE)
            output << "function [residual, y, g1, g2, g3, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, it_, jacobian_eval)\n";
          else
            output << "function [residual, y, g1, g2, g3, b, varargout] = " << dynamic_basename << "_" << block+1 << "(y, x, params, steady_state, periods, jacobian_eval, y_kmin, y_size, Periods)\n";
          BlockType block_type;
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            block_type = SIMULTAN;
          else if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE)
            block_type = SIMULTANS;
          else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                    || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
                   && getBlockFirstEquation(block) < prologue)
            block_type = PROLOGUE;
          else if ((simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_SIMPLE
                    || simulation_type == EVALUATE_BACKWARD    || simulation_type == EVALUATE_FORWARD)
                   && getBlockFirstEquation(block) >= equations.size() - epilogue)
            block_type = EPILOGUE;
          else
            block_type = SIMULTANS;
          output << "  % ////////////////////////////////////////////////////////////////////////" << endl
                 << "  % //" << string("                     Block ").substr(int (log10(block + 1))) << block + 1 << " " << BlockType0(block_type)
                 << "          //" << endl
                 << "  % //                     Simulation type "
                 << BlockSim(simulation_type) << "  //" << endl
                 << "  % ////////////////////////////////////////////////////////////////////////" << endl;
          //The Temporary terms
          if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
            {
              output << "  if(jacobian_eval)\n";
              output << "    g1 = spalloc(" << block_mfs  << ", " << count_col_endo << ", " << nze << ");\n";
              output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
              output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
              output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
              output << "  end;\n";
            }
          else
            {
              output << "  if(jacobian_eval)\n";
              output << "    g1 = spalloc(" << block_size << ", " << count_col_endo << ", " << nze << ");\n";
              output << "    g1_x=spalloc(" << block_size << ", " << count_col_exo  << ", " << nze_exo << ");\n";
              output << "    g1_xd=spalloc(" << block_size << ", " << count_col_exo_det  << ", " << nze_exo_det << ");\n";
              output << "    g1_o=spalloc(" << block_size << ", " << count_col_other_endo << ", " << nze_other_endo << ");\n";
              output << "  else\n";
              if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                {
                  output << "    g1 = spalloc(" << block_mfs << "*Periods, "
                         << block_mfs << "*(Periods+" << max_leadlag_block[block].first+max_leadlag_block[block].second+1 << ")"
                         << ", " << nze << "*Periods);\n";
                }
              else
                {
                  output << "    g1 = spalloc(" << block_mfs
                         << ", " << block_mfs << ", " << nze << ");\n";
                }
              output << "  end;\n";
            }
    
          output << "  g2=0;g3=0;\n";
          if (v_temporary_terms_inuse[block].size())
            {
              tmp_output.str("");
              for (int it : v_temporary_terms_inuse[block])
                tmp_output << " T" << it;
              output << "  global" << tmp_output.str() << ";\n";
            }
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              temporary_terms_t tt2;
              tt2.clear();
              for (int i = 0; i < (int) block_size; i++)
                {
                  if (v_temporary_terms[block][i].size() && global_temporary_terms)
                    {
                      output << "  " << "% //Temporary variables initialization" << endl
                             << "  " << "T_zeros = zeros(y_kmin+periods, 1);" << endl;
                      for (auto it : v_temporary_terms[block][i])
                        {
                          output << "  ";
                          // In the following, "Static" is used to avoid getting the "(it_)" subscripting
                          it->writeOutput(output, oMatlabStaticModelSparse, local_temporary_terms, {});
                          output << " = T_zeros;" << endl;
                        }
                    }
                }
            }
          if (simulation_type == SOLVE_BACKWARD_SIMPLE || simulation_type == SOLVE_FORWARD_SIMPLE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            output << "  residual=zeros(" << block_mfs << ",1);\n";
          else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            output << "  residual=zeros(" << block_mfs << ",y_kmin+periods);\n";
          if (simulation_type == EVALUATE_BACKWARD)
            output << "  for it_ = (y_kmin+periods):y_kmin+1\n";
          if (simulation_type == EVALUATE_FORWARD)
            output << "  for it_ = y_kmin+1:(y_kmin+periods)\n";
    
          if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              output << "  b = zeros(periods*y_size,1);" << endl
                     << "  for it_ = y_kmin+1:(periods+y_kmin)" << endl
                     << "    Per_y_=it_*y_size;" << endl
                     << "    Per_J_=(it_-y_kmin-1)*y_size;" << endl
                     << "    Per_K_=(it_-1)*y_size;" << endl;
              sps = "  ";
            }
          else
            if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
              sps = "  ";
            else
              sps = "";
          // The equations
          temporary_terms_idxs_t temporary_terms_idxs;
          for (unsigned int i = 0; i < block_size; i++)
            {
              temporary_terms_t tt2;
              tt2.clear();
              if (v_temporary_terms[block].size())
                {
                  output << "  " << "% //Temporary variables" << endl;
                  for (auto it : v_temporary_terms[block][i])
                    {
                      if (dynamic_cast<AbstractExternalFunctionNode *>(it) != nullptr)
                        it->writeExternalFunctionOutput(output, local_output_type, tt2, temporary_terms_idxs, tef_terms);
    
                      output << "  " <<  sps;
                      it->writeOutput(output, local_output_type, local_temporary_terms, {}, tef_terms);
                      output << " = ";
                      it->writeOutput(output, local_output_type, tt2, {}, tef_terms);
                      // Insert current node into tt2
                      tt2.insert(it);
                      output << ";" << endl;
                    }
                }
    
              int variable_ID = getBlockVariableID(block, i);
              int equation_ID = getBlockEquationID(block, i);
              EquationType equ_type = getBlockEquationType(block, i);
              string sModel = symbol_table.getName(symbol_table.getID(eEndogenous, variable_ID));
              eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
              lhs = eq_node->get_arg1();
              rhs = eq_node->get_arg2();
              tmp_output.str("");
              lhs->writeOutput(tmp_output, local_output_type, local_temporary_terms, {});
              switch (simulation_type)
                {
                case EVALUATE_BACKWARD:
                case EVALUATE_FORWARD:
                evaluation:     if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                    output << "    % equation " << getBlockEquationID(block, i)+1 << " variable : " << sModel
                           << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << endl;
                  output << "    ";
                  if (equ_type == E_EVALUATE)
                    {
                      output << tmp_output.str();
                      output << " = ";
                      rhs->writeOutput(output, local_output_type, local_temporary_terms, {});
                    }
                  else if (equ_type == E_EVALUATE_S)
                    {
                      output << "%" << tmp_output.str();
                      output << " = ";
                      if (isBlockEquationRenormalized(block, i))
                        {
                          rhs->writeOutput(output, local_output_type, local_temporary_terms, {});
                          output << "\n    ";
                          tmp_output.str("");
                          eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                          lhs = eq_node->get_arg1();
                          rhs = eq_node->get_arg2();
                          lhs->writeOutput(output, local_output_type, local_temporary_terms, {});
                          output << " = ";
                          rhs->writeOutput(output, local_output_type, local_temporary_terms, {});
                        }
                    }
                  else
                    {
                      cerr << "Type mismatch for equation " << equation_ID+1  << "\n";
                      exit(EXIT_FAILURE);
                    }
                  output << ";\n";
                  break;
                case SOLVE_BACKWARD_SIMPLE:
                case SOLVE_FORWARD_SIMPLE:
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                  if (i < block_recursive)
                    goto evaluation;
                  feedback_variables.push_back(variable_ID);
                  output << "  % equation " << equation_ID+1 << " variable : " << sModel
                         << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
                  output << "  " << "residual(" << i+1-block_recursive << ") = (";
                  goto end;
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  if (i < block_recursive)
                    goto evaluation;
                  feedback_variables.push_back(variable_ID);
                  output << "    % equation " << equation_ID+1 << " variable : " << sModel
                         << " (" << variable_ID+1 << ") " << c_Equation_Type(equ_type) << " symb_id=" << symbol_table.getID(eEndogenous, variable_ID) << endl;
                  Ufoss << "    b(" << i+1-block_recursive << "+Per_J_) = -residual(" << i+1-block_recursive << ", it_)";
                  Uf[equation_ID] += Ufoss.str();
                  Ufoss.str("");
                  output << "    residual(" << i+1-block_recursive << ", it_) = (";
                  goto end;
                default:
                end:
                  output << tmp_output.str();
                  output << ") - (";
                  rhs->writeOutput(output, local_output_type, local_temporary_terms, {});
                  output << ");\n";
    #ifdef CONDITION
                  if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
                    output << "  condition(" << i+1 << ")=0;\n";
    #endif
                }
            }
          // The Jacobian if we have to solve the block
          if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
            output << "  " << sps << "% Jacobian  " << endl << "    if jacobian_eval" << endl;
          else
            if (simulation_type == SOLVE_BACKWARD_SIMPLE   || simulation_type == SOLVE_FORWARD_SIMPLE
                || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
              output << "  % Jacobian  " << endl << "  if jacobian_eval" << endl;
            else
              output << "    % Jacobian  " << endl << "    if jacobian_eval" << endl;
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockEquationID(block, eq);
              int varr = getBlockVariableID(block, var);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
    
              expr_t id = it->second;
    
              output << "      g1(" << eq+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms, {});
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                     << "(" << lag
                     << ") " << varr+1 << ", " << var+1
                     << ", equation=" << eqr+1 << ", " << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_exo_derivative.begin(); it != tmp_block_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
              output << "      g1_x(" << eqr+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms, {});
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_exo_det_derivative.begin(); it != tmp_block_exo_det_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
              output << "      g1_xd(" << eqr+1 << ", " << count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms, {});
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eExogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          prev_var = 999999999;
          prev_lag = -9999999;
          count_col = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_other_endo_derivative.begin(); it != tmp_block_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int var = it->first.second.first;
              unsigned int eq = it->first.second.second;
              int eqr = getBlockInitialEquationID(block, eq);
              if (var != prev_var || lag != prev_lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col++;
                }
              expr_t id = it->second;
    
              output << "      g1_o(" << eqr+1 << ", " << /*var+1+(lag+block_max_lag)*block_size*/ count_col << ") = ";
              id->writeOutput(output, local_output_type, local_temporary_terms, {});
              output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, var))
                     << "(" << lag
                     << ") " << var+1
                     << ", equation=" << eq+1 << endl;
            }
          output << "      varargout{1}=g1_x;\n";
          output << "      varargout{2}=g1_xd;\n";
          output << "      varargout{3}=g1_o;\n";
    
          switch (simulation_type)
            {
            case EVALUATE_FORWARD:
            case EVALUATE_BACKWARD:
              output << "    end;" << endl;
              output << "  end;" << endl;
              break;
            case SOLVE_BACKWARD_SIMPLE:
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_COMPLETE:
            case SOLVE_FORWARD_COMPLETE:
              output << "  else" << endl;
              for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
                  expr_t id = it->second.second;
                  int lag = it->second.first;
                  if (lag == 0)
                    {
                      output << "    g1(" << eq+1 << ", " << var+1-block_recursive << ") = ";
                      id->writeOutput(output, local_output_type, local_temporary_terms, {});
                      output << "; % variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                             << "(" << lag
                             << ") " << varr+1
                             << ", equation=" << eqr+1 << endl;
                    }
    
                }
              output << "  end;\n";
              break;
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
              output << "    else" << endl;
              for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                {
                  unsigned int eq = it->first.first;
                  unsigned int var = it->first.second;
                  unsigned int eqr = getBlockEquationID(block, eq);
                  unsigned int varr = getBlockVariableID(block, var);
                  ostringstream tmp_output;
                  expr_t id = it->second.second;
                  int lag = it->second.first;
                  if (eq >= block_recursive && var >= block_recursive)
                    {
                      if (lag == 0)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+Per_K_)*y(it_, " << varr+1 << ")";
                      else if (lag == 1)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+Per_y_)*y(it_+1, " << varr+1 << ")";
                      else if (lag > 0)
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+y_size*(it_+" << lag-1 << "))*y(it_+" << lag << ", " << varr+1 << ")";
                      else
                        Ufoss << "+g1(" << eq+1-block_recursive
                              << "+Per_J_, " << var+1-block_recursive
                              << "+y_size*(it_" << lag-1 << "))*y(it_" << lag << ", " << varr+1 << ")";
                      Uf[eqr] += Ufoss.str();
                      Ufoss.str("");
    
                      if (lag == 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+Per_K_) = ";
                      else if (lag == 1)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+Per_y_) = ";
                      else if (lag > 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+y_size*(it_+" << lag-1 << ")) = ";
                      else if (lag < 0)
                        tmp_output << "     g1(" << eq+1-block_recursive << "+Per_J_, "
                                   << var+1-block_recursive << "+y_size*(it_" << lag-1 << ")) = ";
                      output << " " << tmp_output.str();
                      id->writeOutput(output, local_output_type, local_temporary_terms, {});
                      output << ";";
                      output << " %2 variable=" << symbol_table.getName(symbol_table.getID(eEndogenous, varr))
                             << "(" << lag << ") " << varr+1
                             << ", equation=" << eqr+1 << " (" << eq+1 << ")" << endl;
                    }
    
    #ifdef CONDITION
                  output << "  if (fabs(condition[" << eqr << "])<fabs(u[" << u << "+Per_u_]))\n";
                  output << "    condition(" << eqr << ")=u(" << u << "+Per_u_);\n";
    #endif
                }
              for (unsigned int i = 0; i < block_size; i++)
                {
                  if (i >= block_recursive)
                    output << "  " << Uf[getBlockEquationID(block, i)] << ";\n";
    #ifdef CONDITION
                  output << "  if (fabs(condition(" << i+1 << "))<fabs(u(" << i << "+Per_u_)))\n";
                  output << "    condition(" << i+1 << ")=u(" << i+1 << "+Per_u_);\n";
    #endif
                }
    #ifdef CONDITION
              for (m = 0; m <= ModelBlock->Block_List[block].Max_Lead+ModelBlock->Block_List[block].Max_Lag; m++)
                {
                  k = m-ModelBlock->Block_List[block].Max_Lag;
                  for (i = 0; i < ModelBlock->Block_List[block].IM_lead_lag[m].size; i++)
                    {
                      unsigned int eq = ModelBlock->Block_List[block].IM_lead_lag[m].Equ_Index[i];
                      unsigned int var = ModelBlock->Block_List[block].IM_lead_lag[m].Var_Index[i];
                      unsigned int u = ModelBlock->Block_List[block].IM_lead_lag[m].u[i];
                      unsigned int eqr = ModelBlock->Block_List[block].IM_lead_lag[m].Equ[i];
                      output << "  u(" << u+1 << "+Per_u_) = u(" << u+1 << "+Per_u_) / condition(" << eqr+1 << ");\n";
                    }
                }
              for (i = 0; i < ModelBlock->Block_List[block].Size; i++)
                output << "  u(" << i+1 << "+Per_u_) = u(" << i+1 << "+Per_u_) / condition(" << i+1 << ");\n";
    #endif
              output << "    end;" << endl;
              output << "  end;" << endl;
              break;
            default:
              break;
            }
          output << "end" << endl;
          output.close();
        }
    }
    
    void
    DynamicModel::writeModelEquationsCode(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
    {
    
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      bool file_open = false;
      string main_name = file_name;
    
      main_name += ".cod";
      code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cerr << "Error : Can't open file \"" << main_name << "\" for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      int count_u;
      int u_count_int = 0;
      BlockSimulationType simulation_type;
      if ((max_endo_lag > 0) && (max_endo_lead > 0))
        simulation_type = SOLVE_TWO_BOUNDARIES_COMPLETE;
      else if ((max_endo_lag >= 0) && (max_endo_lead == 0))
        simulation_type = SOLVE_FORWARD_COMPLETE;
      else
        simulation_type = SOLVE_BACKWARD_COMPLETE;
    
      Write_Inf_To_Bin_File(file_name, u_count_int, file_open, simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE, symbol_table.endo_nbr());
      file_open = true;
    
      //Temporary variables declaration
      FDIMT_ fdimt(temporary_terms.size());
      fdimt.write(code_file, instruction_number);
    
      vector<unsigned int> exo, exo_det, other_endo;
    
      for (int i = 0; i < symbol_table.exo_det_nbr(); i++)
        exo_det.push_back(i);
      for (int i = 0; i < symbol_table.exo_nbr(); i++)
        exo.push_back(i);
    
      map<pair< int, pair<int, int>>, expr_t> first_derivatives_reordered_endo;
      map<pair< pair<int, int>, pair<int, int>>, expr_t>  first_derivatives_reordered_exo;
      for (const auto & first_derivative : first_derivatives)
        {
          int deriv_id = first_derivative.first.second;
          unsigned int eq = first_derivative.first.first;
          int symb = getSymbIDByDerivID(deriv_id);
          unsigned int var = symbol_table.getTypeSpecificID(symb);
          int lag = getLagByDerivID(deriv_id);
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            first_derivatives_reordered_endo[{ lag, make_pair(var, eq) }] = first_derivative.second;
          else if (getTypeByDerivID(deriv_id) == eExogenous || getTypeByDerivID(deriv_id) == eExogenousDet)
            first_derivatives_reordered_exo[{ { lag, getTypeByDerivID(deriv_id) }, { var, eq } }] = first_derivative.second;
        }
      int prev_var = -1;
      int prev_lag = -999999999;
      int count_col_endo = 0;
      for (map<pair< int, pair<int, int>>, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
           it != first_derivatives_reordered_endo.end(); it++)
        {
          int var = it->first.second.first;
          int lag = it->first.first;
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
        }
      prev_var = -1;
      prev_lag = -999999999;
      int prev_type = -1;
      int count_col_exo = 0;
      int count_col_det_exo = 0;
    
      for (map<pair< pair<int, int>, pair<int, int>>, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
           it != first_derivatives_reordered_exo.end(); it++)
        {
          int var = it->first.second.first;
          int lag = it->first.first.first;
          int type = it->first.first.second;
          if (prev_var != var || prev_lag != lag || prev_type != type)
            {
              prev_var = var;
              prev_lag = lag;
              prev_type = type;
              if (type == eExogenous)
                count_col_exo++;
              else if (type == eExogenousDet)
                count_col_det_exo++;
            }
        }
    
      FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                               simulation_type,
                               0,
                               symbol_table.endo_nbr(),
                               variable_reordered,
                               equation_reordered,
                               false,
                               symbol_table.endo_nbr(),
                               max_endo_lag,
                               max_endo_lead,
                               u_count_int,
                               count_col_endo,
                               symbol_table.exo_det_nbr(),
                               count_col_det_exo,
                               symbol_table.exo_nbr(),
                               count_col_exo,
                               0,
                               0,
                               exo_det,
                               exo,
                               other_endo
                               );
      fbeginblock.write(code_file, instruction_number);
    
      compileTemporaryTerms(code_file, instruction_number, temporary_terms, map_idx, true, false);
    
      compileModelEquations(code_file, instruction_number, temporary_terms, map_idx, true, false);
    
      FENDEQU_ fendequ;
      fendequ.write(code_file, instruction_number);
    
      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;
    
      vector<vector<pair<pair<int, int>, int >>> derivatives;
      derivatives.resize(symbol_table.endo_nbr());
      count_u = symbol_table.endo_nbr();
      for (const auto & first_derivative : first_derivatives)
        {
          int deriv_id = first_derivative.first.second;
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            {
              expr_t d1 = first_derivative.second;
              unsigned int eq = first_derivative.first.first;
              int symb = getSymbIDByDerivID(deriv_id);
              unsigned int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
              fnumexpr.write(code_file, instruction_number);
              if (!derivatives[eq].size())
                derivatives[eq].clear();
              derivatives[eq].emplace_back(make_pair(var, lag), count_u);
              d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
    
              FSTPU_ fstpu(count_u);
              fstpu.write(code_file, instruction_number);
              count_u++;
            }
        }
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          FLDR_ fldr(i);
          fldr.write(code_file, instruction_number);
          if (derivatives[i].size())
            {
              for (vector<pair<pair<int, int>, int>>::const_iterator it = derivatives[i].begin();
                   it != derivatives[i].end(); it++)
                {
                  FLDU_ fldu(it->second);
                  fldu.write(code_file, instruction_number);
                  FLDV_ fldv(eEndogenous, it->first.first, it->first.second);
                  fldv.write(code_file, instruction_number);
                  FBINARY_ fbinary(oTimes);
                  fbinary.write(code_file, instruction_number);
                  if (it != derivatives[i].begin())
                    {
                      FBINARY_ fbinary(oPlus);
                      fbinary.write(code_file, instruction_number);
                    }
                }
              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);
            }
          FSTPU_ fstpu(i);
          fstpu.write(code_file, instruction_number);
        }
    
      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number;
    
      // The Jacobian
      prev_var = -1;
      prev_lag = -999999999;
      count_col_endo = 0;
      for (map<pair< int, pair<int, int>>, expr_t>::const_iterator it = first_derivatives_reordered_endo.begin();
           it != first_derivatives_reordered_endo.end(); it++)
        {
          unsigned int eq = it->first.second.second;
          int var = it->first.second.first;
          int lag = it->first.first;
          expr_t d1 = it->second;
          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eq, var, lag);
          fnumexpr.write(code_file, instruction_number);
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_endo++;
            }
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
          FSTPG3_ fstpg3(eq, var, lag, count_col_endo-1);
          fstpg3.write(code_file, instruction_number);
        }
      prev_var = -1;
      prev_lag = -999999999;
      count_col_exo = 0;
      for (map<pair< pair<int, int>, pair<int, int>>, expr_t>::const_iterator it = first_derivatives_reordered_exo.begin();
           it != first_derivatives_reordered_exo.end(); it++)
        {
          unsigned int eq = it->first.second.second;
          int var = it->first.second.first;
          int lag = it->first.first.first;
          expr_t d1 = it->second;
          FNUMEXPR_ fnumexpr(FirstExoDerivative, eq, var, lag);
          fnumexpr.write(code_file, instruction_number);
          if (prev_var != var || prev_lag != lag)
            {
              prev_var = var;
              prev_lag = lag;
              count_col_exo++;
            }
          d1->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
          FSTPG3_ fstpg3(eq, var, lag, count_col_exo-1);
          fstpg3.write(code_file, instruction_number);
        }
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
    
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    DynamicModel::writeModelEquationsCode_Block(string &file_name, const string &bin_basename, const map_idx_t &map_idx) const
    {
      struct Uff_l
      {
        int u, var, lag;
        Uff_l *pNext;
      };
    
      struct Uff
      {
        Uff_l *Ufl, *Ufl_First;
      };
    
      int i, v;
      string tmp_s;
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      expr_t lhs = nullptr, rhs = nullptr;
      BinaryOpNode *eq_node;
      Uff Uf[symbol_table.endo_nbr()];
      map<expr_t, int> reference_count;
      deriv_node_temp_terms_t tef_terms;
      vector<int> feedback_variables;
      bool file_open = false;
    
      string main_name = file_name;
      main_name += ".cod";
      code_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cerr << "Error : Can't open file \"" << main_name << "\" for writing" << endl;
          exit(EXIT_FAILURE);
        }
      //Temporary variables declaration
    
      FDIMT_ fdimt(temporary_terms.size());
      fdimt.write(code_file, instruction_number);
    
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
          feedback_variables.clear();
          if (block > 0)
            {
              FENDBLOCK_ fendblock;
              fendblock.write(code_file, instruction_number);
            }
          int count_u;
          int u_count_int = 0;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          int block_max_lag = max_leadlag_block[block].first;
          int block_max_lead = max_leadlag_block[block].second;
    
          if (simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE
              || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            {
              Write_Inf_To_Bin_File_Block(file_name, bin_basename, block, u_count_int, file_open,
                                          simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE);
              file_open = true;
            }
          map<pair<int, pair<int, int>>, expr_t> tmp_block_endo_derivative;
          for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
            tmp_block_endo_derivative[{ it->second.first, { it->first.second, it->first.first } }] = it->second.second;
          map<pair<int, pair<int, int>>, expr_t> tmp_exo_derivative;
          for (auto it = derivative_exo[block].begin(); it != (derivative_exo[block]).end(); it++)
            tmp_exo_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          map<pair<int, pair<int, int>>, expr_t> tmp_exo_det_derivative;
          for (auto it = derivative_exo_det[block].begin(); it != (derivative_exo_det[block]).end(); it++)
            tmp_exo_det_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          map<pair<int, pair<int, int>>, expr_t> tmp_other_endo_derivative;
          for (auto it = derivative_other_endo[block].begin(); it != (derivative_other_endo[block]).end(); it++)
            tmp_other_endo_derivative[{ it->first.first, { it->first.second.second, it->first.second.first } }] = it->second;
          int prev_var = -1;
          int prev_lag = -999999999;
          int count_col_endo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int var = it->first.second.first;
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
            }
          unsigned int count_col_det_exo = 0;
          vector<unsigned int> exo_det;
          for (const auto & it : exo_det_block[block])
            for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
              {
                count_col_det_exo++;
                if (find(exo_det.begin(), exo_det.end(), *it1) == exo_det.end())
                  exo_det.push_back(*it1);
              }
    
          unsigned int count_col_exo = 0;
          vector<unsigned int> exo;
          for (const auto & it : exo_block[block])
            for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
              {
                count_col_exo++;
                if (find(exo.begin(), exo.end(), *it1) == exo.end())
                  exo.push_back(*it1);
              }
    
          vector<unsigned int> other_endo;
          unsigned int count_col_other_endo = 0;
          for (const auto & it : other_endo_block[block])
            for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
              {
                count_col_other_endo++;
                if (find(other_endo.begin(), other_endo.end(), *it1) == other_endo.end())
                  other_endo.push_back(*it1);
              }
    
          FBEGINBLOCK_ fbeginblock(block_mfs,
                                   simulation_type,
                                   getBlockFirstEquation(block),
                                   block_size,
                                   variable_reordered,
                                   equation_reordered,
                                   blocks_linear[block],
                                   symbol_table.endo_nbr(),
                                   block_max_lag,
                                   block_max_lead,
                                   u_count_int,
                                   count_col_endo,
                                   exo_det.size(),
                                   count_col_det_exo,
                                   exo.size(),
                                   getBlockExoColSize(block),
                                   other_endo.size(),
                                   count_col_other_endo,
                                   exo_det,
                                   exo,
                                   other_endo
                                   );
          fbeginblock.write(code_file, instruction_number);
    
          // The equations
          for (i = 0; i < (int) block_size; i++)
            {
              //The Temporary terms
              temporary_terms_t tt2;
              tt2.clear();
              if (v_temporary_terms[block][i].size())
                {
                  for (auto it : v_temporary_terms[block][i])
                    {
                      if (dynamic_cast<AbstractExternalFunctionNode *>(it) != nullptr)
                        it->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, true, false, tef_terms);
    
                      FNUMEXPR_ fnumexpr(TemporaryTerm, (int)(map_idx.find(it->idx)->second));
                      fnumexpr.write(code_file, instruction_number);
                      it->compile(code_file, instruction_number, false, tt2, map_idx, true, false, tef_terms);
                      FSTPT_ fstpt((int)(map_idx.find(it->idx)->second));
                      fstpt.write(code_file, instruction_number);
                      // Insert current node into tt2
                      tt2.insert(it);
    #ifdef DEBUGC
                      cout << "FSTPT " << v << "\n";
                      instruction_number++;
                      code_file.write(&FOK, sizeof(FOK));
                      code_file.write(reinterpret_cast<char *>(&k), sizeof(k));
                      ki++;
    #endif
    
                    }
                }
    #ifdef DEBUGC
              for (temporary_terms_t::const_iterator it = v_temporary_terms[block][i].begin();
                   it != v_temporary_terms[block][i].end(); it++)
                {
                  map_idx_t::const_iterator ii = map_idx.find((*it)->idx);
                  cout << "map_idx[" << (*it)->idx <<"]=" << ii->second << "\n";
                }
    #endif
    
              int variable_ID, equation_ID;
              EquationType equ_type;
    
              switch (simulation_type)
                {
                evaluation:
                case EVALUATE_BACKWARD:
                case EVALUATE_FORWARD:
                  equ_type = getBlockEquationType(block, i);
                  {
                    FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                    fnumexpr.write(code_file, instruction_number);
                  }
                  if (equ_type == E_EVALUATE)
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, true, false);
                    }
                  else if (equ_type == E_EVALUATE_S)
                    {
                      eq_node = (BinaryOpNode *) getBlockEquationRenormalizedExpr(block, i);
                      lhs = eq_node->get_arg1();
                      rhs = eq_node->get_arg2();
                      rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms, map_idx, true, false);
                    }
                  break;
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  if (i < (int) block_recursive)
                    goto evaluation;
                  variable_ID = getBlockVariableID(block, i);
                  equation_ID = getBlockEquationID(block, i);
                  feedback_variables.push_back(variable_ID);
                  Uf[equation_ID].Ufl = nullptr;
                  goto end;
                default:
                end:
                  FNUMEXPR_ fnumexpr(ModelEquation, getBlockEquationID(block, i));
                  fnumexpr.write(code_file, instruction_number);
                  eq_node = (BinaryOpNode *) getBlockEquationExpr(block, i);
                  lhs = eq_node->get_arg1();
                  rhs = eq_node->get_arg2();
                  lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
                  rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
    
                  FBINARY_ fbinary(oMinus);
                  fbinary.write(code_file, instruction_number);
                  FSTPR_ fstpr(i - block_recursive);
                  fstpr.write(code_file, instruction_number);
                }
            }
          FENDEQU_ fendequ;
          fendequ.write(code_file, instruction_number);
    
          // Get the current code_file position and jump if eval = true
          streampos pos1 = code_file.tellp();
          FJMPIFEVAL_ fjmp_if_eval(0);
          fjmp_if_eval.write(code_file, instruction_number);
          int prev_instruction_number = instruction_number;
          // The Jacobian if we have to solve the block determinsitic block
          if    (simulation_type != EVALUATE_BACKWARD
                 && simulation_type != EVALUATE_FORWARD)
            {
              switch (simulation_type)
                {
                case SOLVE_BACKWARD_SIMPLE:
                case SOLVE_FORWARD_SIMPLE:
                  {
                    FNUMEXPR_ fnumexpr(FirstEndoDerivative, getBlockEquationID(block, 0), getBlockVariableID(block, 0), 0);
                    fnumexpr.write(code_file, instruction_number);
                  }
                  compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), 0, map_idx);
                  {
                    FSTPG_ fstpg(0);
                    fstpg.write(code_file, instruction_number);
                  }
                  break;
    
                case SOLVE_BACKWARD_COMPLETE:
                case SOLVE_FORWARD_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_COMPLETE:
                case SOLVE_TWO_BOUNDARIES_SIMPLE:
                  count_u = feedback_variables.size();
                  for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                    {
                      int lag = it->second.first;
                      unsigned int eq = it->first.first;
                      unsigned int var = it->first.second;
                      unsigned int eqr = getBlockEquationID(block, eq);
                      unsigned int varr = getBlockVariableID(block, var);
                      if (eq >= block_recursive and var >= block_recursive)
                        {
                          if (lag != 0 && (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE))
                            continue;
                          if (!Uf[eqr].Ufl)
                            {
                              Uf[eqr].Ufl = (Uff_l *) malloc(sizeof(Uff_l));
                              Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                            }
                          else
                            {
                              Uf[eqr].Ufl->pNext = (Uff_l *) malloc(sizeof(Uff_l));
                              Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                            }
                          Uf[eqr].Ufl->pNext = nullptr;
                          Uf[eqr].Ufl->u = count_u;
                          Uf[eqr].Ufl->var = varr;
                          Uf[eqr].Ufl->lag = lag;
                          FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, lag);
                          fnumexpr.write(code_file, instruction_number);
                          compileChainRuleDerivative(code_file, instruction_number, eqr, varr, lag, map_idx);
                          FSTPU_ fstpu(count_u);
                          fstpu.write(code_file, instruction_number);
                          count_u++;
                        }
                    }
                  for (i = 0; i < (int) block_size; i++)
                    {
                      if (i >= (int) block_recursive)
                        {
                          FLDR_ fldr(i-block_recursive);
                          fldr.write(code_file, instruction_number);
    
                          FLDZ_ fldz;
                          fldz.write(code_file, instruction_number);
    
                          v = getBlockEquationID(block, i);
                          for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                            {
                              FLDU_ fldu(Uf[v].Ufl->u);
                              fldu.write(code_file, instruction_number);
                              FLDV_ fldv(eEndogenous, Uf[v].Ufl->var, Uf[v].Ufl->lag);
                              fldv.write(code_file, instruction_number);
    
                              FBINARY_ fbinary(oTimes);
                              fbinary.write(code_file, instruction_number);
    
                              FCUML_ fcuml;
                              fcuml.write(code_file, instruction_number);
                            }
                          Uf[v].Ufl = Uf[v].Ufl_First;
                          while (Uf[v].Ufl)
                            {
                              Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                              free(Uf[v].Ufl);
                              Uf[v].Ufl = Uf[v].Ufl_First;
                            }
                          FBINARY_ fbinary(oMinus);
                          fbinary.write(code_file, instruction_number);
    
                          FSTPU_ fstpu(i - block_recursive);
                          fstpu.write(code_file, instruction_number);
                        }
                    }
                  break;
                default:
                  break;
                }
            }
          // Get the current code_file position and jump = true
          streampos pos2 = code_file.tellp();
          FJMP_ fjmp(0);
          fjmp.write(code_file, instruction_number);
          // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
          streampos pos3 = code_file.tellp();
          code_file.seekp(pos1);
          FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
          fjmp_if_eval1.write(code_file, instruction_number);
          code_file.seekp(pos3);
          prev_instruction_number = instruction_number;
          // The Jacobian if we have to solve the block determinsitic block
    
          prev_var = -1;
          prev_lag = -999999999;
          count_col_endo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_block_endo_derivative.begin(); it != tmp_block_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              unsigned int eq = it->first.second.second;
              int var = it->first.second.first;
              unsigned int eqr = getBlockEquationID(block, eq);
              unsigned int varr = getBlockVariableID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_endo++;
                }
              FNUMEXPR_ fnumexpr(FirstEndoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              compileDerivative(code_file, instruction_number, eqr, varr, lag, map_idx);
              FSTPG3_ fstpg3(eq, var, lag, count_col_endo-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          count_col_exo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_exo_derivative.begin(); it != tmp_exo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialExogenousID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstExoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, /*var*/ count_col_exo-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          int count_col_exo_det = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_exo_det_derivative.begin(); it != tmp_exo_det_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialDetExogenousID(block, var);
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_exo_det++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstExodetDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, count_col_exo_det-1);
              fstpg3.write(code_file, instruction_number);
            }
          prev_var = -1;
          prev_lag = -999999999;
          count_col_other_endo = 0;
          for (map<pair<int, pair<int, int>>, expr_t>::const_iterator it = tmp_other_endo_derivative.begin(); it != tmp_other_endo_derivative.end(); it++)
            {
              int lag = it->first.first;
              int eq = it->first.second.second;
              int var = it->first.second.first;
              int eqr = getBlockInitialEquationID(block, eq);
              int varr = getBlockInitialOtherEndogenousID(block, var);;
              if (prev_var != var || prev_lag != lag)
                {
                  prev_var = var;
                  prev_lag = lag;
                  count_col_other_endo++;
                }
              expr_t id = it->second;
    
              FNUMEXPR_ fnumexpr(FirstOtherEndoDerivative, eqr, varr, lag);
              fnumexpr.write(code_file, instruction_number);
              id->compile(code_file, instruction_number, false, temporary_terms, map_idx, true, false);
              FSTPG3_ fstpg3(eq, var, lag, count_col_other_endo-1);
              fstpg3.write(code_file, instruction_number);
            }
    
          // Set codefile position to previous JMP_ and set the number of instructions to jump
          pos1 = code_file.tellp();
          code_file.seekp(pos2);
          FJMP_ fjmp1(instruction_number - prev_instruction_number);
          fjmp1.write(code_file, instruction_number);
          code_file.seekp(pos1);
        }
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    DynamicModel::writeDynamicMFile(const string &dynamic_basename) const
    {
      writeDynamicModel(dynamic_basename, false, false);
    }
    
    void
    DynamicModel::fillVarExpectationFunctionsToWrite()
    {
      for (auto &it : var_expectation_node_map)
        var_expectation_functions_to_write[get<0>(it.first)].insert(get<2>(it.first));
    }
    
    map<string, set<int>>
    DynamicModel::getVarExpectationFunctionsToWrite() const
    {
      return var_expectation_functions_to_write;
    }
    
    void
    DynamicModel::writeVarExpectationCalls(ostream &output) const
    {
      for (const auto & it : var_expectation_functions_to_write)
        {
          int i = 0;
          output << "dynamic_var_forecast_" << it.first << " = "
                 << "var_forecast_" << it.first << "(y);" << endl;
    
          for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
            output << "dynamic_var_forecast_" << it.first << "_" << *it1 << " = "
                   << "dynamic_var_forecast_" << it.first << "(" << ++i << ", :);" << endl;
        }
    }
    
    void
    DynamicModel::writeDynamicJuliaFile(const string &basename) const
    {
      writeDynamicModel(basename, false, true);
    }
    
    void
    DynamicModel::writeDynamicCFile(const string &dynamic_basename, const int order) const
    {
      string filename = dynamic_basename + ".c";
      string filename_mex = dynamic_basename + "_mex.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes dynamic model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model file (.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      if (external_functions_table.get_total_number_of_unique_model_block_external_functions())
        // External Matlab function, implies Dynamic function will call mex
        mDynamicModelFile << "#include \"mex.h\"" << endl;
      else
        mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      // Writing the function body
      writeDynamicModel(mDynamicModelFile, true, false);
    
      writePowerDeriv(mDynamicModelFile);
      writeNormcdf(mDynamicModelFile);
      mDynamicModelFile.close();
    
      mDynamicMexFile.open(filename_mex.c_str(), ios::out | ios::binary);
      if (!mDynamicMexFile.is_open())
        {
          cerr << "Error: Can't open file " << filename_mex << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      // Writing the gateway routine
      mDynamicMexFile << "/*" << endl
                      << " * " << filename_mex << " : The gateway routine used to call the Dynamic function "
                      << "located in " << filename << endl
                      << " *" << endl
                      << " * Warning : this file is generated automatically by Dynare" << endl
                      << " *           from model file (.mod)" << endl
                      << endl
                      << " */" << endl << endl
                      << "#include \"mex.h\"" << endl << endl
                      << "void Dynamic(double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3);" << endl
                      << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
                      << "{" << endl
                      << "  double *y, *x, *params, *steady_state;" << endl
                      << "  double *residual, *g1, *v2, *v3;" << endl
                      << "  int nb_row_x, it_;" << endl
                      << endl
                      << "  /* Check that no derivatives of higher order than computed are being requested */" << endl
                      << "  if (nlhs > " << order + 1 << ")" << endl
                      << "    mexErrMsgTxt(\"Derivatives of higher order than computed have been requested\");" << endl
                      << "  /* Create a pointer to the input matrix y. */" << endl
                      << "  y = mxGetPr(prhs[0]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix x. */" << endl
                      << "  x = mxGetPr(prhs[1]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix params. */" << endl
                      << "  params = mxGetPr(prhs[2]);" << endl
                      << endl
                      << "  /* Create a pointer to the input matrix steady_state. */" << endl
                      << "  steady_state = mxGetPr(prhs[3]);" << endl
                      << endl
                      << "  /* Fetch time index */" << endl
                      << "  it_ = (int) mxGetScalar(prhs[4]) - 1;" << endl
                      << endl
                      << "  /* Gets number of rows of matrix x. */" << endl
                      << "  nb_row_x = mxGetM(prhs[1]);" << endl
                      << endl
                      << "  residual = NULL;" << endl
                      << "  if (nlhs >= 1)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix residual. */" << endl
                      << "     plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl
                      << "     /* Create a C pointer to a copy of the output matrix residual. */" << endl
                      << "     residual = mxGetPr(plhs[0]);" << endl
                      << "  }" << endl
                      << endl
                      << "  g1 = NULL;" << endl
                      << "  if (nlhs >= 2)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix g1. */" << endl
                      << "     plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << dynJacobianColsNbr << ", mxREAL);" << endl
                      << "     /* Create a C pointer to a copy of the output matrix g1. */" << endl
                      << "     g1 = mxGetPr(plhs[1]);" << endl
                      << "  }" << endl
                      << endl
                      << "  v2 = NULL;" << endl
                      << " if (nlhs >= 3)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix v2. */" << endl
                      << "     plhs[2] = mxCreateDoubleMatrix(" << NNZDerivatives[1] << ", " << 3
                      << ", mxREAL);" << endl
                      << "     v2 = mxGetPr(plhs[2]);" << endl
                      << "  }" << endl
                      << endl
                      << "  v3 = NULL;" << endl
                      << " if (nlhs >= 4)" << endl
                      << "  {" << endl
                      << "     /* Set the output pointer to the output matrix v3. */" << endl
                      << "     plhs[3] = mxCreateDoubleMatrix(" << NNZDerivatives[2] << ", " << 3 << ", mxREAL);" << endl
                      << "     v3 = mxGetPr(plhs[3]);" << endl
                      << "  }" << endl
                      << endl
                      << "  /* Call the C subroutines. */" << endl
                      << "  Dynamic(y, x, nb_row_x, params, steady_state, it_, residual, g1, v2, v3);" << endl
                      << "}" << endl;
      mDynamicMexFile.close();
    }
    
    string
    DynamicModel::reform(const string name1) const
    {
      string name = name1;
      int pos = name.find("\\", 0);
      while (pos >= 0)
        {
          if (name.substr(pos + 1, 1) != "\\")
            {
              name = name.insert(pos, "\\");
              pos++;
            }
          pos++;
          pos = name.find("\\", pos);
        }
      return (name);
    }
    
    void
    DynamicModel::printNonZeroHessianEquations(ostream &output) const
    {
      if (nonzero_hessian_eqs.size() !=  1)
        output << "[";
      for (auto it = nonzero_hessian_eqs.begin();
           it != nonzero_hessian_eqs.end(); it++)
        {
          if (it != nonzero_hessian_eqs.begin())
            output << " ";
          output << it->first;
        }
      if (nonzero_hessian_eqs.size() != 1)
        output << "]";
    }
    
    void
    DynamicModel::setNonZeroHessianEquations(map<int, string> &eqs)
    {
      for (const auto &it : second_derivatives)
        {
          int eq = get<0>(it.first);
          if (nonzero_hessian_eqs.find(eq) == nonzero_hessian_eqs.end())
            {
              nonzero_hessian_eqs[eq] = "";
              for (auto & equation_tag : equation_tags)
                if (equation_tag.first == eq)
                  if (equation_tag.second.first == "name")
                    {
                      nonzero_hessian_eqs[eq] = equation_tag.second.second;
                      break;
                    }
            }
        }
      eqs = nonzero_hessian_eqs;
    }
    
    void
    DynamicModel::Write_Inf_To_Bin_File_Block(const string &dynamic_basename, const string &bin_basename, const int &num,
                                              int &u_count_int, bool &file_open, bool is_two_boundaries) const
    {
      int j;
      std::ofstream SaveCode;
      if (file_open)
        SaveCode.open((bin_basename + "_dynamic.bin").c_str(), ios::out | ios::in | ios::binary | ios::ate);
      else
        SaveCode.open((bin_basename + "_dynamic.bin").c_str(), ios::out | ios::binary);
      if (!SaveCode.is_open())
        {
          cerr << "Error : Can't open file \"" << bin_basename << "_dynamic.bin\" for writing" << endl;
          exit(EXIT_FAILURE);
        }
      u_count_int = 0;
      unsigned int block_size = getBlockSize(num);
      unsigned int block_mfs = getBlockMfs(num);
      unsigned int block_recursive = block_size - block_mfs;
      for (auto it = blocks_derivatives[num].begin(); it != (blocks_derivatives[num]).end(); it++)
        {
          unsigned int eq = it->first.first;
          unsigned int var = it->first.second;
          int lag = it->second.first;
          if (lag != 0 && !is_two_boundaries)
            continue;
          if (eq >= block_recursive && var >= block_recursive)
            {
              int v = eq - block_recursive;
              SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
              int varr = var - block_recursive + lag * block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
              SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
              int u = u_count_int + block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
              u_count_int++;
            }
        }
    
      if (is_two_boundaries)
        u_count_int += block_mfs;
      for (j = block_recursive; j < (int) block_size; j++)
        {
          unsigned int varr = getBlockVariableID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
        }
      for (j = block_recursive; j < (int) block_size; j++)
        {
          unsigned int eqr = getBlockEquationID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
        }
      SaveCode.close();
    }
    
    void
    DynamicModel::writeSparseDynamicMFile(const string &dynamic_basename, const string &basename) const
    {
      string sp;
      ofstream mDynamicModelFile;
      ostringstream tmp, tmp1, tmp_eq;
      bool OK;
      chdir(basename.c_str());
      string filename = dynamic_basename + ".m";
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "%\n";
      mDynamicModelFile << "% " << filename << " : Computes dynamic model for Dynare\n";
      mDynamicModelFile << "%\n";
      mDynamicModelFile << "% Warning : this file is generated automatically by Dynare\n";
      mDynamicModelFile << "%           from model file (.mod)\n\n";
      mDynamicModelFile << "%/\n";
    
      int Nb_SGE = 0;
      bool open_par = false;
    
      mDynamicModelFile << "function [varargout] = " << dynamic_basename << "(options_, M_, oo_, varargin)\n";
      mDynamicModelFile << "  g2=[];g3=[];\n";
      //Temporary variables declaration
      OK = true;
      ostringstream tmp_output;
      for (auto temporary_term : temporary_terms)
        {
          if (OK)
            OK = false;
          else
            tmp_output << " ";
          // In the following, "Static" is used to avoid getting the "(it_)" subscripting
          temporary_term->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms, {});
        }
      if (tmp_output.str().length() > 0)
        mDynamicModelFile << "  global " << tmp_output.str() << ";\n";
    
      mDynamicModelFile << "  T_init=zeros(1,options_.periods+M_.maximum_lag+M_.maximum_lead);\n";
      tmp_output.str("");
      for (auto temporary_term : temporary_terms)
        {
          tmp_output << "  ";
          // In the following, "Static" is used to avoid getting the "(it_)" subscripting
          temporary_term->writeOutput(tmp_output, oMatlabStaticModelSparse, temporary_terms, {});
          tmp_output << "=T_init;\n";
        }
      if (tmp_output.str().length() > 0)
        mDynamicModelFile << tmp_output.str();
    
      mDynamicModelFile << "  y_kmin=M_.maximum_lag;" << endl
                        << "  y_kmax=M_.maximum_lead;" << endl
                        << "  y_size=M_.endo_nbr;" << endl
                        << "  if(length(varargin)>0)" << endl
                        << "    %it is a simple evaluation of the dynamic model for time _it" << endl
                        << "    y=varargin{1};" << endl
                        << "    x=varargin{2};" << endl
                        << "    params=varargin{3};" << endl
                        << "    steady_state=varargin{4};" << endl
                        << "    it_=varargin{5};" << endl
                        << "    dr=varargin{6};" << endl
                        << "    Per_u_=0;" << endl
                        << "    Per_y_=it_*y_size;" << endl
                        << "    ys=y(it_,:);" << endl;
      tmp.str("");
      tmp_eq.str("");
      unsigned int nb_blocks = getNbBlocks();
      unsigned int block = 0;
      for (int count_call = 1; block < nb_blocks; block++, count_call++)
        {
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
    
          if (simulation_type == EVALUATE_FORWARD || simulation_type == EVALUATE_BACKWARD)
            {
              for (unsigned int ik = 0; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                  tmp_eq << " " << getBlockEquationID(block, ik)+1;
                }
            }
          else
            {
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                  tmp_eq << " " << getBlockEquationID(block, ik)+1;
                }
            }
          mDynamicModelFile << "    y_index_eq=[" << tmp_eq.str() << "];\n";
          mDynamicModelFile << "    y_index=[" << tmp.str() << "];\n";
    
          switch (simulation_type)
            {
            case EVALUATE_FORWARD:
            case EVALUATE_BACKWARD:
              mDynamicModelFile << "    [y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 1, it_-1, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=ys(y_index)-y(it_, y_index);\n";
              break;
            case SOLVE_FORWARD_SIMPLE:
            case SOLVE_BACKWARD_SIMPLE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, it_, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=r;\n";
              break;
            case SOLVE_FORWARD_COMPLETE:
            case SOLVE_BACKWARD_COMPLETE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, it_, 1);\n";
              mDynamicModelFile << "    residual(y_index_eq)=r;\n";
              break;
            case SOLVE_TWO_BOUNDARIES_COMPLETE:
            case SOLVE_TWO_BOUNDARIES_SIMPLE:
              mDynamicModelFile << "    [r, y, dr(" << count_call << ").g1, dr(" << count_call << ").g2, dr(" << count_call << ").g3, b, dr(" << count_call << ").g1_x, dr(" << count_call << ").g1_xd, dr(" << count_call << ").g1_o]=" << dynamic_basename << "_" <<  block + 1 << "(y, x, params, steady_state, it_-" << max_lag << ", 1, " << max_lag << ", " << block_recursive << "," << "options_.periods" << ");\n";
              mDynamicModelFile << "    residual(y_index_eq)=r(:,M_.maximum_lag+1);\n";
              break;
            default:
              break;
            }
          tmp_eq.str("");
          tmp.str("");
        }
      if (tmp1.str().length())
        {
          mDynamicModelFile << tmp1.str();
          tmp1.str("");
        }
      mDynamicModelFile << "    varargout{1}=residual;" << endl
                        << "    varargout{2}=dr;" << endl
                        << "    return;" << endl
                        << "  end;" << endl
                        << "  %it is the deterministic simulation of the block decomposed dynamic model" << endl
                        << "  if(options_.stack_solve_algo==0)" << endl
                        << "    mthd='Sparse LU';" << endl
                        << "  elseif(options_.stack_solve_algo==1)" << endl
                        << "    mthd='Relaxation';" << endl
                        << "  elseif(options_.stack_solve_algo==2)" << endl
                        << "    mthd='GMRES';" << endl
                        << "  elseif(options_.stack_solve_algo==3)" << endl
                        << "    mthd='BICGSTAB';" << endl
                        << "  elseif(options_.stack_solve_algo==4)" << endl
                        << "    mthd='OPTIMPATH';" << endl
                        << "  else" << endl
                        << "    mthd='UNKNOWN';" << endl
                        << "  end;" << endl
                        << "  if options_.verbosity" << endl
                        << "    printline(41)" << endl
                        << "    disp(sprintf('MODEL SIMULATION (method=%s):',mthd))" << endl
                        << "    skipline()" << endl
                        << "  end" << endl
                        << "  periods=options_.periods;" << endl
                        << "  maxit_=options_.simul.maxit;" << endl
                        << "  solve_tolf=options_.solve_tolf;" << endl
                        << "  y=oo_.endo_simul';" << endl
                        << "  x=oo_.exo_simul;" << endl;
    
      mDynamicModelFile << "  params=M_.params;\n";
      mDynamicModelFile << "  steady_state=oo_.steady_state;\n";
      mDynamicModelFile << "  oo_.deterministic_simulation.status = 0;\n";
      for (block = 0; block < nb_blocks; block++)
        {
          unsigned int block_size = getBlockSize(block);
          unsigned int block_mfs = getBlockMfs(block);
          unsigned int block_recursive = block_size - block_mfs;
          BlockSimulationType simulation_type = getBlockSimulationType(block);
    
          if ((simulation_type == EVALUATE_FORWARD) && (block_size))
            {
              if (open_par)
                {
                  mDynamicModelFile << "  end\n";
                }
              mDynamicModelFile << "  oo_.deterministic_simulation.status = 1;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.error = 0;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.iterations = 0;\n";
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).status = 1;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).error = 0;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).iterations = 0;\n";
              mDynamicModelFile << "  g1=[];g2=[];g3=[];\n";
              mDynamicModelFile << "  y=" << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 0, y_kmin, periods);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the evaluation of block " << block <<"']);\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.status = 0;\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.error = 100;\n";
              mDynamicModelFile << "    varargout{1} = oo_;\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == EVALUATE_BACKWARD) && (block_size))
            {
              if (open_par)
                {
                  mDynamicModelFile << "  end\n";
                }
              mDynamicModelFile << "  oo_.deterministic_simulation.status = 1;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.error = 0;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.iterations = 0;\n";
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).status = 1;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).error = 0;\n";
              mDynamicModelFile << "  oo_.deterministic_simulation.block(blck_num).iterations = 0;\n";
              mDynamicModelFile << "  g1=[];g2=[];g3=[];\n";
              mDynamicModelFile << "  " << dynamic_basename << "_" << block + 1 << "(y, x, params, steady_state, 0, y_kmin, periods);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the evaluation of block " << block <<"']);\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.status = 0;\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.error = 100;\n";
              mDynamicModelFile << "    varargout{1} = oo_;\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_FORWARD_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              mDynamicModelFile << "  g1=0;\n";
              mDynamicModelFile << "  r=0;\n";
              tmp.str("");
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  y_index = [" << tmp.str() << "];\n";
              int nze = blocks_derivatives[block].size();
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  y = solve_one_boundary('"  << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << blocks_linear[block]
                                <<", blck_num, y_kmin, options_.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, 1, 1, 0);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.status = 0;\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.error = 100;\n";
              mDynamicModelFile << "    varargout{1} = oo_;\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              mDynamicModelFile << "  g1=0;\n";
              mDynamicModelFile << "  r=0;\n";
              tmp.str("");
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  tmp << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  y_index = [" << tmp.str() << "];\n";
              int nze = blocks_derivatives[block].size();
    
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  y = solve_one_boundary('"  << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << blocks_linear[block]
                                <<", blck_num, y_kmin, options_.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, 1, 1, 0);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.status = 0;\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.error = 100;\n";
              mDynamicModelFile << "    varargout{1} = oo_;\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
          else if ((simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE) && (block_size))
            {
              if (open_par)
                mDynamicModelFile << "  end\n";
              open_par = false;
              Nb_SGE++;
              int nze = blocks_derivatives[block].size();
              mDynamicModelFile << "  y_index=[";
              for (unsigned int ik = block_recursive; ik < block_size; ik++)
                {
                  mDynamicModelFile << " " << getBlockVariableID(block, ik)+1;
                }
              mDynamicModelFile << "  ];\n";
              mDynamicModelFile << "  if(isfield(oo_.deterministic_simulation,'block'))\n";
              mDynamicModelFile << "    blck_num = length(oo_.deterministic_simulation.block)+1;\n";
              mDynamicModelFile << "  else\n";
              mDynamicModelFile << "    blck_num = 1;\n";
              mDynamicModelFile << "  end;\n";
              mDynamicModelFile << "  [y oo_] = solve_two_boundaries('" << dynamic_basename << "_" <<  block + 1 << "'"
                                <<", y, x, params, steady_state, y_index, " << nze
                                <<", options_.periods, " << max_leadlag_block[block].first
                                <<", " << max_leadlag_block[block].second
                                <<", " << blocks_linear[block]
                                <<", blck_num, y_kmin, options_.simul.maxit, options_.solve_tolf, options_.slowc, " << cutoff << ", options_.stack_solve_algo, options_, M_, oo_);\n";
              mDynamicModelFile << "  tmp = y(:,M_.block_structure.block(" << block + 1 << ").variable);\n";
              mDynamicModelFile << "  if any(isnan(tmp) | isinf(tmp))\n";
              mDynamicModelFile << "    disp(['Inf or Nan value during the resolution of block " << block <<"']);\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.status = 0;\n";
              mDynamicModelFile << "    oo_.deterministic_simulation.error = 100;\n";
              mDynamicModelFile << "    varargout{1} = oo_;\n";
              mDynamicModelFile << "    return;\n";
              mDynamicModelFile << "  end;\n";
            }
        }
      if (open_par)
        mDynamicModelFile << "  end;\n";
      open_par = false;
      mDynamicModelFile << "  oo_.endo_simul = y';\n";
      mDynamicModelFile << "  varargout{1} = oo_;\n";
      mDynamicModelFile << "return;\n";
      mDynamicModelFile << "end" << endl;
    
      mDynamicModelFile.close();
    
      writeModelEquationsOrdered_M(dynamic_basename);
    
      chdir("..");
    }
    
    void
    DynamicModel::writeWrapperFunctions(const string &basename, const string &ending) const
    {
      string name;
      if (ending == "g1")
        name = basename + "_resid_g1";
      else if (ending == "g2")
        name= basename + "_resid_g1_g2";
      else if (ending == "g3")
        name = basename + "_resid_g1_g2_g3";
    
      string filename = name + ".m";
      ofstream output;
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      if (ending == "g1")
        output << "function [residual, g1] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl
               << "% function [residual, g1] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl;
      else if (ending == "g2")
        output << "function [residual, g1, g2] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl
               << "% function [residual, g1, g2] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl;
      else if (ending == "g3")
        output << "function [residual, g1, g2, g3] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl
               << "% function [residual, g1, g2, g3] = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl;
    
      output << "%" << endl
             << "% Wrapper function automatically created by Dynare" << endl
             << "%" << endl
             << endl
             << "    if T_flag" << endl
             << "        T = " << basename + "_" + ending + "_tt(T, y, x, params, steady_state, it_);" << endl
             << "    end" << endl;
    
      if (ending == "g1")
        output << "    residual = " << basename + "_resid(T, y, x, params, steady_state, it_, false);" << endl
               << "    g1       = " << basename + "_g1(T, y, x, params, steady_state, it_, false);" << endl;
      else if (ending == "g2")
        output << "    [residual, g1] = " << basename + "_resid_g1(T, y, x, params, steady_state, it_, false);" << endl
               << "    g2       = " << basename + "_g2(T, y, x, params, steady_state, it_, false);" << endl;
      else if (ending == "g3")
        output << "    [residual, g1, g2] = " << basename + "_resid_g1_g2(T, y, x, params, steady_state, it_, false);" << endl
               << "    g3       = " << basename + "_g3(T, y, x, params, steady_state, it_, false);" << endl;
    
      output << endl << "end" << endl;
      output.close();
    }
    
    void
    DynamicModel::writeDynamicModelHelper(const string &name, const string &retvalname,
                                          const string &name_tt, size_t ttlen,
                                          const string &previous_tt_name,
                                          const ostringstream &init_s,
                                          const ostringstream &end_s,
                                          const ostringstream &s, const ostringstream &s_tt) const
    {
      string filename =  name_tt + ".m";
      ofstream output;
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function T = " << name_tt << "(T, y, x, params, steady_state, it_)" << endl
             << "% function T = " << name_tt << "(T, y, x, params, steady_state, it_)" << endl
             << "%" << endl
             << "% File created by Dynare Preprocessor from .mod file" << endl
             << "%" << endl
             << "% Inputs:" << endl
             << "%   T             [#temp variables by 1]     double  vector of temporary terms to be filled by function" << endl
             << "%   y             [#dynamic variables by 1]  double  vector of endogenous variables in the order stored" << endl
             << "%                                                    in M_.lead_lag_incidence; see the Manual" << endl
             << "%   x             [nperiods by M_.exo_nbr]   double  matrix of exogenous variables (in declaration order)" << endl
             << "%                                                    for all simulation periods" << endl
             << "%   steady_state  [M_.endo_nbr by 1]         double  vector of steady state values" << endl
             << "%   params        [M_.param_nbr by 1]        double  vector of parameter values in declaration order" << endl
             << "%   it_           scalar                     double  time period for exogenous variables for which" << endl
             << "%                                                    to evaluate the model" << endl
             << "%" << endl
             << "% Output:" << endl
             << "%   T           [#temp variables by 1]       double  vector of temporary terms" << endl
             << "%" << endl << endl
             << "assert(length(T) >= " << ttlen << ");" << endl
             << endl;
    
      if (!previous_tt_name.empty())
        output << "T = " << previous_tt_name << "(T, y, x, params, steady_state, it_);" << endl << endl;
    
      output << s_tt.str() << endl
             << "end" << endl;
      output.close();
    
      filename = name + ".m";
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function " << retvalname << " = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl
             << "% function " << retvalname << " = " << name << "(T, y, x, params, steady_state, it_, T_flag)" << endl
             << "%" << endl
             << "% File created by Dynare Preprocessor from .mod file" << endl
             << "%" << endl
             << "% Inputs:" << endl
             << "%   T             [#temp variables by 1]     double   vector of temporary terms to be filled by function" << endl
             << "%   y             [#dynamic variables by 1]  double   vector of endogenous variables in the order stored" << endl
             << "%                                                     in M_.lead_lag_incidence; see the Manual" << endl
             << "%   x             [nperiods by M_.exo_nbr]   double   matrix of exogenous variables (in declaration order)" << endl
             << "%                                                     for all simulation periods" << endl
             << "%   steady_state  [M_.endo_nbr by 1]         double   vector of steady state values" << endl
             << "%   params        [M_.param_nbr by 1]        double   vector of parameter values in declaration order" << endl
             << "%   it_           scalar                     double   time period for exogenous variables for which" << endl
             << "%                                                     to evaluate the model" << endl
             << "%   T_flag        boolean                    boolean  flag saying whether or not to calculate temporary terms" << endl
             << "%" << endl
             << "% Output:" << endl
             << "%   " << retvalname << endl
             << "%" << endl << endl;
    
      if (!name_tt.empty())
        output << "if T_flag" << endl
               << "    T = " << name_tt << "(T, y, x, params, steady_state, it_);" << endl
               << "end" << endl;
    
      output << init_s.str() << endl
             << s.str()
             << end_s.str() << endl
             << "end" << endl;
      output.close();
    }
    
    void
    DynamicModel::writeDynamicMatlabCompatLayer(const string &name) const
    {
      string filename = name + ".m";
      ofstream output;
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      int ntt = temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size() + temporary_terms_g2.size() + temporary_terms_g3.size();
    
      output << "function [residual, g1, g2, g3] = " << name << "(y, x, params, steady_state, it_)" << endl
             << "    T = NaN(" << ntt << ", 1);" << endl
             << "    if nargout <= 1" << endl
             << "        residual = " << name << "_resid(T, y, x, params, steady_state, it_, true);" << endl
             << "    elseif nargout == 2" << endl
             << "        [residual, g1] = " << name << "_resid_g1(T, y, x, params, steady_state, it_, true);" << endl
             << "    elseif nargout == 3" << endl
             << "        [residual, g1, g2] = " << name << "_resid_g1_g2(T, y, x, params, steady_state, it_, true);" << endl
             << "    else" << endl
             << "        [residual, g1, g2, g3] = " << name << "_resid_g1_g2_g3(T, y, x, params, steady_state, it_, true);" << endl
             << "    end" << endl
             << "end" << endl;
    
      output.close();
    }
    
    void
    DynamicModel::writeDynamicModel(ostream &DynamicOutput, bool use_dll, bool julia) const
    {
      writeDynamicModel("", DynamicOutput, use_dll, julia);
    }
    
    void
    DynamicModel::writeDynamicModel(const string &dynamic_basename, bool use_dll, bool julia) const
    {
      ofstream DynamicOutput;
      writeDynamicModel(dynamic_basename, DynamicOutput, use_dll, julia);
    }
    
    void
    DynamicModel::writeDynamicModel(const string &dynamic_basename, ostream &DynamicOutput, bool use_dll, bool julia) const
    {
      ostringstream model_tt_output;             // Used for storing model temp vars
      ostringstream model_output;                // Used for storing model equations
      ostringstream jacobian_tt_output;          // Used for storing jacobian temp vars
      ostringstream jacobian_output;             // Used for storing jacobian equations
      ostringstream hessian_tt_output;           // Used for storing Hessian temp vars
      ostringstream hessian_output;              // Used for storing Hessian equations
      ostringstream third_derivatives_tt_output; // Used for storing third order derivatives temp terms
      ostringstream third_derivatives_output;    // Used for storing third order derivatives equations
    
      ExprNodeOutputType output_type = (use_dll ? oCDynamicModel :
                                        julia ? oJuliaDynamicModel : oMatlabDynamicModel);
    
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temp_term_union;
    
      for (auto it : temporary_terms_mlv)
        temp_term_union.insert(it.first);
      writeModelLocalVariableTemporaryTerms(temp_term_union, temporary_terms_mlv,
                                            model_tt_output, output_type, tef_terms);
    
      writeTemporaryTerms(temporary_terms_res,
                          temp_term_union,
                          temporary_terms_idxs,
                          model_tt_output, output_type, tef_terms);
      temp_term_union.insert(temporary_terms_res.begin(), temporary_terms_res.end());
    
      writeModelEquations(model_output, output_type, temp_term_union);
    
      int nrows = equations.size();
      int hessianColsNbr = dynJacobianColsNbr * dynJacobianColsNbr;
    
      // Writing Jacobian
      if (!first_derivatives.empty())
        {
          writeTemporaryTerms(temporary_terms_g1,
                              temp_term_union,
                              temporary_terms_idxs,
                              jacobian_tt_output, output_type, tef_terms);
          temp_term_union.insert(temporary_terms_g1.begin(), temporary_terms_g1.end());
    
          for (const auto & first_derivative : first_derivatives)
            {
              int eq, var;
              tie(eq, var) = first_derivative.first;
              expr_t d1 = first_derivative.second;
    
              jacobianHelper(jacobian_output, eq, getDynJacobianCol(var), output_type);
              jacobian_output << "=";
              d1->writeOutput(jacobian_output, output_type,
                              temp_term_union, temporary_terms_idxs, tef_terms);
              jacobian_output << ";" << endl;
            }
        }
    
      // Writing Hessian
      if (!second_derivatives.empty())
        {
          writeTemporaryTerms(temporary_terms_g2,
                              temp_term_union,
                              temporary_terms_idxs,
                              hessian_tt_output, output_type, tef_terms);
          temp_term_union.insert(temporary_terms_g2.begin(), temporary_terms_g2.end());
    
          int k = 0; // Keep the line of a 2nd derivative in v2
          for (const auto & second_derivative : second_derivatives)
            {
              int eq, var1, var2;
              tie(eq, var1, var2) = second_derivative.first;
              expr_t d2 = second_derivative.second;
    
              int id1 = getDynJacobianCol(var1);
              int id2 = getDynJacobianCol(var2);
    
              int col_nb = id1 * dynJacobianColsNbr + id2;
              int col_nb_sym = id2 * dynJacobianColsNbr + id1;
    
              ostringstream for_sym;
              if (output_type == oJuliaDynamicModel)
                {
                  for_sym << "g2[" << eq + 1 << "," << col_nb + 1 << "]";
                  hessian_output << "    @inbounds " << for_sym.str() << " = ";
                  d2->writeOutput(hessian_output, output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                  hessian_output << endl;
                }
              else
                {
                  sparseHelper(2, hessian_output, k, 0, output_type);
                  hessian_output << "=" << eq + 1 << ";" << endl;
    
                  sparseHelper(2, hessian_output, k, 1, output_type);
                  hessian_output << "=" << col_nb + 1 << ";" << endl;
    
                  sparseHelper(2, hessian_output, k, 2, output_type);
                  hessian_output << "=";
                  d2->writeOutput(hessian_output, output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                  hessian_output << ";" << endl;
    
                  k++;
                }
    
              // Treating symetric elements
              if (id1 != id2)
                if (output_type == oJuliaDynamicModel)
                  hessian_output << "    @inbounds g2[" << eq + 1 << "," << col_nb_sym + 1 << "] = "
                                 << for_sym.str() << endl;
                else
                  {
                    sparseHelper(2, hessian_output, k, 0, output_type);
                    hessian_output << "=" << eq + 1 << ";" << endl;
    
                    sparseHelper(2, hessian_output, k, 1, output_type);
                    hessian_output << "=" << col_nb_sym + 1 << ";" << endl;
    
                    sparseHelper(2, hessian_output, k, 2, output_type);
                    hessian_output << "=";
                    sparseHelper(2, hessian_output, k-1, 2, output_type);
                    hessian_output << ";" << endl;
    
                    k++;
                  }
            }
        }
    
      // Writing third derivatives
      if (!third_derivatives.empty())
        {
          writeTemporaryTerms(temporary_terms_g3,
                              temp_term_union,
                              temporary_terms_idxs,
                              third_derivatives_tt_output, output_type, tef_terms);
          temp_term_union.insert(temporary_terms_g3.begin(), temporary_terms_g3.end());
    
          int k = 0; // Keep the line of a 3rd derivative in v3
          for (const auto & third_derivative : third_derivatives)
            {
              int eq, var1, var2, var3;
              tie(eq, var1, var2, var3) = third_derivative.first;
              expr_t d3 = third_derivative.second;
    
              int id1 = getDynJacobianCol(var1);
              int id2 = getDynJacobianCol(var2);
              int id3 = getDynJacobianCol(var3);
    
              // Reference column number for the g3 matrix
              int ref_col = id1 * hessianColsNbr + id2 * dynJacobianColsNbr + id3;
    
              ostringstream for_sym;
              if (output_type == oJuliaDynamicModel)
                {
                  for_sym << "g3[" << eq + 1 << "," << ref_col + 1 << "]";
                  third_derivatives_output << "    @inbounds " << for_sym.str() << " = ";
                  d3->writeOutput(third_derivatives_output, output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                  third_derivatives_output << endl;
                }
              else
                {
                  sparseHelper(3, third_derivatives_output, k, 0, output_type);
                  third_derivatives_output << "=" << eq + 1 << ";" << endl;
    
                  sparseHelper(3, third_derivatives_output, k, 1, output_type);
                  third_derivatives_output << "=" << ref_col + 1 << ";" << endl;
    
                  sparseHelper(3, third_derivatives_output, k, 2, output_type);
                  third_derivatives_output << "=";
                  d3->writeOutput(third_derivatives_output, output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                  third_derivatives_output << ";" << endl;
                }
    
              // Compute the column numbers for the 5 other permutations of (id1,id2,id3)
              // and store them in a set (to avoid duplicates if two indexes are equal)
              set<int> cols;
              cols.insert(id1 * hessianColsNbr + id3 * dynJacobianColsNbr + id2);
              cols.insert(id2 * hessianColsNbr + id1 * dynJacobianColsNbr + id3);
              cols.insert(id2 * hessianColsNbr + id3 * dynJacobianColsNbr + id1);
              cols.insert(id3 * hessianColsNbr + id1 * dynJacobianColsNbr + id2);
              cols.insert(id3 * hessianColsNbr + id2 * dynJacobianColsNbr + id1);
    
              int k2 = 1; // Keeps the offset of the permutation relative to k
              for (int col : cols)
                if (col != ref_col)
                  if (output_type == oJuliaDynamicModel)
                    third_derivatives_output << "    @inbounds g3[" << eq + 1 << "," << col + 1 << "] = "
                                             << for_sym.str() << endl;
                  else
                    {
                      sparseHelper(3, third_derivatives_output, k+k2, 0, output_type);
                      third_derivatives_output << "=" << eq + 1 << ";" << endl;
    
                      sparseHelper(3, third_derivatives_output, k+k2, 1, output_type);
                      third_derivatives_output << "=" << col + 1 << ";" << endl;
    
                      sparseHelper(3, third_derivatives_output, k+k2, 2, output_type);
                      third_derivatives_output << "=";
                      sparseHelper(3, third_derivatives_output, k, 2, output_type);
                      third_derivatives_output << ";" << endl;
    
                      k2++;
                    }
              k += k2;
            }
        }
    
      if (output_type == oMatlabDynamicModel)
        {
          // Check that we don't have more than 32 nested parenthesis because Matlab does not suppor this. See Issue #1201
          map<string, string> tmp_paren_vars;
          bool message_printed = false;
          fixNestedParenthesis(model_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(model_tt_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(jacobian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(jacobian_tt_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian_tt_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivatives_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivatives_tt_output, tmp_paren_vars, message_printed);
    
          ostringstream init_output, end_output;
          init_output << "residual = zeros(" << nrows << ", 1);";
          writeDynamicModelHelper(dynamic_basename + "_resid", "residual",
                                  dynamic_basename + "_resid_tt",
                                  temporary_terms_mlv.size() + temporary_terms_res.size(),
                                  "", init_output, end_output,
                                  model_output, model_tt_output);
    
          init_output.str(string());
          init_output.clear();
          init_output << "g1 = zeros(" << nrows << ", " << dynJacobianColsNbr << ");";
          writeDynamicModelHelper(dynamic_basename + "_g1", "g1",
                                  dynamic_basename + "_g1_tt",
                                  temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size(),
                                  dynamic_basename + "_resid_tt",
                                  init_output, end_output,
                                  jacobian_output, jacobian_tt_output);
          writeWrapperFunctions(dynamic_basename, "g1");
    
          init_output.str(string());
          init_output.clear();
          if (second_derivatives.size())
            {
              init_output << "v2 = zeros(" << NNZDerivatives[1] << ",3);";
              end_output << "g2 = sparse(v2(:,1),v2(:,2),v2(:,3)," << nrows << "," << hessianColsNbr << ");";
            }
          else
            init_output << "g2 = sparse([],[],[]," << nrows << "," << hessianColsNbr << ");";
          writeDynamicModelHelper(dynamic_basename + "_g2", "g2",
                                  dynamic_basename + "_g2_tt",
                                  temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size()
                                  + temporary_terms_g2.size(),
                                  dynamic_basename + "_g1_tt",
                                  init_output, end_output,
                                  hessian_output, hessian_tt_output);
          writeWrapperFunctions(dynamic_basename, "g2");
    
          init_output.str(string());
          init_output.clear();
          end_output.str(string());
          end_output.clear();
          int ncols = hessianColsNbr * dynJacobianColsNbr;
          if (third_derivatives.size())
            {
              init_output << "v3 = zeros(" << NNZDerivatives[2] << ",3);";
              end_output << "g3 = sparse(v3(:,1),v3(:,2),v3(:,3)," << nrows << "," << ncols << ");";
            }
          else
            init_output << "g3 = sparse([],[],[]," << nrows << "," << ncols << ");";
          writeDynamicModelHelper(dynamic_basename + "_g3", "g3",
                                  dynamic_basename + "_g3_tt",
                                  temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size()
                                  + temporary_terms_g2.size() + temporary_terms_g3.size(),
                                  dynamic_basename + "_g2_tt",
                                  init_output, end_output,
                                  third_derivatives_output, third_derivatives_tt_output);
          writeWrapperFunctions(dynamic_basename, "g3");
    
          writeDynamicMatlabCompatLayer(dynamic_basename);
        }
      else if (output_type == oCDynamicModel)
        {
          DynamicOutput << "void Dynamic(double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3)" << endl
                        << "{" << endl
                        << "  double lhs, rhs;" << endl
                        << endl
                        << "  /* Residual equations */" << endl
                        << model_tt_output.str()
                        << model_output.str()
                        << "  /* Jacobian  */" << endl
                        << "  if (g1 == NULL)" << endl
                        << "    return;" << endl
                        << endl
                        << jacobian_tt_output.str()
                        << jacobian_output.str()
                        << endl;
    
          if (second_derivatives.size())
            DynamicOutput << "  /* Hessian for endogenous and exogenous variables */" << endl
                          << "  if (v2 == NULL)" << endl
                          << "    return;" << endl
                          << endl
                          << hessian_tt_output.str()
                          << hessian_output.str()
                          << endl;
    
          if (third_derivatives.size())
            DynamicOutput << "  /* Third derivatives for endogenous and exogenous variables */" << endl
                          << "  if (v3 == NULL)" << endl
                          << "    return;" << endl
                          << endl
                          << third_derivatives_tt_output.str()
                          << third_derivatives_output.str()
                          << endl;
    
          DynamicOutput << "}" << endl << endl;
        }
      else
        {
          string filename =  dynamic_basename + "Dynamic.jl";
          ofstream output;
          output.open(filename.c_str(), ios::out | ios::binary);
          if (!output.is_open())
            {
              cerr << "Error: Can't open file " << filename << " for writing" << endl;
              exit(EXIT_FAILURE);
            }
    
          output << "module " << dynamic_basename << "Dynamic" << endl
                 << "#" << endl
                 << "# NB: this file was automatically generated by Dynare" << endl
                 << "#     from " << dynamic_basename << ".mod" << endl
                 << "#" << endl
                 << "using Utils" << endl << endl
                 << "export tmp_nbr, dynamic!, dynamicResid!, dynamicG1!, dynamicG2!, dynamicG3!" << endl << endl
                 << "#=" << endl
                 << "# The comments below apply to all functions contained in this module #" << endl
                 << "  NB: The arguments contained on the first line of the function" << endl
                 << "      definition are those that are modified in place" << endl << endl
                 << "## Exported Functions ##" << endl
                 << "  dynamic!      : Wrapper function; computes residuals, Jacobian, Hessian," << endl
                 << "                  and third derivatives depending on the arguments provided" << endl
                 << "  dynamicResid! : Computes the dynamic model residuals" << endl
                 << "  dynamicG1!    : Computes the dynamic model Jacobian" << endl
                 << "  dynamicG2!    : Computes the dynamic model Hessian" << endl
                 << "  dynamicG3!    : Computes the dynamic model third derivatives" << endl << endl
                 << "## Exported Variables ##" << endl
                 << "  tmp_nbr       : Vector{Int}(4) respectively the number of temporary variables" << endl
                 << "                  for the residuals, g1, g2 and g3." << endl << endl
                 << "## Local Functions ##" << endl
                 << "  dynamicResidTT! : Computes the dynamic model temporary terms for the residuals" << endl
                 << "  dynamicG1TT!    : Computes the dynamic model temporary terms for the Jacobian" << endl
                 << "  dynamicG2TT!    : Computes the dynamic model temporary terms for the Hessian" << endl
                 << "  dynamicG3TT!    : Computes the dynamic model temporary terms for the third derivatives" << endl << endl
                 << "## Function Arguments ##" << endl
                 << "  T            : Vector{Float64}(num_temp_terms), temporary terms" << endl
                 << "  y            : Vector{Float64}(num_dynamic_vars), endogenous variables in the order stored model_.lead_lag_incidence; see the manual" << endl
                 << "  x            : Matrix{Float64}(nperiods,model_.exo_nbr), exogenous variables (in declaration order) for all simulation periods" << endl
                 << "  params       : Vector{Float64}(model_.param_nbr), parameter values in declaration order" << endl
                 << "  steady_state : Vector{Float64}(model_endo_nbr)" << endl
                 << "  it_          : Int, time period for exogenous variables for which to evaluate the model" << endl
                 << "  residual     : Vector{Float64}(model_.eq_nbr), residuals of the dynamic model equations in order of declaration of the equations." << endl
                 << "  g1           : Matrix{Float64}(model_.eq_nbr, num_dynamic_vars), Jacobian matrix of the dynamic model equations" << endl
                 << "                 The rows and columns respectively correspond to equations in order of declaration and variables in order" << endl
                 << "                 stored in model_.lead_lag_incidence" << endl
                 << "  g2           : spzeros(model_.eq_nbr, (num_dynamic_vars)^2) Hessian matrix of the dynamic model equations" << endl
                 << "                 The rows and columns respectively correspond to equations in order of declaration and variables in order" << endl
                 << "                 stored in model_.lead_lag_incidence" << endl
                 << "  g3           : spzeros(model_.eq_nbr, (num_dynamic_vars)^3) Third order derivative matrix of the dynamic model equations;" << endl
                 << "                 The rows and columns respectively correspond to equations in order of declaration and variables in order" << endl
                 << "                 stored in model_.lead_lag_incidence" << endl << endl
                 << "## Remarks ##" << endl
                 << "  [1] `num_dynamic_vars` is the number of non zero entries in the lead lag incidence matrix, `model_.lead_lag_incidence.`" << endl
                 << "  [2] The size of `T`, ie the value of `num_temp_terms`, depends on the version of the dynamic model called. The number of temporary variables" << endl    
                 << "      used for the different returned objects (residuals, jacobian, hessian or third order derivatives) is given by the elements in `tmp_nbr`" << endl
                 << "      exported vector. The first element is the number of temporaries used for the computation of the residuals, the second element is the" << endl
                 << "      number of temporaries used for the evaluation of the jacobian matrix, etc. If one calls the version of the dynamic model computing the" << endl
                 << "      residuals, the jacobian and hessian matrices, then `T` must have at least `sum(tmp_nbr[1:3])` elements." << endl
                 << "=#" << endl << endl;
    
          // Write the number of temporary terms
          output << "tmp_nbr = zeros(Int,4)" << endl
                 << "tmp_nbr[1] = " << temporary_terms_mlv.size() + temporary_terms_res.size() << "# Number of temporary terms for the residuals" << endl
                 << "tmp_nbr[2] = " << temporary_terms_g1.size() << "# Number of temporary terms for g1 (jacobian)" << endl
                 << "tmp_nbr[3] = " << temporary_terms_g2.size() << "# Number of temporary terms for g2 (hessian)" << endl
                 << "tmp_nbr[4] = " << temporary_terms_g3.size() << "# Number of temporary terms for g3 (third order derivates)" << endl << endl;
    
          // dynamicResidTT!
          output << "function dynamicResidTT!(T::Vector{Float64}," << endl
                 << "                         y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << model_tt_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamic!
          output << "function dynamicResid!(T::Vector{Float64}, residual::Vector{Float64}," << endl
                 << "                       y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int, T_flag::Bool)" << endl
                 << "    @assert length(T) >= " << temporary_terms_mlv.size() + temporary_terms_res.size() << endl
                 << "    @assert length(residual) == " << nrows << endl
                 << "    @assert length(y)+size(x, 2) == " << dynJacobianColsNbr << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T_flag" << endl
                 << "        dynamicResidTT!(T, y, x, params, steady_state, it_)" << endl
                 << "    end" << endl
                 << model_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG1TT!
          output << "function dynamicG1TT!(T::Vector{Float64}," << endl
                 << "                      y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicResidTT!(T, y, x, params, steady_state, it_)" << endl
                 << jacobian_tt_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG1!
          output << "function dynamicG1!(T::Vector{Float64}, g1::Matrix{Float64}," << endl
                 << "                    y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int, T_flag::Bool)" << endl
                 << "    @assert length(T) >= "
                 << temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size() << endl
                 << "    @assert size(g1) == (" << nrows << ", " << dynJacobianColsNbr << ")" << endl
                 << "    @assert length(y)+size(x, 2) == " << dynJacobianColsNbr << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T_flag" << endl
                 << "        dynamicG1TT!(T, y, x, params, steady_state, it_)" << endl
                 << "    end" << endl
                 << "    fill!(g1, 0.0)" << endl
                 << jacobian_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG2TT!
          output << "function dynamicG2TT!(T::Vector{Float64}," << endl
                 << "                      y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicG1TT!(T, y, x, params, steady_state, it_)" << endl
                 << hessian_tt_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG2!
          output << "function dynamicG2!(T::Vector{Float64}, g2::Matrix{Float64}," << endl
                 << "                    y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int, T_flag::Bool)" << endl
                 << "    @assert length(T) >= " << temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size() + temporary_terms_g2.size() << endl
                 << "    @assert size(g2) == (" << nrows << ", " << hessianColsNbr << ")" << endl
                 << "    @assert length(y)+size(x, 2) == " << dynJacobianColsNbr << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T_flag" << endl
                 << "        dynamicG2TT!(T, y, x, params, steady_state, it_)" << endl
                 << "    end" << endl
                 << "    fill!(g2, 0.0)" << endl
                 << hessian_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG3TT!
          output << "function dynamicG3TT!(T::Vector{Float64}," << endl
                 << "                      y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicG2TT!(T, y, x, params, steady_state, it_)" << endl
                 << third_derivatives_tt_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamicG3!
          int ncols = hessianColsNbr * dynJacobianColsNbr;
          output << "function dynamicG3!(T::Vector{Float64}, g3::Matrix{Float64}," << endl
                 << "                    y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int, T_flag::Bool)" << endl
                 << "    @assert length(T) >= "
                 << temporary_terms_mlv.size() + temporary_terms_res.size() + temporary_terms_g1.size() + temporary_terms_g2.size() + temporary_terms_g3.size() << endl
                 << "    @assert size(g3) == (" << nrows << ", " << ncols << ")" << endl
                 << "    @assert length(y)+size(x, 2) == " << dynJacobianColsNbr << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T_flag" << endl
                 << "      dynamicG3TT!(T, y, x, params, steady_state, it_)" << endl
                 << "    end" << endl
                 << "    fill!(g3, 0.0)" << endl
                 << third_derivatives_output.str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // dynamic!
          output << "function dynamic!(T::Vector{Float64}, residual::Vector{Float64}," << endl
                 << "                  y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicResid!(T, residual, y, x, params, steady_state, it_, true)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function dynamic!(T::Vector{Float64}, residual::Vector{Float64}, g1::Matrix{Float64}," << endl
                 << "                  y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicG1!(T, g1, y, x, params, steady_state, it_, true)" << endl
                 << "    dynamicResid!(T, residual, y, x, params, steady_state, it_, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function dynamic!(T::Vector{Float64}, residual::Vector{Float64}, g1::Matrix{Float64}, g2::Matrix{Float64}," << endl
                 << "                  y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicG2!(T, g2, y, x, params, steady_state, it_, true)" << endl
                 << "    dynamicG1!(T, g1, y, x, params, steady_state, it_, false)" << endl
                 << "    dynamicResid!(T, residual, y, x, params, steady_state, it_, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function dynamic!(T::Vector{Float64}, residual::Vector{Float64}, g1::Matrix{Float64}, g2::Matrix{Float64}, g3::Matrix{Float64}," << endl
                 << "                  y::Vector{Float64}, x::Matrix{Float64}, "
                 << "params::Vector{Float64}, steady_state::Vector{Float64}, it_::Int)" << endl
                 << "    dynamicG3!(T, g3, y, x, params, steady_state, it_, true)" << endl
                 << "    dynamicG2!(T, g2, y, x, params, steady_state, it_, false)" << endl
                 << "    dynamicG1!(T, g1, y, x, params, steady_state, it_, false)" << endl
                 << "    dynamicResid!(T, residual, y, x, params, steady_state, it_, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << "end" << endl;
          output.close();
        }
    }
    
    void
    DynamicModel::writeOutput(ostream &output, const string &basename, bool block_decomposition, bool byte_code, bool use_dll, int order, bool estimation_present, bool compute_xrefs, bool julia) const
    {
      /* Writing initialisation for M_.lead_lag_incidence matrix
         M_.lead_lag_incidence is a matrix with as many columns as there are
         endogenous variables and as many rows as there are periods in the
         models (nbr of rows = M_.max_lag+M_.max_lead+1)
    
         The matrix elements are equal to zero if a variable isn't present in the
         model at a given period.
      */
    
      string modstruct;
      string outstruct;
      if (julia)
        {
          modstruct = "model_.";
          outstruct = "oo_.";
        }
      else
        {
          modstruct = "M_.";
          outstruct = "oo_.";
        }
    
      output << modstruct << "orig_maximum_endo_lag = " << max_endo_lag_orig << ";" << endl
             << modstruct << "orig_maximum_endo_lead = " << max_endo_lead_orig << ";" << endl
             << modstruct << "orig_maximum_exo_lag = " << max_exo_lag_orig << ";" << endl
             << modstruct << "orig_maximum_exo_lead = " << max_exo_lead_orig << ";" << endl
             << modstruct << "orig_maximum_exo_det_lag = " << max_exo_det_lag_orig << ";" << endl
             << modstruct << "orig_maximum_exo_det_lead = " << max_exo_det_lead_orig << ";" << endl
             << modstruct << "orig_maximum_lag = " << max_lag_orig << ";" << endl
             << modstruct << "orig_maximum_lead = " << max_lead_orig << ";" << endl
             << modstruct << "lead_lag_incidence = [";
      // Loop on endogenous variables
      int nstatic = 0,
        nfwrd   = 0,
        npred   = 0,
        nboth   = 0;
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        {
          output << endl;
          int sstatic = 1,
            sfwrd   = 0,
            spred   = 0,
            sboth   = 0;
          // Loop on periods
          for (int lag = -max_endo_lag; lag <= max_endo_lead; lag++)
            {
              // Print variableID if exists with current period, otherwise print 0
              try
                {
                  int varID = getDerivID(symbol_table.getID(eEndogenous, endoID), lag);
                  output << " " << getDynJacobianCol(varID) + 1;
                  if (lag == -1)
                    {
                      sstatic = 0;
                      spred = 1;
                    }
                  else if (lag == 1)
                    {
                      if (spred == 1)
                        {
                          sboth = 1;
                          spred = 0;
                        }
                      else
                        {
                          sstatic = 0;
                          sfwrd = 1;
                        }
                    }
                }
              catch (UnknownDerivIDException &e)
                {
                  output << " 0";
                }
            }
          nstatic += sstatic;
          nfwrd   += sfwrd;
          npred   += spred;
          nboth   += sboth;
          output << ";";
        }
      output << "]';" << endl;
      output << modstruct << "nstatic = " << nstatic << ";" << endl
             << modstruct << "nfwrd   = " << nfwrd   << ";" << endl
             << modstruct << "npred   = " << npred   << ";" << endl
             << modstruct << "nboth   = " << nboth   << ";" << endl
             << modstruct << "nsfwrd   = " << nfwrd+nboth   << ";" << endl
             << modstruct << "nspred   = " << npred+nboth   << ";" << endl
             << modstruct << "ndynamic   = " << npred+nboth+nfwrd << ";" << endl;
      if (!julia)
        output << modstruct << "dynamic_tmp_nbr = zeros(4,1); % Number of temporaries used for the dynamic model" << endl
               << modstruct << "dynamic_tmp_nbr(1) = " << temporary_terms_res.size() << "; % Number of temporaries used for the evaluation of the residuals" << endl
               << modstruct << "dynamic_tmp_nbr(2) = " << temporary_terms_g1.size() << "; % Number of temporaries used for the evaluation of g1 (jacobian)" << endl
               << modstruct << "dynamic_tmp_nbr(3) = " << temporary_terms_g2.size() << "; % Number of temporaries used for the evaluation of g2 (hessian)" << endl
               << modstruct << "dynamic_tmp_nbr(4) = " << temporary_terms_g3.size() << "; % Number of temporaries used for the evaluation of g3 (third order derivatives)" << endl;
    
      // Write equation tags
      if (julia)
        {
          output << modstruct << "equation_tags = [" << endl;
          for (const auto & equation_tag : equation_tags)
            output << "                       EquationTag("
                   << equation_tag.first + 1 << " , \""
                   << equation_tag.second.first << "\" , \""
                   << equation_tag.second.second << "\")" << endl;
          output << "                      ]" << endl;
        }
      else
        {
          output << modstruct << "equations_tags = {" << endl;
          for (const auto & equation_tag : equation_tags)
            output << "  " << equation_tag.first + 1 << " , '"
                   << equation_tag.second.first << "' , '"
                   << equation_tag.second.second << "' ;" << endl;
          output << "};" << endl;
        }
    
      /* Say if static and dynamic models differ (because of [static] and [dynamic]
         equation tags) */
      output << modstruct << "static_and_dynamic_models_differ = "
             << (static_only_equations.size() > 0 ?
                 (julia ? "true" : "1") :
                 (julia ? "false" : "0"))
             << ";" << endl;
    
      vector<int> state_var;
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        // Loop on periods
        for (int lag = -max_endo_lag; lag < 0; lag++)
          try
            {
              getDerivID(symbol_table.getID(eEndogenous, variable_reordered[endoID]), lag);
              if (lag < 0 && find(state_var.begin(), state_var.end(), variable_reordered[endoID]+1) == state_var.end())
                state_var.push_back(variable_reordered[endoID]+1);
            }
          catch (UnknownDerivIDException &e)
            {
            }
    
      //In case of sparse model, writes the block_decomposition structure of the model
      if (block_decomposition)
        {
          vector<int> state_equ;
          int count_lead_lag_incidence = 0;
          int max_lead, max_lag, max_lag_endo, max_lead_endo, max_lag_exo, max_lead_exo, max_lag_exo_det, max_lead_exo_det;
          unsigned int nb_blocks = getNbBlocks();
          for (unsigned int block = 0; block < nb_blocks; block++)
            {
              //For a block composed of a single equation determines wether we have to evaluate or to solve the equation
              count_lead_lag_incidence = 0;
              BlockSimulationType simulation_type = getBlockSimulationType(block);
              int block_size = getBlockSize(block);
              max_lag  = max_leadlag_block[block].first;
              max_lead = max_leadlag_block[block].second;
              max_lag_endo = endo_max_leadlag_block[block].first;
              max_lead_endo = endo_max_leadlag_block[block].second;
              max_lag_exo = exo_max_leadlag_block[block].first;
              max_lead_exo = exo_max_leadlag_block[block].second;
              max_lag_exo_det = exo_det_max_leadlag_block[block].first;
              max_lead_exo_det = exo_det_max_leadlag_block[block].second;
              ostringstream tmp_s, tmp_s_eq;
              tmp_s.str("");
              tmp_s_eq.str("");
              for (int i = 0; i < block_size; i++)
                {
                  tmp_s << " " << getBlockVariableID(block, i)+1;
                  tmp_s_eq << " " << getBlockEquationID(block, i)+1;
                }
              set<int> exogenous;
              exogenous.clear();
              for (const auto & it : exo_block[block])
                for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
                  exogenous.insert(*it1);
              set<int> exogenous_det;
              exogenous_det.clear();
              for (const auto & it : exo_det_block[block])
                for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
                  exogenous_det.insert(*it1);
              set<int> other_endogenous;
              other_endogenous.clear();
              for (const auto & it : other_endo_block[block])
                for (auto it1 = it.second.begin(); it1 != it.second.end(); it1++)
                  other_endogenous.insert(*it1);
              output << "block_structure.block(" << block+1 << ").Simulation_Type = " << simulation_type << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_lag = " << max_lag << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_lead = " << max_lead << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_endo_lag = " << max_lag_endo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_endo_lead = " << max_lead_endo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_lag = " << max_lag_exo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_lead = " << max_lead_exo << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_det_lag = " << max_lag_exo_det << ";\n";
              output << "block_structure.block(" << block+1 << ").maximum_exo_det_lead = " << max_lead_exo_det << ";\n";
              output << "block_structure.block(" << block+1 << ").endo_nbr = " << block_size << ";\n";
              output << "block_structure.block(" << block+1 << ").mfs = " << getBlockMfs(block) << ";\n";
              output << "block_structure.block(" << block+1 << ").equation = [" << tmp_s_eq.str() << "];\n";
              output << "block_structure.block(" << block+1 << ").variable = [" << tmp_s.str() << "];\n";
              output << "block_structure.block(" << block+1 << ").exo_nbr = " << getBlockExoSize(block) << ";\n";
              output << "block_structure.block(" << block+1 << ").exogenous = [";
              int i = 0;
              for (int exogenou : exogenous)
                if (exogenou >= 0)
                  {
                    output << " " << exogenou+1;
                    i++;
                  }
              output << "];\n";
    
              output << "block_structure.block(" << block+1 << ").exogenous_det = [";
              i = 0;
              for (int it_exogenous_det : exogenous_det)
                if (it_exogenous_det >= 0)
                  {
                    output << " " << it_exogenous_det+1;
                    i++;
                  }
              output << "];\n";
              output << "block_structure.block(" << block+1 << ").exo_det_nbr = " << i << ";\n";
    
              output << "block_structure.block(" << block+1 << ").other_endogenous = [";
              i = 0;
              for (int other_endogenou : other_endogenous)
                if (other_endogenou >= 0)
                  {
                    output << " " << other_endogenou+1;
                    i++;
                  }
              output << "];\n";
              output << "block_structure.block(" << block+1 << ").other_endogenous_block = [";
              i = 0;
              for (int other_endogenou : other_endogenous)
                if (other_endogenou >= 0)
                  {
                    bool OK = true;
                    unsigned int j;
                    for (j = 0; j < block && OK; j++)
                      for (unsigned int k = 0; k < getBlockSize(j) && OK; k++)
                        {
                          //printf("*it_other_endogenous=%d, getBlockVariableID(%d, %d)=%d\n",*it_other_endogenous, j, k, getBlockVariableID(j, k));
                          OK = other_endogenou != getBlockVariableID(j, k);
                        }
                    if (!OK)
                      output << " " << j;
                    i++;
                  }
              output << "];\n";
    
              //vector<int> inter_state_var;
              output << "block_structure.block(" << block+1 << ").tm1 = zeros(" << i << ", " << state_var.size() << ");\n";
              int count_other_endogenous = 1;
              for (int other_endogenou : other_endogenous)
                {
                  for (vector<int>::const_iterator it = state_var.begin(); it != state_var.end(); it++)
                    {
                      //cout << "block = " << block+1 << " state_var = " << *it << " it_other_endogenous=" << *it_other_endogenous + 1 << "\n";
                      if (*it == other_endogenou + 1)
                        {
                          output << "block_structure.block(" << block+1 << ").tm1("
                                 << count_other_endogenous << ", "
                                 << it - state_var.begin()+1 << ") = 1;\n";
                          /*output << "block_structure.block(" << block+1 << ").tm1("
                            << it - state_var.begin()+1 << ", "
                            << count_other_endogenous << ") = 1;\n";*/
                          //cout << "=>\n";
                        }
                    }
                  count_other_endogenous++;
                }
    
              output << "block_structure.block(" << block+1 << ").other_endo_nbr = " << i << ";\n";
    
              tmp_s.str("");
              count_lead_lag_incidence = 0;
              dynamic_jacob_map_t reordered_dynamic_jacobian;
              for (const auto & it : blocks_derivatives[block])
                reordered_dynamic_jacobian[{ it.second.first, { it.first.second, it.first.first } }] = it.second.second;
              output << "block_structure.block(" << block+1 << ").lead_lag_incidence = [];\n";
              int last_var = -1;
              vector<int> local_state_var;
              vector<int> local_stat_var;
              int n_static = 0, n_backward = 0, n_forward = 0, n_mixed = 0;
              for (int lag = -1; lag < 1+1; lag++)
                {
                  last_var = -1;
                  for (dynamic_jacob_map_t::const_iterator it = reordered_dynamic_jacobian.begin(); it != reordered_dynamic_jacobian.end(); it++)
                    {
                      if (lag == it->first.first && last_var != it->first.second.first)
                        {
                          if (lag == -1)
                            {
                              local_state_var.push_back(getBlockVariableID(block, it->first.second.first)+1);
                              n_backward++;
                            }
                          else if (lag == 0)
                            {
                              if (find(local_state_var.begin(), local_state_var.end(), getBlockVariableID(block, it->first.second.first)+1) == local_state_var.end())
                                {
                                  local_stat_var.push_back(getBlockVariableID(block, it->first.second.first)+1);
                                  n_static++;
                                }
                            }
                          else
                            {
                              if (find(local_state_var.begin(), local_state_var.end(), getBlockVariableID(block, it->first.second.first)+1) != local_state_var.end())
                                {
                                  n_backward--;
                                  n_mixed++;
                                }
                              else
                                {
                                  if (find(local_stat_var.begin(), local_stat_var.end(), getBlockVariableID(block, it->first.second.first)+1) != local_stat_var.end())
                                    n_static--;
                                  n_forward++;
                                }
                            }
                          count_lead_lag_incidence++;
                          for (int i = last_var; i < it->first.second.first-1; i++)
                            tmp_s << " 0";
                          if (tmp_s.str().length())
                            tmp_s << " ";
                          tmp_s << count_lead_lag_incidence;
                          last_var = it->first.second.first;
                        }
                    }
                  for (int i = last_var + 1; i < block_size; i++)
                    tmp_s << " 0";
                  output << "block_structure.block(" << block+1 << ").lead_lag_incidence = [ block_structure.block(" << block+1 << ").lead_lag_incidence; " << tmp_s.str() << "]; %lag = " << lag << "\n";
                  tmp_s.str("");
                }
              vector<int> inter_state_var;
              for (vector<int>::const_iterator it_l = local_state_var.begin(); it_l != local_state_var.end(); it_l++)
                for (vector<int>::const_iterator it = state_var.begin(); it != state_var.end(); it++)
                  if (*it == *it_l)
                    inter_state_var.push_back(it - state_var.begin()+1);
              output << "block_structure.block(" << block+1 << ").sorted_col_dr_ghx = [";
              for (vector<int>::const_iterator it = inter_state_var.begin(); it != inter_state_var.end(); it++)
                output << *it << " ";
              output << "];\n";
              count_lead_lag_incidence = 0;
              output << "block_structure.block(" << block+1 << ").lead_lag_incidence_other = [];\n";
              for (int lag = -1; lag <= 1; lag++)
                {
                  tmp_s.str("");
                  for (int other_endogenou : other_endogenous)
                    {
                      bool done = false;
                      for (int i = 0; i < block_size; i++)
                        {
                          unsigned int eq = getBlockEquationID(block, i);
                          auto it = derivative_other_endo[block].find({ lag, { eq, other_endogenou } });
                          if (it != derivative_other_endo[block].end())
                            {
                              count_lead_lag_incidence++;
                              tmp_s << " " << count_lead_lag_incidence;
                              done = true;
                              break;
                            }
                        }
                      if (!done)
                        tmp_s << " 0";
                    }
                  output << "block_structure.block(" << block+1 << ").lead_lag_incidence_other = [ block_structure.block(" << block+1 << ").lead_lag_incidence_other; " << tmp_s.str() << "]; %lag = " << lag << "\n";
                }
              output << "block_structure.block(" << block+1 << ").n_static = " << n_static << ";\n";
              output << "block_structure.block(" << block+1 << ").n_forward = " << n_forward << ";\n";
              output << "block_structure.block(" << block+1 << ").n_backward = " << n_backward << ";\n";
              output << "block_structure.block(" << block+1 << ").n_mixed = " << n_mixed << ";\n";
            }
          output << modstruct << "block_structure.block = block_structure.block;\n";
          string cst_s;
          int nb_endo = symbol_table.endo_nbr();
          output << modstruct << "block_structure.variable_reordered = [";
          for (int i = 0; i < nb_endo; i++)
            output << " " << variable_reordered[i]+1;
          output << "];\n";
          output << modstruct << "block_structure.equation_reordered = [";
          for (int i = 0; i < nb_endo; i++)
            output << " " << equation_reordered[i]+1;
          output << "];\n";
          vector<int> variable_inv_reordered(nb_endo);
    
          for (int i = 0; i < nb_endo; i++)
            variable_inv_reordered[variable_reordered[i]] = i;
    
          for (vector<int>::const_iterator it = state_var.begin(); it != state_var.end(); it++)
            state_equ.push_back(equation_reordered[variable_inv_reordered[*it - 1]]+1);
    
          map<pair< int, pair<int, int>>,  int>  lag_row_incidence;
          for (const auto & first_derivative : first_derivatives)
            {
              int deriv_id = first_derivative.first.second;
              if (getTypeByDerivID(deriv_id) == eEndogenous)
                {
                  int eq = first_derivative.first.first;
                  int symb = getSymbIDByDerivID(deriv_id);
                  int var = symbol_table.getTypeSpecificID(symb);
                  int lag = getLagByDerivID(deriv_id);
                  lag_row_incidence[{ lag, { eq, var } }] = 1;
                }
            }
          int prev_lag = -1000000;
          for (map<pair< int, pair<int, int>>,  int>::const_iterator it = lag_row_incidence.begin(); it != lag_row_incidence.end(); it++)
            {
              if (prev_lag != it->first.first)
                {
                  if (prev_lag != -1000000)
                    output << "];\n";
                  prev_lag = it->first.first;
                  output << modstruct << "block_structure.incidence(" << max_endo_lag+it->first.first+1 << ").lead_lag = " << prev_lag << ";\n";
                  output << modstruct << "block_structure.incidence(" << max_endo_lag+it->first.first+1 << ").sparse_IM = [";
                }
              output << it->first.second.first+1 << " " << it->first.second.second+1 << ";\n";
            }
          output << "];\n";
          if (estimation_present)
            {
              ofstream KF_index_file;
              string main_name = basename;
              main_name += ".kfi";
              KF_index_file.open(main_name.c_str(), ios::out | ios::binary | ios::ate);
              int n_obs = symbol_table.observedVariablesNbr();
              int n_state = state_var.size();
              for (vector<int>::const_iterator it = state_var.begin(); it != state_var.end(); it++)
                if (symbol_table.isObservedVariable(symbol_table.getID(eEndogenous, *it-1)))
                  n_obs--;
    
              int n = n_obs + n_state;
              output << modstruct << "nobs_non_statevar = " << n_obs << ";" << endl;
              int nb_diag = 0;
              //map<pair<int,int>, int>::const_iterator  row_state_var_incidence_it = row_state_var_incidence.begin();
    
              vector<int> i_nz_state_var(n);
              for (int i = 0; i < n_obs; i++)
                i_nz_state_var[i] = n;
              unsigned int lp = n_obs;
    
              for (unsigned int block = 0; block < nb_blocks; block++)
                {
                  int block_size = getBlockSize(block);
                  int nze = 0;
    
                  for (int i = 0; i < block_size; i++)
                    {
                      int var = getBlockVariableID(block, i);
                      vector<int>::const_iterator it_state_var = find(state_var.begin(), state_var.end(), var+1);
                      if (it_state_var != state_var.end())
                        nze++;
                    }
                  if (block == 0)
                    {
                      set<pair<int, int>> row_state_var_incidence;
                      for (auto it = blocks_derivatives[block].begin(); it != (blocks_derivatives[block]).end(); it++)
                        {
                          vector<int>::const_iterator it_state_var = find(state_var.begin(), state_var.end(), getBlockVariableID(block, it->first.second)+1);
                          if (it_state_var != state_var.end())
                            {
                              vector<int>::const_iterator it_state_equ = find(state_equ.begin(), state_equ.end(), getBlockEquationID(block, it->first.first)+1);
                              if (it_state_equ != state_equ.end())
                                row_state_var_incidence.emplace(it_state_equ - state_equ.begin(), it_state_var - state_var.begin());
                            }
    
                        }
                      /*tmp_block_endo_derivative[make_pair(it->second.first, make_pair(it->first.second, it->first.first))] = it->second.second;
                        if (block == 0)
                        {
    
                        vector<int>::const_iterator it_state_equ = find(state_equ.begin(), state_equ.end(), getBlockEquationID(block, i)+1);
                        if (it_state_equ != state_equ.end())
                        {
                        cout << "row_state_var_incidence[make_pair([" << *it_state_equ << "] " << it_state_equ - state_equ.begin() << ", [" << *it_state_var << "] " << it_state_var - state_var.begin() << ")] =  1;\n";
                        row_state_var_incidence.insert(make_pair(it_state_equ - state_equ.begin(), it_state_var - state_var.begin()));
                        }
                        }*/
                      auto  row_state_var_incidence_it = row_state_var_incidence.begin();
                      bool diag = true;
                      int nb_diag_r = 0;
                      while (row_state_var_incidence_it != row_state_var_incidence.end() && diag)
                        {
                          diag = (row_state_var_incidence_it->first == row_state_var_incidence_it->second);
                          if (diag)
                            {
                              int equ = row_state_var_incidence_it->first;
                              row_state_var_incidence_it++;
                              if (equ != row_state_var_incidence_it->first)
                                nb_diag_r++;
                            }
    
                        }
                      set<pair<int, int>>  col_state_var_incidence;
                      for (const auto & row_state_var_incidence_it : row_state_var_incidence)
                        col_state_var_incidence.emplace(row_state_var_incidence_it.second, row_state_var_incidence_it.first);
                      auto  col_state_var_incidence_it = col_state_var_incidence.begin();
                      diag = true;
                      int nb_diag_c = 0;
                      while (col_state_var_incidence_it != col_state_var_incidence.end() && diag)
                        {
                          diag = (col_state_var_incidence_it->first == col_state_var_incidence_it->second);
                          if (diag)
                            {
                              int var = col_state_var_incidence_it->first;
                              col_state_var_incidence_it++;
                              if (var != col_state_var_incidence_it->first)
                                nb_diag_c++;
                            }
                        }
                      nb_diag = min(nb_diag_r, nb_diag_c);
                      row_state_var_incidence.clear();
                      col_state_var_incidence.clear();
                    }
                  for (int i = 0; i < nze; i++)
                    i_nz_state_var[lp + i] = lp + nze;
                  lp += nze;
                }
              output << modstruct << "nz_state_var = [";
              for (unsigned int i = 0; i < lp; i++)
                output << i_nz_state_var[i] << " ";
              output << "];" << endl;
              output << modstruct << "n_diag = " << nb_diag << ";" << endl;
              KF_index_file.write(reinterpret_cast<char *>(&nb_diag), sizeof(nb_diag));
    
              using index_KF = pair<int, pair<int, int >>;
              vector<index_KF> v_index_KF;
              for (int i = 0; i < n; i++)
                //int i = 0;
                for (int j = n_obs; j < n; j++)
                  {
                    int j1 = j - n_obs;
                    int j1_n_state = j1 * n_state - n_obs;
                    if ((i < n_obs) || (i >= nb_diag + n_obs) || (j1 >= nb_diag))
                      for (int k = n_obs; k < i_nz_state_var[i]; k++)
                        {
                          v_index_KF.emplace_back(i + j1 * n, make_pair(i + k * n, k + j1_n_state));
                        }
                  }
              int size_v_index_KF = v_index_KF.size();
    
              KF_index_file.write(reinterpret_cast<char *>(&size_v_index_KF), sizeof(size_v_index_KF));
              for (auto & it : v_index_KF)
                KF_index_file.write(reinterpret_cast<char *>(&it), sizeof(index_KF));
    
              vector<index_KF> v_index_KF_2;
              int n_n_obs = n * n_obs;
              for (int i = 0; i < n; i++)
                //i = 0;
                for (int j = i; j < n; j++)
                  {
                    if ((i < n_obs) || (i >= nb_diag + n_obs) || (j < n_obs) || (j >= nb_diag + n_obs))
                      for (int k = n_obs; k < i_nz_state_var[j]; k++)
                        {
                          int k_n = k * n;
                          v_index_KF_2.emplace_back(i * n + j,  make_pair(i + k_n - n_n_obs, j + k_n));
                        }
                  }
              int size_v_index_KF_2 = v_index_KF_2.size();
    
              KF_index_file.write(reinterpret_cast<char *>(&size_v_index_KF_2), sizeof(size_v_index_KF_2));
              for (auto & it : v_index_KF_2)
                KF_index_file.write(reinterpret_cast<char *>(&it), sizeof(index_KF));
              KF_index_file.close();
            }
        }
    
      output << modstruct << "state_var = [";
      for (vector<int>::const_iterator it=state_var.begin(); it != state_var.end(); it++)
        output << *it << (julia ? "," : " ");
      output << "];" << endl;
    
      // Writing initialization for some other variables
      if (!julia)
        output << modstruct << "exo_names_orig_ord = [1:" << symbol_table.exo_nbr() << "];" << endl;
      else
        output << modstruct << "exo_names_orig_ord = collect(1:" << symbol_table.exo_nbr() << ");" << endl;
    
      output << modstruct << "maximum_lag = " << max_lag << ";" << endl
             << modstruct << "maximum_lead = " << max_lead << ";" << endl;
    
      output << modstruct << "maximum_endo_lag = " << max_endo_lag << ";" << endl
             << modstruct << "maximum_endo_lead = " << max_endo_lead << ";" << endl
             << outstruct << "steady_state = zeros(" << symbol_table.endo_nbr() << (julia ? ")" : ", 1);") << endl;
    
      output << modstruct << "maximum_exo_lag = " << max_exo_lag << ";" << endl
             << modstruct << "maximum_exo_lead = " << max_exo_lead << ";" << endl
             << outstruct << "exo_steady_state = zeros(" << symbol_table.exo_nbr() <<  (julia ? ")" : ", 1);")   << endl;
    
      if (symbol_table.exo_det_nbr())
        {
          output << modstruct << "maximum_exo_det_lag = " << max_exo_det_lag << ";" << endl
                 << modstruct << "maximum_exo_det_lead = " << max_exo_det_lead << ";" << endl
                 << outstruct << "exo_det_steady_state = zeros(" << symbol_table.exo_det_nbr() << (julia ? ")" : ", 1);") << endl;
        }
    
      output << modstruct << "params = " << (julia ? "fill(NaN, " : "NaN(")
             << symbol_table.param_nbr() << (julia ? ")" : ", 1);") << endl;
    
      if (compute_xrefs)
        writeXrefs(output);
    
      // Write number of non-zero derivatives
      // Use -1 if the derivatives have not been computed
      output << modstruct << (julia ? "nnzderivatives" : "NNZDerivatives")
             << " = [" << NNZDerivatives[0] << "; ";
      if (order > 1)
        output << NNZDerivatives[1] << "; ";
      else
        output << "-1; ";
    
      if (order > 2)
        output << NNZDerivatives[2];
      else
        output << "-1";
      output << "];" << endl;
    
      // Write PacExpectationInfo
      for (auto it : pac_expectation_info)
        it->ExprNode::writeOutput(output, oMatlabDynamicModel);
    }
    
    map<pair<int, pair<int, int >>, expr_t>
    DynamicModel::collect_first_order_derivatives_endogenous()
    {
      map<pair<int, pair<int, int >>, expr_t> endo_derivatives;
      for (auto & first_derivative : first_derivatives)
        {
          if (getTypeByDerivID(first_derivative.first.second) == eEndogenous)
            {
              int eq = first_derivative.first.first;
              int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(first_derivative.first.second));
              int lag = getLagByDerivID(first_derivative.first.second);
              endo_derivatives[{ eq, { var, lag } }] = first_derivative.second;
            }
        }
      return endo_derivatives;
    }
    
    void
    DynamicModel::runTrendTest(const eval_context_t &eval_context)
    {
      computeDerivIDs();
      testTrendDerivativesEqualToZero(eval_context);
    }
    
    void
    DynamicModel::getVarModelVariablesFromEqTags(vector<string> &var_model_eqtags,
                                                 vector<int> &eqnumber,
                                                 vector<int> &lhs,
                                                 vector<expr_t> &lhs_expr_t,
                                                 vector<set<pair<int, int>>> &rhs,
                                                 vector<bool> &nonstationary) const
    {
      for (vector<string>::const_iterator itvareqs = var_model_eqtags.begin();
           itvareqs != var_model_eqtags.end(); itvareqs++)
        {
          int eqn = -1;
          set<pair<int, int>> lhs_set, lhs_tmp_set, rhs_set;
          string eqtag (*itvareqs);
          for (const auto & equation_tag : equation_tags)
            if (equation_tag.second.first == "name"
                && equation_tag.second.second == eqtag)
              {
                eqn = equation_tag.first;
                break;
              }
    
          if (eqn == -1)
            {
              cerr << "ERROR: equation tag '" << eqtag << "' not found" << endl;
              exit(EXIT_FAILURE);
            }
    
          bool nonstationary_bool = false;
          for (const auto & equation_tag : equation_tags)
            if (equation_tag.first == eqn)
              if (equation_tag.second.first == "data_type"
                  && equation_tag.second.second == "nonstationary")
                {
                  nonstationary_bool = true;
                  break;
                }
          nonstationary.push_back(nonstationary_bool);
    
          equations[eqn]->get_arg1()->collectDynamicVariables(eEndogenous, lhs_set);
          equations[eqn]->get_arg1()->collectDynamicVariables(eExogenous, lhs_tmp_set);
          equations[eqn]->get_arg1()->collectDynamicVariables(eParameter, lhs_tmp_set);
    
          if (lhs_set.size() != 1 || !lhs_tmp_set.empty())
            {
              cerr << "ERROR: in Equation " << eqtag
                   << ". A VAR may only have one endogenous variable on the LHS. " << endl;
              exit(EXIT_FAILURE);
            }
    
          auto it = lhs_set.begin();
          if (it->second != 0)
            {
              cerr << "ERROR: in Equation " << eqtag
                   << ". The variable on the LHS of a VAR may not appear with a lead or a lag. "
                   << endl;
              exit(EXIT_FAILURE);
            }
    
          eqnumber.push_back(eqn);
          lhs.push_back(it->first);
          lhs_set.clear();
          set<expr_t> lhs_expr_t_set;
          equations[eqn]->get_arg1()->collectVARLHSVariable(lhs_expr_t_set);
          lhs_expr_t.push_back(*(lhs_expr_t_set.begin()));
    
          equations[eqn]->get_arg2()->collectDynamicVariables(eEndogenous, rhs_set);
          for (it = rhs_set.begin(); it != rhs_set.end(); it++)
            if (it->second > 0)
              {
                cerr << "ERROR: in Equation " << eqtag
                     << ". A VAR may not have leaded or contemporaneous variables on the RHS. " << endl;
                exit(EXIT_FAILURE);
              }
          rhs.push_back(rhs_set);
        }
    }
    
    void
    DynamicModel::checkVarMinLag(vector<int> &eqnumber) const
    {
      int eqn = 1;
      for (vector<int>::const_iterator it = eqnumber.begin();
           it != eqnumber.end(); it++, eqn++)
        {
          int min_lag = -1;
          min_lag = equations[*it]->get_arg2()->VarMinLag();
          if (min_lag <= 0)
            {
              cerr << "ERROR in VAR Equation #" << eqn << ". "
                   << "Leaded exogenous variables and leaded or contemporaneous endogenous variables not allowed in VAR";
              exit(EXIT_FAILURE);
            }
        }
    }
    
    int
    DynamicModel::getVarMaxLag(StaticModel &static_model, vector<int> &eqnumber) const
    {
      set<expr_t> lhs;
      for (vector<int>::const_iterator it = eqnumber.begin();
           it != eqnumber.end(); it++)
        equations[*it]->get_arg1()->collectVARLHSVariable(lhs);
    
      if (eqnumber.size() != lhs.size())
        {
          cerr << "The LHS variables of the VAR are not unique" << endl;
          exit(EXIT_FAILURE);
        }
    
      set<expr_t> lhs_static;
      for(auto lh : lhs)
        lhs_static.insert(lh->toStatic(static_model));
    
      int max_lag = 0;
      for (vector<int>::const_iterator it = eqnumber.begin();
           it != eqnumber.end(); it++)
        max_lag = max(max_lag,
                      equations[*it]->get_arg2()->VarMaxLag(static_model, lhs_static));
    
      return max_lag;
    }
    
    void
    DynamicModel::getVarLhsDiffAndInfo(vector<int> &eqnumber, vector<bool> &diff,
                                       vector<int> &orig_diff_var) const
    {
      for (vector<int>::const_iterator it = eqnumber.begin();
           it != eqnumber.end(); it++)
        {
          equations[*it]->get_arg1()->countDiffs() > 0 ? diff.push_back(true) : diff.push_back(false);
          if (diff.back())
            {
              set<pair<int, int>> diff_set;
              equations[*it]->get_arg1()->collectDynamicVariables(eEndogenous, diff_set);
    
              if (diff_set.size() != 1)
                {
                  cerr << "ERROR: problem getting variable for LHS diff operator in equation " << *it << endl;
                  exit(EXIT_FAILURE);
                }
              orig_diff_var.push_back(diff_set.begin()->first);
            }
          else
            orig_diff_var.push_back(-1);
        }
    }
    
    void
    DynamicModel::setVarExpectationIndices(map<string, pair<SymbolList, int>> &var_model_info)
    {
      for (auto & equation : equations)
        equation->setVarExpectationIndex(var_model_info);
    }
    
    void
    DynamicModel::addEquationsForVar(map<string, pair<SymbolList, int>> &var_model_info)
    {
      // List of endogenous variables and the minimum lag value that must exist in the model equations
      map<string, int> var_endos_and_lags, model_endos_and_lags;
      for (map<string, pair<SymbolList, int>>::const_iterator it = var_model_info.begin();
           it != var_model_info.end(); it++)
        for (auto & equation : equations)
          if (equation->isVarModelReferenced(it->first))
            {
              vector<string> symbol_list = it->second.first.get_symbols();
              int order = it->second.second;
              for (vector<string>::const_iterator it1 = symbol_list.begin();
                   it1 != symbol_list.end(); it1++)
                if (order > 2)
                  if (var_endos_and_lags.find(*it1) != var_endos_and_lags.end())
                    var_endos_and_lags[*it1] = min(var_endos_and_lags[*it1], -1*order);
                  else
                    var_endos_and_lags[*it1] = -1*order;
              break;
            }
    
      if (var_endos_and_lags.empty())
        return;
    
      // Ensure that the minimum lag value exists in the model equations. If not, add an equation for it
      for (auto & equation : equations)
        equation->getEndosAndMaxLags(model_endos_and_lags);
    
      int count = 0;
      for (map<string, int>::const_iterator it = var_endos_and_lags.begin();
           it != var_endos_and_lags.end(); it++)
        {
          map<string, int>::const_iterator it1 = model_endos_and_lags.find(it->first);
          if (it1 == model_endos_and_lags.end())
            cerr << "WARNING: Variable used in VAR that is not used in the model: " << it->first << endl;
          else
            if (it->second < it1->second)
              {
                int symb_id = symbol_table.getID(it->first);
                expr_t newvar = AddVariable(symb_id, it->second);
                expr_t auxvar = AddVariable(symbol_table.addVarModelEndoLagAuxiliaryVar(symb_id, it->second, newvar), 0);
                addEquation(AddEqual(newvar, auxvar), -1);
                addAuxEquation(AddEqual(newvar, auxvar));
                count++;
              }
        }
    
      if (count > 0)
        cout << "Accounting for var_model lags not in model block: added " << count << " auxiliary variables and equations." << endl;
    }
    
    void
    DynamicModel::getUndiffLHSForPac(vector<int> &lhs, vector<expr_t> &lhs_expr_t, vector<bool> &diff, vector<int> &orig_diff_var,
                                     vector<int> &eqnumber, map<string, int> &undiff, ExprNode::subst_table_t &diff_subst_table)
    {
      if (undiff.empty())
        return;
    
      for (map<string, int>::const_iterator it = undiff.begin();
           it != undiff.end(); it++)
        {
          int eqn = -1;
          string eqtag (it->first);
          for (vector<pair<int, pair<string, string>>>::const_iterator iteqtag =
                 equation_tags.begin(); iteqtag != equation_tags.end(); iteqtag++)
            if (iteqtag->second.first == "name"
                && iteqtag->second.second == eqtag)
              {
                eqn = iteqtag->first;
                break;
              }
    
          if (eqn == -1)
            {
              cerr << "ERROR: undiff equation tag '" << eqtag << "' not found" << endl;
              exit(EXIT_FAILURE);
            }
    
          int i = 0;
          for (vector<int>::const_iterator it1 = eqnumber.begin();
               it1 != eqnumber.end(); it1++, i++)
            if (*it1 == eqn)
              break;
    
          if (eqnumber[i] != eqn)
            {
              cerr << "ERROR: equation " << eqn << " not found in VAR" << endl;
              exit(EXIT_FAILURE);
            }
    
          if (diff.at(i) != true)
            {
              cerr << "ERROR: the variable on the LHS of equation #" << eqn << " (VAR equation #" << i
                   << " with equation tag '" << eqtag
                   << "') does not have the diff operator applied to it yet you are trying to undiff it." << endl;
              exit(EXIT_FAILURE);
            }
    
          bool printerr = false;
          ExprNode::subst_table_t::const_iterator it1;
          expr_t node = nullptr;
          expr_t aux_var = lhs_expr_t.at(i);
          for (it1 = diff_subst_table.begin(); it1 != diff_subst_table.end(); it1++)
            if (it1->second == aux_var)
              {
                node = const_cast<expr_t>(it1->first);
                break;
              }
    
          if (node == nullptr)
            {
              cerr << "Unexpected error encountered." << endl;
              exit(EXIT_FAILURE);
            }
    
          for (int j = it->second; j > 0; j--)
            if (printerr)
              {
                cerr << "You are undiffing the LHS of equation #" << eqn << " "
                     << it->second << " times but it has only been diffed " << j << " time(s)" << endl;
                exit(EXIT_FAILURE);
              }
            else
              {
                node = node->undiff();
                it1 = diff_subst_table.find(node);
                if (it1 == diff_subst_table.end())
                  printerr = true;
              }
    
          if (printerr)
            { // we have undiffed something like diff(x), hence x is not in diff_subst_table
              lhs_expr_t.at(i) = node;
              lhs.at(i) = dynamic_cast<VariableNode *>(node)->get_symb_id();
            }
          else
            {
              lhs_expr_t.at(i) = const_cast<expr_t>(it1->first);
              lhs.at(i) = const_cast<VariableNode *>(it1->second)->get_symb_id();
            }
        }
    }
    
    void
    DynamicModel::walkPacParameters()
    {
      for (auto & equation : equations)
        {
          bool pac_encountered = false;
          pair<int, int> lhs (-1, -1);
          set<pair<int, pair<int, int>>> params_and_vars;
          set<pair<int, pair<int, int>>> ecm_params_and_vars;
          equation->walkPacParameters(pac_encountered, lhs, ecm_params_and_vars, params_and_vars);
          if (pac_encountered)
            equation->addParamInfoToPac(lhs, ecm_params_and_vars, params_and_vars);
        }
    }
    
    void
    DynamicModel::fillPacExpectationVarInfo(string &var_model_name,
                                            vector<int> &lhs,
                                            int max_lag,
                                            vector<bool> &nonstationary,
                                            int growth_symb_id)
    {
      for (size_t i = 0; i < equations.size(); i++)
        equations[i]->fillPacExpectationVarInfo(var_model_name, lhs, max_lag, nonstationary, growth_symb_id, i);
    }
    
    void
    DynamicModel::substitutePacExpectation()
    {
      map<const PacExpectationNode *, const BinaryOpNode *> subst_table;
      for (auto & it : local_variables_table)
        it.second = it.second->substitutePacExpectation(subst_table);
    
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->substitutePacExpectation(subst_table));
          assert(substeq != nullptr);
          equation = substeq;
        }
    
      for (map<const PacExpectationNode *, const BinaryOpNode *>::const_iterator it = subst_table.begin();
           it != subst_table.end(); it++)
        pac_expectation_info.insert(const_cast<PacExpectationNode *>(it->first));
    }
    
    void
    DynamicModel::computingPass(bool jacobianExo, bool hessian, bool thirdDerivatives, int paramsDerivsOrder,
                                const eval_context_t &eval_context, bool no_tmp_terms, bool block, bool use_dll,
                                bool bytecode, const bool nopreprocessoroutput)
    {
      assert(jacobianExo || !(hessian || thirdDerivatives || paramsDerivsOrder));
    
      initializeVariablesAndEquations();
    
      // Prepare for derivation
      computeDerivIDs();
    
      // Computes dynamic jacobian columns, must be done after computeDerivIDs()
      computeDynJacobianCols(jacobianExo);
    
      // Compute derivatives w.r. to all endogenous, and possibly exogenous and exogenous deterministic
      set<int> vars;
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          SymbolType type = symbol_table.getType(it->first.first);
          if (type == eEndogenous || (jacobianExo && (type == eExogenous || type == eExogenousDet)))
            vars.insert(it->second);
        }
    
      // Launch computations
      if (!nopreprocessoroutput)
        cout << "Computing dynamic model derivatives:" << endl
             << " - order 1" << endl;
      computeJacobian(vars);
    
      if (hessian)
        {
          if (!nopreprocessoroutput)
            cout << " - order 2" << endl;
          computeHessian(vars);
        }
    
      if (paramsDerivsOrder > 0)
        {
          if (!nopreprocessoroutput)
            cout << " - derivatives of Jacobian/Hessian w.r. to parameters" << endl;
          computeParamsDerivatives(paramsDerivsOrder);
    
          if (!no_tmp_terms)
            computeParamsDerivativesTemporaryTerms();
        }
    
      if (thirdDerivatives)
        {
          if (!nopreprocessoroutput)
            cout << " - order 3" << endl;
          computeThirdDerivatives(vars);
        }
    
      if (block)
        {
          vector<unsigned int> n_static, n_forward, n_backward, n_mixed;
          jacob_map_t contemporaneous_jacobian, static_jacobian;
    
          // for each block contains pair<Size, Feddback_variable>
          vector<pair<int, int>> blocks;
    
          evaluateAndReduceJacobian(eval_context, contemporaneous_jacobian, static_jacobian, dynamic_jacobian, cutoff, false);
    
          computeNonSingularNormalization(contemporaneous_jacobian, cutoff, static_jacobian, dynamic_jacobian);
    
          computePrologueAndEpilogue(static_jacobian, equation_reordered, variable_reordered);
    
          map<pair<int, pair<int, int>>, expr_t> first_order_endo_derivatives = collect_first_order_derivatives_endogenous();
    
          equation_type_and_normalized_equation = equationTypeDetermination(first_order_endo_derivatives, variable_reordered, equation_reordered, mfs);
    
          if (!nopreprocessoroutput)
            cout << "Finding the optimal block decomposition of the model ...\n";
    
          lag_lead_vector_t equation_lag_lead, variable_lag_lead;
    
          computeBlockDecompositionAndFeedbackVariablesForEachBlock(static_jacobian, dynamic_jacobian, equation_reordered, variable_reordered, blocks, equation_type_and_normalized_equation, false, true, mfs, inv_equation_reordered, inv_variable_reordered, equation_lag_lead, variable_lag_lead, n_static, n_forward, n_backward, n_mixed);
    
          block_type_firstequation_size_mfs = reduceBlocksAndTypeDetermination(dynamic_jacobian, blocks, equation_type_and_normalized_equation, variable_reordered, equation_reordered, n_static, n_forward, n_backward, n_mixed, block_col_type);
    
          printBlockDecomposition(blocks);
    
          computeChainRuleJacobian(blocks_derivatives);
    
          blocks_linear = BlockLinear(blocks_derivatives, variable_reordered);
    
          collect_block_first_order_derivatives();
    
          collectBlockVariables();
    
          global_temporary_terms = true;
          if (!no_tmp_terms)
            computeTemporaryTermsOrdered();
          int k = 0;
          equation_block = vector<int>(equations.size());
          variable_block_lead_lag = vector< pair< int, pair< int, int>>>(equations.size());
          for (unsigned int i = 0; i < getNbBlocks(); i++)
            {
              for (unsigned int j = 0; j < getBlockSize(i); j++)
                {
                  equation_block[equation_reordered[k]] = i;
                  int l = variable_reordered[k];
                  variable_block_lead_lag[l] = { i, { variable_lag_lead[l].first, variable_lag_lead[l].second } };
                  k++;
                }
            }
        }
      else
        if (!no_tmp_terms)
          {
            computeTemporaryTerms(!use_dll);
            if (bytecode)
              computeTemporaryTermsMapping();
          }
    }
    
    void
    DynamicModel::computeXrefs()
    {
      int i = 0;
      for (auto & equation : equations)
        {
          ExprNode::EquationInfo ei;
          equation->computeXrefs(ei);
          xrefs[i++] = ei;
        }
    
      i = 0;
      for (map<int, ExprNode::EquationInfo>::const_iterator it = xrefs.begin();
           it != xrefs.end(); it++, i++)
        {
          computeRevXref(xref_param, it->second.param, i);
          computeRevXref(xref_endo, it->second.endo, i);
          computeRevXref(xref_exo, it->second.exo, i);
          computeRevXref(xref_exo_det, it->second.exo_det, i);
        }
    }
    
    void
    DynamicModel::computeRevXref(map<pair<int, int>, set<int>> &xrefset, const set<pair<int, int>> &eiref, int eqn)
    {
      for (const auto & it : eiref)
        {
          set<int> eq;
          if (xrefset.find(it) != xrefset.end())
            eq = xrefset[it];
          eq.insert(eqn);
          xrefset[it] = eq;
        }
    }
    
    void
    DynamicModel::writeXrefs(ostream &output) const
    {
      output << "M_.xref1.param = cell(1, M_.eq_nbr);" << endl
             << "M_.xref1.endo = cell(1, M_.eq_nbr);" << endl
             << "M_.xref1.exo = cell(1, M_.eq_nbr);" << endl
             << "M_.xref1.exo_det = cell(1, M_.eq_nbr);" << endl;
      int i = 1;
      for (auto it = xrefs.begin();
           it != xrefs.end(); it++, i++)
        {
          output << "M_.xref1.param{" << i << "} = [ ";
          for (const auto & it1 : it->second.param)
            output << symbol_table.getTypeSpecificID(it1.first) + 1 << " ";
          output << "];" << endl;
    
          output << "M_.xref1.endo{" << i << "} = [ ";
          for (const auto & it1 : it->second.endo)
            output << "struct('id', " << symbol_table.getTypeSpecificID(it1.first) + 1 << ", 'shift', " << it1.second << ");";
          output << "];" << endl;
    
          output << "M_.xref1.exo{" << i << "} = [ ";
          for (const auto & it1 : it->second.exo)
            output << "struct('id', " << symbol_table.getTypeSpecificID(it1.first) + 1 << ", 'shift', " << it1.second << ");";
          output << "];" << endl;
    
          output << "M_.xref1.exo_det{" << i << "} = [ ";
          for (const auto & it1 : it->second.exo_det)
            output << "struct('id', " << symbol_table.getTypeSpecificID(it1.first) + 1 << ", 'shift', " << it1.second << ");";
          output << "];" << endl;
        }
    
      output << "M_.xref2.param = cell(1, M_.param_nbr);" << endl
             << "M_.xref2.endo = cell(1, M_.endo_nbr);" << endl
             << "M_.xref2.exo = cell(1, M_.exo_nbr);" << endl
             << "M_.xref2.exo_det = cell(1, M_.exo_det_nbr);" << endl;
      writeRevXrefs(output, xref_param, "param");
      writeRevXrefs(output, xref_endo, "endo");
      writeRevXrefs(output, xref_exo, "exo");
      writeRevXrefs(output, xref_exo_det, "exo_det");
    }
    
    void
    DynamicModel::writeRevXrefs(ostream &output, const map<pair<int, int>, set<int>> &xrefmap, const string &type) const
    {
      int last_tsid = -1;
      for (const auto & it : xrefmap)
        {
          int tsid = symbol_table.getTypeSpecificID(it.first.first) + 1;
          output << "M_.xref2." << type << "{" << tsid << "} = [ ";
          if (last_tsid == tsid)
            output << "M_.xref2." << type << "{" << tsid << "}; ";
          else
            last_tsid = tsid;
    
          for (auto it1 = it.second.begin();
               it1 != it.second.end(); it1++)
            if (type == "param")
              output << *it1 + 1 << " ";
            else
              output << "struct('shift', " << it.first.second << ", 'eq', " << *it1+1 << ");";
          output << "];" << endl;
        }
    }
    
    map<pair<pair<int, pair<int, int>>, pair<int, int>>, int>
    DynamicModel::get_Derivatives(int block)
    {
      int max_lag, max_lead;
      map<pair<pair<int, pair<int, int>>, pair<int, int>>, int> Derivatives;
      Derivatives.clear();
      BlockSimulationType simulation_type = getBlockSimulationType(block);
      if (simulation_type == EVALUATE_BACKWARD || simulation_type == EVALUATE_FORWARD)
        {
          max_lag  = 1;
          max_lead = 1;
          setBlockLeadLag(block, max_lag, max_lead);
        }
      else
        {
          max_lag  = getBlockMaxLag(block);
          max_lead = getBlockMaxLead(block);
        }
      int block_size = getBlockSize(block);
      int block_nb_recursive = block_size - getBlockMfs(block);
      for (int lag = -max_lag; lag <= max_lead; lag++)
        {
          for (int eq = 0; eq < block_size; eq++)
            {
              int eqr = getBlockEquationID(block, eq);
              for (int var = 0; var < block_size; var++)
                {
                  int varr = getBlockVariableID(block, var);
                  if (dynamic_jacobian.find({ lag, { eqr, varr } }) != dynamic_jacobian.end())
                    {
                      bool OK = true;
                      map<pair<pair<int, pair<int, int>>, pair<int, int>>, int>::const_iterator its = Derivatives.find({ { lag, { eq, var } }, { eqr, varr } });
                      if (its != Derivatives.end())
                        {
                          if (its->second == 2)
                            OK = false;
                        }
    
                      if (OK)
                        {
                          if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursive)
                            //It's a normalized equation, we have to recompute the derivative using chain rule derivative function
                            Derivatives[{ { lag, { eq, var } }, { eqr, varr } }] = 1;
                          else
                            //It's a feedback equation we can use the derivatives
                            Derivatives[{ { lag, { eq, var } }, { eqr, varr } }] = 0;
                        }
                      if (var < block_nb_recursive)
                        {
                          int eqs = getBlockEquationID(block, var);
                          for (int vars = block_nb_recursive; vars < block_size; vars++)
                            {
                              int varrs = getBlockVariableID(block, vars);
                              //A new derivative needs to be computed using the chain rule derivative function (a feedback variable appears in a recursive equation)
                              if (Derivatives.find({ { lag, { var, vars } }, { eqs, varrs } }) != Derivatives.end())
                                Derivatives[{ { lag, { eq, vars } }, { eqr, varrs } }] = 2;
                            }
                        }
                    }
                }
            }
        }
      return (Derivatives);
    }
    
    void
    DynamicModel::computeChainRuleJacobian(blocks_derivatives_t &blocks_endo_derivatives)
    {
      map<int, expr_t> recursive_variables;
      unsigned int nb_blocks = getNbBlocks();
      blocks_endo_derivatives = blocks_derivatives_t(nb_blocks);
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          block_derivatives_equation_variable_laglead_nodeid_t tmp_derivatives;
          recursive_variables.clear();
          int block_size = getBlockSize(block);
          int block_nb_mfs = getBlockMfs(block);
          int block_nb_recursives = block_size - block_nb_mfs;
          blocks_endo_derivatives.push_back(block_derivatives_equation_variable_laglead_nodeid_t(0));
          for (int i = 0; i < block_nb_recursives; i++)
            {
              if (getBlockEquationType(block, i) == E_EVALUATE_S)
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationRenormalizedExpr(block, i);
              else
                recursive_variables[getDerivID(symbol_table.getID(eEndogenous, getBlockVariableID(block, i)), 0)] = getBlockEquationExpr(block, i);
            }
          map<pair<pair<int, pair<int, int>>, pair<int, int>>, int> Derivatives = get_Derivatives(block);
          map<pair<pair<int, pair<int, int>>, pair<int, int>>, int>::const_iterator it = Derivatives.begin();
          for (int i = 0; i < (int) Derivatives.size(); i++)
            {
              int Deriv_type = it->second;
              pair<pair<int, pair<int, int>>, pair<int, int>> it_l(it->first);
              it++;
              int lag = it_l.first.first;
              int eq = it_l.first.second.first;
              int var = it_l.first.second.second;
              int eqr = it_l.second.first;
              int varr = it_l.second.second;
              if (Deriv_type == 0)
                first_chain_rule_derivatives[{ eqr, { varr, lag } }] = first_derivatives[{ eqr, getDerivID(symbol_table.getID(eEndogenous, varr), lag) }];
              else if (Deriv_type == 1)
                first_chain_rule_derivatives[{ eqr, { varr, lag } }] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
              else if (Deriv_type == 2)
                {
                  if (getBlockEquationType(block, eq) == E_EVALUATE_S && eq < block_nb_recursives)
                    first_chain_rule_derivatives[{ eqr, { varr, lag } }] = (equation_type_and_normalized_equation[eqr].second)->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
                  else
                    first_chain_rule_derivatives[{ eqr, { varr, lag } }] = equations[eqr]->getChainRuleDerivative(getDerivID(symbol_table.getID(eEndogenous, varr), lag), recursive_variables);
                }
              tmp_derivatives.emplace_back(make_pair(eq, var), make_pair(lag, first_chain_rule_derivatives[{ eqr, { varr, lag } }]));
            }
          blocks_endo_derivatives[block] = tmp_derivatives;
        }
    }
    
    void
    DynamicModel::collect_block_first_order_derivatives()
    {
      //! vector for an equation or a variable indicates the block number
      vector<int> equation_2_block, variable_2_block;
      unsigned int nb_blocks = getNbBlocks();
      equation_2_block = vector<int>(equation_reordered.size());
      variable_2_block = vector<int>(variable_reordered.size());
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          unsigned int block_size = getBlockSize(block);
          for (unsigned int i = 0; i < block_size; i++)
            {
              equation_2_block[getBlockEquationID(block, i)] = block;
              variable_2_block[getBlockVariableID(block, i)] = block;
            }
        }
      other_endo_block = vector<lag_var_t>(nb_blocks);
      exo_block = vector<lag_var_t>(nb_blocks);
      exo_det_block = vector<lag_var_t>(nb_blocks);
      derivative_endo = vector<derivative_t>(nb_blocks);
      derivative_other_endo = vector<derivative_t>(nb_blocks);
      derivative_exo = vector<derivative_t>(nb_blocks);
      derivative_exo_det = vector<derivative_t>(nb_blocks);
      endo_max_leadlag_block = vector<pair<int, int>>(nb_blocks, { 0, 0 });
      other_endo_max_leadlag_block = vector<pair<int, int>>(nb_blocks, { 0, 0 });
      exo_max_leadlag_block = vector<pair<int, int>>(nb_blocks, { 0, 0 });
      exo_det_max_leadlag_block = vector<pair<int, int>>(nb_blocks, { 0, 0 });
      max_leadlag_block = vector<pair<int, int>>(nb_blocks, { 0, 0 });
      for (auto & first_derivative : first_derivatives)
        {
          int eq = first_derivative.first.first;
          int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(first_derivative.first.second));
          int lag = getLagByDerivID(first_derivative.first.second);
          int block_eq = equation_2_block[eq];
          int block_var = 0;
          derivative_t tmp_derivative;
          lag_var_t lag_var;
          switch (getTypeByDerivID(first_derivative.first.second))
            {
            case eEndogenous:
              block_var = variable_2_block[var];
              if (block_eq == block_var)
                {
                  if (lag < 0 && lag < -endo_max_leadlag_block[block_eq].first)
                    endo_max_leadlag_block[block_eq] = { -lag, endo_max_leadlag_block[block_eq].second };
                  if (lag > 0 && lag > endo_max_leadlag_block[block_eq].second)
                    endo_max_leadlag_block[block_eq] = { endo_max_leadlag_block[block_eq].first, lag };
                  tmp_derivative = derivative_endo[block_eq];
                  tmp_derivative[{ lag, { eq, var } }] = first_derivatives[{ eq, getDerivID(symbol_table.getID(eEndogenous, var), lag) }];
                  derivative_endo[block_eq] = tmp_derivative;
                }
              else
                {
                  if (lag < 0 && lag < -other_endo_max_leadlag_block[block_eq].first)
                    other_endo_max_leadlag_block[block_eq] = { -lag, other_endo_max_leadlag_block[block_eq].second };
                  if (lag > 0 && lag > other_endo_max_leadlag_block[block_eq].second)
                    other_endo_max_leadlag_block[block_eq] = { other_endo_max_leadlag_block[block_eq].first, lag };
                  tmp_derivative = derivative_other_endo[block_eq];
                  {
                    map< int, map<int, int>>::const_iterator it = block_other_endo_index.find(block_eq);
                    if (it == block_other_endo_index.end())
                      block_other_endo_index[block_eq][var] = 0;
                    else
                      {
                        auto it1 = it->second.find(var);
                        if (it1 == it->second.end())
                          {
                            int size = block_other_endo_index[block_eq].size();
                            block_other_endo_index[block_eq][var] = size;
                          }
                      }
                  }
                  tmp_derivative[{ lag, { eq, var } }] = first_derivatives[{ eq, getDerivID(symbol_table.getID(eEndogenous, var), lag) }];
                  derivative_other_endo[block_eq] = tmp_derivative;
                  lag_var = other_endo_block[block_eq];
                  if (lag_var.find(lag) == lag_var.end())
                    lag_var[lag].clear();
                  lag_var[lag].insert(var);
                  other_endo_block[block_eq] = lag_var;
                }
              break;
            case eExogenous:
              if (lag < 0 && lag < -exo_max_leadlag_block[block_eq].first)
                exo_max_leadlag_block[block_eq] = { -lag, exo_max_leadlag_block[block_eq].second };
              if (lag > 0 && lag > exo_max_leadlag_block[block_eq].second)
                exo_max_leadlag_block[block_eq] = { exo_max_leadlag_block[block_eq].first, lag };
              tmp_derivative = derivative_exo[block_eq];
              {
                map< int, map<int, int>>::const_iterator it = block_exo_index.find(block_eq);
                if (it == block_exo_index.end())
                  block_exo_index[block_eq][var] = 0;
                else
                  {
                    auto it1 = it->second.find(var);
                    if (it1 == it->second.end())
                      {
                        int size = block_exo_index[block_eq].size();
                        block_exo_index[block_eq][var] = size;
                      }
                  }
              }
              tmp_derivative[{ lag, { eq, var } }] = first_derivatives[{ eq, getDerivID(symbol_table.getID(eExogenous, var), lag) }];
              derivative_exo[block_eq] = tmp_derivative;
              lag_var = exo_block[block_eq];
              if (lag_var.find(lag) == lag_var.end())
                lag_var[lag].clear();
              lag_var[lag].insert(var);
              exo_block[block_eq] = lag_var;
              break;
            case eExogenousDet:
              if (lag < 0 && lag < -exo_det_max_leadlag_block[block_eq].first)
                exo_det_max_leadlag_block[block_eq] = { -lag, exo_det_max_leadlag_block[block_eq].second };
              if (lag > 0 && lag > exo_det_max_leadlag_block[block_eq].second)
                exo_det_max_leadlag_block[block_eq] = { exo_det_max_leadlag_block[block_eq].first, lag };
              tmp_derivative = derivative_exo_det[block_eq];
              {
                map< int, map<int, int>>::const_iterator it = block_det_exo_index.find(block_eq);
                if (it == block_det_exo_index.end())
                  block_det_exo_index[block_eq][var] = 0;
                else
                  {
                    auto it1 = it->second.find(var);
                    if (it1 == it->second.end())
                      {
                        int size = block_det_exo_index[block_eq].size();
                        block_det_exo_index[block_eq][var] = size;
                      }
                  }
              }
              tmp_derivative[{ lag, { eq, var } }] = first_derivatives[{ eq, getDerivID(symbol_table.getID(eExogenous, var), lag) }];
              derivative_exo_det[block_eq] = tmp_derivative;
              lag_var = exo_det_block[block_eq];
              if (lag_var.find(lag) == lag_var.end())
                lag_var[lag].clear();
              lag_var[lag].insert(var);
              exo_det_block[block_eq] = lag_var;
              break;
            default:
              break;
            }
          if (lag < 0 && lag < -max_leadlag_block[block_eq].first)
            max_leadlag_block[block_eq] = { -lag, max_leadlag_block[block_eq].second };
          if (lag > 0 && lag > max_leadlag_block[block_eq].second)
            max_leadlag_block[block_eq] = { max_leadlag_block[block_eq].first, lag };
        }
    
    }
    
    void
    DynamicModel::collectBlockVariables()
    {
      for (unsigned int block = 0; block < getNbBlocks(); block++)
        {
          int prev_var = -1;
          int prev_lag = -999999999;
          int count_col_exo = 0;
          var_t tmp_var_exo;
          for (lag_var_t::const_iterator it = exo_block[block].begin(); it != exo_block[block].end(); it++)
            {
              int lag = it->first;
              for (int var : it->second)
                {
                  tmp_var_exo.insert(var);
                  if (prev_var != var || prev_lag != lag)
                    {
                      prev_var = var;
                      prev_lag = lag;
                      count_col_exo++;
                    }
                }
            }
          block_var_exo.emplace_back(tmp_var_exo, count_col_exo);
        }
    }
    
    void
    DynamicModel::writeDynamicFile(const string &basename, bool block, bool bytecode, bool use_dll, int order, bool julia) const
    {
      int r;
      string t_basename = basename + "_dynamic";
      if (block && bytecode)
        writeModelEquationsCode_Block(t_basename, basename, map_idx);
      else if (!block && bytecode)
        writeModelEquationsCode(t_basename, basename, map_idx);
      else if (block && !bytecode)
        {
    #ifdef _WIN32
          r = mkdir(basename.c_str());
    #else
          r = mkdir(basename.c_str(), 0777);
    #endif
          if (r < 0 && errno != EEXIST)
            {
              perror("ERROR");
              exit(EXIT_FAILURE);
            }
          writeSparseDynamicMFile(t_basename, basename);
        }
      else if (use_dll)
        writeDynamicCFile(t_basename, order);
      else if (julia)
        writeDynamicJuliaFile(basename);
      else
        {
          writeDynamicMFile(t_basename);
          writeSetAuxiliaryVariables(t_basename, julia);
        }
    }
    
    void
    DynamicModel::writeSetAuxiliaryVariables(const string &basename, const bool julia) const
    {
      ostringstream output_func_body;
      writeAuxVarRecursiveDefinitions(output_func_body, oMatlabDseries);
    
      if (output_func_body.str().empty())
        return;
    
      string func_name = basename + "_set_auxiliary_series";
      string filename = julia ? func_name + ".jl" : func_name + ".m";
      string comment = julia ? "#" : "%";
    
      ofstream output;
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function ds = " << func_name + "(ds, params)" << endl
             << comment << endl
             << comment << " Status : Computes Auxiliary variables of the dynamic model and returns a dseries" << endl
             << comment << endl
             << comment << " Warning : this file is generated automatically by Dynare" << endl
             << comment << "           from model file (.mod)" << endl << endl
             << output_func_body.str();
    
      output.close();
    }
    
    void
    DynamicModel::writeAuxVarRecursiveDefinitions(ostream &output, ExprNodeOutputType output_type) const
    {
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temporary_terms;
      temporary_terms_idxs_t temporary_terms_idxs;
      for (auto aux_equation : aux_equations)
        if (dynamic_cast<ExprNode *>(aux_equation)->containsExternalFunction())
          dynamic_cast<ExprNode *>(aux_equation)->writeExternalFunctionOutput(output, output_type,
                                                                                  temporary_terms,
                                                                                  temporary_terms_idxs,
                                                                                  tef_terms);
      for (auto aux_equation : aux_equations)
        {
          dynamic_cast<ExprNode *>(aux_equation)->writeOutput(output, output_type, temporary_terms, temporary_terms_idxs, tef_terms);
          output << ";" << endl;
        }
    }
    
    void
    DynamicModel::updateAfterVariableChange(DynamicModel &dm)
    {
      variable_node_map.clear();
      unary_op_node_map.clear();
      binary_op_node_map.clear();
      trinary_op_node_map.clear();
      external_function_node_map.clear();
      first_deriv_external_function_node_map.clear();
      second_deriv_external_function_node_map.clear();
    
      cloneDynamic(dm);
      dm.replaceMyEquations(*this);
    }
    
    void
    DynamicModel::cloneDynamic(DynamicModel &dynamic_model) const
    {
      /* Ensure that we are using the same symbol table, because at many places we manipulate
         symbol IDs rather than strings */
      assert(&symbol_table == &dynamic_model.symbol_table);
    
      // Convert model local variables (need to be done first)
      for (int it : local_variables_vector)
        dynamic_model.AddLocalVariable(it, local_variables_table.find(it)->second->cloneDynamic(dynamic_model));
    
      // Convert equations
      for (size_t i = 0; i < equations.size(); i++)
        {
          vector<pair<string, string>> eq_tags;
          for (const auto & equation_tag : equation_tags)
            if (equation_tag.first == (int)i)
              eq_tags.push_back(equation_tag.second);
          dynamic_model.addEquation(equations[i]->cloneDynamic(dynamic_model), equations_lineno[i], eq_tags);
        }
    
      // Convert auxiliary equations
      for (auto aux_equation : aux_equations)
        dynamic_model.addAuxEquation(aux_equation->cloneDynamic(dynamic_model));
    
      // Convert static_only equations
      for (size_t i = 0; i < static_only_equations.size(); i++)
        dynamic_model.addStaticOnlyEquation(static_only_equations[i]->cloneDynamic(dynamic_model),
                                            static_only_equations_lineno[i],
                                            static_only_equations_equation_tags[i]);
    
      dynamic_model.setLeadsLagsOrig();
    }
    
    void
    DynamicModel::replaceMyEquations(DynamicModel &dynamic_model) const
    {
      dynamic_model.equations.clear();
      for (size_t i = 0; i < equations.size(); i++)
        dynamic_model.addEquation(equations[i]->cloneDynamic(dynamic_model),
                                  equations_lineno[i]);
    }
    
    void
    DynamicModel::computeRamseyPolicyFOCs(const StaticModel &static_model, const bool nopreprocessoroutput)
    {
      // Add aux LM to constraints in equations
      // equation[i]->lhs = rhs becomes equation[i]->MULT_(i+1)*(lhs-rhs) = 0
      int i;
      for (i = 0; i < (int) equations.size(); i++)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equations[i]->addMultipliersToConstraints(i));
          assert(substeq != nullptr);
          equations[i] = substeq;
        }
      if (!nopreprocessoroutput)
        cout << "Ramsey Problem: added " << i << " Multipliers." << endl;
    
      // Add Planner Objective to equations to include in computeDerivIDs
      assert(static_model.equations.size() == 1);
      addEquation(static_model.equations[0]->cloneDynamic(*this), static_model.equations_lineno[0]);
    
      // Get max endo lead and max endo lag
      set<pair<int, int>> dynvars;
      int max_eq_lead = 0;
      int max_eq_lag = 0;
      for (auto & equation : equations)
        equation->collectDynamicVariables(eEndogenous, dynvars);
    
      for (const auto & dynvar : dynvars)
        {
          int lag = dynvar.second;
          if (max_eq_lead < lag)
            max_eq_lead = lag;
          else if (-max_eq_lag > lag)
            max_eq_lag = -lag;
        }
    
      // Get Discount Factor
      assert(symbol_table.exists("optimal_policy_discount_factor"));
      int symb_id = symbol_table.getID("optimal_policy_discount_factor");
      assert(symbol_table.getType(symb_id) == eParameter);
      expr_t discount_factor_node = AddVariable(symb_id, 0);
    
      // Create (modified) Lagrangian (so that we can take the derivative once at time t)
      expr_t lagrangian = Zero;
      for (i = 0; i < (int) equations.size(); i++)
        for (int lag = -max_eq_lag; lag <= max_eq_lead; lag++)
          {
            expr_t dfpower = nullptr;
            std::stringstream lagstream;
            lagstream << abs(lag);
            if (lag < 0)
              dfpower = AddNonNegativeConstant(lagstream.str());
            else if (lag == 0)
              dfpower = Zero;
            else
              dfpower = AddMinus(Zero, AddNonNegativeConstant(lagstream.str()));
    
            lagrangian = AddPlus(AddTimes(AddPower(discount_factor_node, dfpower),
                                          equations[i]->getNonZeroPartofEquation()->decreaseLeadsLags(lag)), lagrangian);
          }
    
      equations.clear();
      addEquation(AddEqual(lagrangian, Zero), -1);
      computeDerivIDs();
    
      //Compute derivatives and overwrite equations
      vector<expr_t> neweqs;
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        // For all endogenous variables with zero lag
        if (symbol_table.getType(it->first.first)  == eEndogenous && it->first.second == 0)
          neweqs.push_back(AddEqual(equations[0]->getNonZeroPartofEquation()->getDerivative(it->second), Zero));
    
      // Add new equations
      equations.clear();
      for (auto & neweq : neweqs)
        addEquation(neweq, -1);
    }
    
    void
    DynamicModel::toStatic(StaticModel &static_model) const
    {
      /* Ensure that we are using the same symbol table, because at many places we manipulate
         symbol IDs rather than strings */
      assert(&symbol_table == &static_model.symbol_table);
    
      // Convert model local variables (need to be done first)
      for (int it : local_variables_vector)
        static_model.AddLocalVariable(it, local_variables_table.find(it)->second->toStatic(static_model));
    
      // Convert equations
      int static_only_index = 0;
      for (int i = 0; i < (int) equations.size(); i++)
        {
          // Detect if equation is marked [dynamic]
          bool is_dynamic_only = false;
          vector<pair<string, string>> eq_tags;
          for (const auto & equation_tag : equation_tags)
            if (equation_tag.first == i)
              {
                eq_tags.push_back(equation_tag.second);
                if (equation_tag.second.first == "dynamic")
                  is_dynamic_only = true;
              }
    
          try
            {
              // If yes, replace it by an equation marked [static]
              if (is_dynamic_only)
                {
                  static_model.addEquation(static_only_equations[static_only_index]->toStatic(static_model), static_only_equations_lineno[static_only_index], static_only_equations_equation_tags[static_only_index]);
                  static_only_index++;
                }
              else
                static_model.addEquation(equations[i]->toStatic(static_model), equations_lineno[i], eq_tags);
            }
          catch (DataTree::DivisionByZeroException)
            {
              cerr << "...division by zero error encountred when converting equation " << i << " to static" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      // Convert auxiliary equations
      for (auto aux_equation : aux_equations)
        static_model.addAuxEquation(aux_equation->toStatic(static_model));
    }
    
    bool
    DynamicModel::ParamUsedWithLeadLag() const
    {
      return ParamUsedWithLeadLagInternal();
    }
    
    set<int>
    DynamicModel::findUnusedEndogenous()
    {
      set<int> usedEndo, unusedEndo;
      for (auto & equation : equations)
        equation->collectVariables(eEndogenous, usedEndo);
      set<int> allEndo = symbol_table.getEndogenous();
      set_difference(allEndo.begin(), allEndo.end(),
                     usedEndo.begin(), usedEndo.end(),
                     inserter(unusedEndo, unusedEndo.begin()));
      return unusedEndo;
    }
    
    set<int>
    DynamicModel::findUnusedExogenous()
    {
      set<int> usedExo, unusedExo, unobservedExo;
      for (auto & equation : equations)
        equation->collectVariables(eExogenous, usedExo);
      set<int> observedExo = symbol_table.getObservedExogenous();
      set<int> allExo = symbol_table.getExogenous();
      set_difference(allExo.begin(), allExo.end(),
                     observedExo.begin(), observedExo.end(),
                     inserter(unobservedExo, unobservedExo.begin()));
      set_difference(unobservedExo.begin(), unobservedExo.end(),
                     usedExo.begin(), usedExo.end(),
                     inserter(unusedExo, unusedExo.begin()));
      return unusedExo;
    }
    
    void
    DynamicModel::setLeadsLagsOrig()
    {
      set<pair<int, int>> dynvars;
    
      for (auto & equation : equations)
        {
          equation->collectDynamicVariables(eEndogenous, dynvars);
          equation->collectDynamicVariables(eExogenous, dynvars);
          equation->collectDynamicVariables(eExogenousDet, dynvars);
        }
    
        for (const auto & dynvar : dynvars)
        {
          int lag = dynvar.second;
          SymbolType type = symbol_table.getType(dynvar.first);
    
          if (max_lead_orig < lag)
            max_lead_orig= lag;
          else if (-max_lag_orig > lag)
            max_lag_orig = -lag;
    
          switch (type)
            {
            case eEndogenous:
              if (max_endo_lead_orig < lag)
                max_endo_lead_orig = lag;
              else if (-max_endo_lag_orig > lag)
                max_endo_lag_orig = -lag;
              break;
            case eExogenous:
              if (max_exo_lead_orig < lag)
                max_exo_lead_orig = lag;
              else if (-max_exo_lag_orig > lag)
                max_exo_lag_orig = -lag;
              break;
            case eExogenousDet:
              if (max_exo_det_lead_orig < lag)
                max_exo_det_lead_orig = lag;
              else if (-max_exo_det_lag_orig > lag)
                max_exo_det_lag_orig = -lag;
              break;
            default:
              break;
            }
        }
    }
    
    void
    DynamicModel::computeDerivIDs()
    {
      set<pair<int, int>> dynvars;
    
      for (auto & equation : equations)
        equation->collectDynamicVariables(eEndogenous, dynvars);
    
      dynJacobianColsNbr = dynvars.size();
    
      for (auto & equation : equations)
        {
          equation->collectDynamicVariables(eExogenous, dynvars);
          equation->collectDynamicVariables(eExogenousDet, dynvars);
          equation->collectDynamicVariables(eParameter, dynvars);
          equation->collectDynamicVariables(eTrend, dynvars);
          equation->collectDynamicVariables(eLogTrend, dynvars);
        }
    
      for (const auto & dynvar : dynvars)
        {
          int lag = dynvar.second;
          SymbolType type = symbol_table.getType(dynvar.first);
    
          /* Setting maximum and minimum lags.
    
             We don't want these to be affected by lead/lags on parameters: they
             are accepted for facilitating variable flipping, but are simply
             ignored. */
          if (max_lead < lag && type != eParameter)
            max_lead = lag;
          else if (-max_lag > lag && type != eParameter)
            max_lag = -lag;
    
          switch (type)
            {
            case eEndogenous:
              if (max_endo_lead < lag)
                max_endo_lead = lag;
              else if (-max_endo_lag > lag)
                max_endo_lag = -lag;
              break;
            case eExogenous:
              if (max_exo_lead < lag)
                max_exo_lead = lag;
              else if (-max_exo_lag > lag)
                max_exo_lag = -lag;
              break;
            case eExogenousDet:
              if (max_exo_det_lead < lag)
                max_exo_det_lead = lag;
              else if (-max_exo_det_lag > lag)
                max_exo_det_lag = -lag;
              break;
            default:
              break;
            }
    
          // Create a new deriv_id
          int deriv_id = deriv_id_table.size();
    
          deriv_id_table[dynvar] = deriv_id;
          inv_deriv_id_table.push_back(dynvar);
        }
    }
    
    SymbolType
    DynamicModel::getTypeByDerivID(int deriv_id) const noexcept(false)
    {
      return symbol_table.getType(getSymbIDByDerivID(deriv_id));
    }
    
    int
    DynamicModel::getLagByDerivID(int deriv_id) const noexcept(false)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].second;
    }
    
    int
    DynamicModel::getSymbIDByDerivID(int deriv_id) const noexcept(false)
    {
      if (deriv_id < 0 || deriv_id >= (int) inv_deriv_id_table.size())
        throw UnknownDerivIDException();
    
      return inv_deriv_id_table[deriv_id].first;
    }
    
    int
    DynamicModel::getDerivID(int symb_id, int lag) const noexcept(false)
    {
      auto it = deriv_id_table.find({ symb_id, lag });
      if (it == deriv_id_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    void
    DynamicModel::addAllParamDerivId(set<int> &deriv_id_set)
    {
      for (size_t i = 0; i < inv_deriv_id_table.size(); i++)
        if (symbol_table.getType(inv_deriv_id_table[i].first) == eParameter)
          deriv_id_set.insert(i);
    }
    
    void
    DynamicModel::computeDynJacobianCols(bool jacobianExo)
    {
      /* Sort the dynamic endogenous variables by lexicographic order over (lag, type_specific_symbol_id)
         and fill the dynamic columns for exogenous and exogenous deterministic */
      map<pair<int, int>, int> ordered_dyn_endo;
    
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        {
          const int &symb_id = it->first.first;
          const int &lag = it->first.second;
          const int &deriv_id = it->second;
          SymbolType type = symbol_table.getType(symb_id);
          int tsid = symbol_table.getTypeSpecificID(symb_id);
    
          switch (type)
            {
            case eEndogenous:
              ordered_dyn_endo[{ lag, tsid }] = deriv_id;
              break;
            case eExogenous:
              // At this point, dynJacobianColsNbr contains the number of dynamic endogenous
              if (jacobianExo)
                dyn_jacobian_cols_table[deriv_id] = dynJacobianColsNbr + tsid;
              break;
            case eExogenousDet:
              // At this point, dynJacobianColsNbr contains the number of dynamic endogenous
              if (jacobianExo)
                dyn_jacobian_cols_table[deriv_id] = dynJacobianColsNbr + symbol_table.exo_nbr() + tsid;
              break;
            case eParameter:
            case eTrend:
            case eLogTrend:
              // We don't assign a dynamic jacobian column to parameters or trend variables
              break;
            default:
              // Shut up GCC
              cerr << "DynamicModel::computeDynJacobianCols: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      // Fill in dynamic jacobian columns for endogenous
      int sorted_id = 0;
      for (map<pair<int, int>, int>::const_iterator it = ordered_dyn_endo.begin();
           it != ordered_dyn_endo.end(); it++)
        dyn_jacobian_cols_table[it->second] = sorted_id++;
    
      // Set final value for dynJacobianColsNbr
      if (jacobianExo)
        dynJacobianColsNbr += symbol_table.exo_nbr() + symbol_table.exo_det_nbr();
    }
    
    int
    DynamicModel::getDynJacobianCol(int deriv_id) const noexcept(false)
    {
      auto it = dyn_jacobian_cols_table.find(deriv_id);
      if (it == dyn_jacobian_cols_table.end())
        throw UnknownDerivIDException();
      else
        return it->second;
    }
    
    void
    DynamicModel::testTrendDerivativesEqualToZero(const eval_context_t &eval_context)
    {
      for (deriv_id_table_t::const_iterator it = deriv_id_table.begin();
           it != deriv_id_table.end(); it++)
        if (symbol_table.getType(it->first.first) == eTrend
            || symbol_table.getType(it->first.first) == eLogTrend)
          for (int eq = 0; eq < (int) equations.size(); eq++)
            {
              expr_t homogeneq = AddMinus(equations[eq]->get_arg1(),
                                          equations[eq]->get_arg2());
    
              // Do not run the test if the term inside the log is zero
              if (fabs(homogeneq->eval(eval_context)) > ZERO_BAND)
                {
                  expr_t testeq = AddLog(homogeneq); // F = log(lhs-rhs)
                  testeq = testeq->getDerivative(it->second); // d F / d Trend
                  for (deriv_id_table_t::const_iterator endogit = deriv_id_table.begin();
                       endogit != deriv_id_table.end(); endogit++)
                    if (symbol_table.getType(endogit->first.first) == eEndogenous)
                      {
                        double nearZero = testeq->getDerivative(endogit->second)->eval(eval_context); // eval d F / d Trend d Endog
                        if (fabs(nearZero) > ZERO_BAND)
                          {
                            cerr << "WARNING: trends not compatible with balanced growth path; the second-order cross partial of equation " << eq + 1 << " (line "
                                 << equations_lineno[eq] << ") w.r.t. trend variable "
                                 << symbol_table.getName(it->first.first) << " and endogenous variable "
                                 << symbol_table.getName(endogit->first.first) << " is not null. " << endl;
                            // Changed to warning. See discussion in #1389
                          }
                      }
                }
            }
    }
    
    void
    DynamicModel::writeParamsDerivativesFile(const string &basename, bool julia) const
    {
      if (!residuals_params_derivatives.size()
          && !residuals_params_second_derivatives.size()
          && !jacobian_params_derivatives.size()
          && !jacobian_params_second_derivatives.size()
          && !hessian_params_derivatives.size())
        return;
    
      ExprNodeOutputType output_type = (julia ? oJuliaDynamicModel : oMatlabDynamicModel);
      ostringstream model_local_vars_output;   // Used for storing model local vars
      ostringstream model_output;              // Used for storing model temp vars and equations
      ostringstream jacobian_output;           // Used for storing jacobian equations
      ostringstream hessian_output;            // Used for storing Hessian equations
      ostringstream hessian1_output;           // Used for storing Hessian equations
      ostringstream third_derivs_output;       // Used for storing third order derivatives equations
      ostringstream third_derivs1_output;      // Used for storing third order derivatives equations
    
      deriv_node_temp_terms_t tef_terms;
    
      writeTemporaryTerms(params_derivs_temporary_terms, {}, params_derivs_temporary_terms_idxs, model_output, output_type, tef_terms);
    
      for (const auto & residuals_params_derivative : residuals_params_derivatives)
        {
          int eq, param;
          tie(eq, param) = residuals_params_derivative.first;
          expr_t d1 = residuals_params_derivative.second;
    
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          jacobian_output << "rp" << LEFT_ARRAY_SUBSCRIPT(output_type) << eq+1 << ", " << param_col
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << " = ";
          d1->writeOutput(jacobian_output, output_type, params_derivs_temporary_terms, params_derivs_temporary_terms_idxs, tef_terms);
          jacobian_output << ";" << endl;
        }
    
      for (const auto & jacobian_params_derivative : jacobian_params_derivatives)
        {
          int eq, var, param;
          tie(eq, var, param) = jacobian_params_derivative.first;
          expr_t d2 = jacobian_params_derivative.second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          hessian_output << "gp" << LEFT_ARRAY_SUBSCRIPT(output_type) << eq+1 << ", " << var_col
                         << ", " << param_col << RIGHT_ARRAY_SUBSCRIPT(output_type) << " = ";
          d2->writeOutput(hessian_output, output_type, params_derivs_temporary_terms, params_derivs_temporary_terms_idxs, tef_terms);
          hessian_output << ";" << endl;
        }
    
      int i = 1;
      for (const auto &it : residuals_params_second_derivatives)
        {
          int eq, param1, param2;
          tie(eq, param1, param2) = it.first;
          expr_t d2 = it.second;
    
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          hessian1_output << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(hessian1_output, output_type, params_derivs_temporary_terms, params_derivs_temporary_terms_idxs, tef_terms);
          hessian1_output << ";" << endl;
    
          i++;
        }
    
      i = 1;
      for (const auto &it : jacobian_params_second_derivatives)
        {
          int eq, var, param1, param2;
          tie(eq, var, param1, param2) = it.first;
          expr_t d2 = it.second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          third_derivs_output << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(third_derivs_output, output_type, params_derivs_temporary_terms, params_derivs_temporary_terms_idxs, tef_terms);
          third_derivs_output << ";" << endl;
    
          i++;
        }
    
      i = 1;
      for (const auto &it : hessian_params_derivatives)
        {
          int eq, var1, var2, param;
          tie(eq, var1, var2, param) = it.first;
          expr_t d2 = it.second;
    
          int var1_col = getDynJacobianCol(var1) + 1;
          int var2_col = getDynJacobianCol(var2) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          third_derivs1_output << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var1_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var2_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(third_derivs1_output, output_type, params_derivs_temporary_terms, params_derivs_temporary_terms_idxs, tef_terms);
          third_derivs1_output << ";" << endl;
    
          i++;
        }
    
      string filename = julia ? basename + "DynamicParamsDerivs.jl" : basename + "_params_derivs.m";
      ofstream paramsDerivsFile;
      paramsDerivsFile.open(filename.c_str(), ios::out | ios::binary);
      if (!paramsDerivsFile.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      if (!julia)
        {
          // Check that we don't have more than 32 nested parenthesis because Matlab does not suppor this. See Issue #1201
          map<string, string> tmp_paren_vars;
          bool message_printed = false;
          fixNestedParenthesis(model_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(model_local_vars_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(jacobian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian1_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivs_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivs1_output, tmp_paren_vars, message_printed);
          paramsDerivsFile << "function [rp, gp, rpp, gpp, hp] = " << basename << "_params_derivs(y, x, params, steady_state, it_, ss_param_deriv, ss_param_2nd_deriv)" << endl
                           << "%" << endl
                           << "% Compute the derivatives of the dynamic model with respect to the parameters" << endl
                           << "% Inputs :" << endl
                           << "%   y         [#dynamic variables by 1] double    vector of endogenous variables in the order stored" << endl
                           << "%                                                 in M_.lead_lag_incidence; see the Manual" << endl
                           << "%   x         [nperiods by M_.exo_nbr] double     matrix of exogenous variables (in declaration order)" << endl
                           << "%                                                 for all simulation periods" << endl
                           << "%   params    [M_.param_nbr by 1] double          vector of parameter values in declaration order" << endl
                           << "%   steady_state  [M_.endo_nbr by 1] double       vector of steady state values" << endl
                           << "%   it_       scalar double                       time period for exogenous variables for which to evaluate the model" << endl
                           << "%   ss_param_deriv     [M_.eq_nbr by #params]     Jacobian matrix of the steady states values with respect to the parameters" << endl
                           << "%   ss_param_2nd_deriv [M_.eq_nbr by #params by #params] Hessian matrix of the steady states values with respect to the parameters" << endl
                           << "%" << endl
                           << "% Outputs:" << endl
                           << "%   rp        [M_.eq_nbr by #params] double    Jacobian matrix of dynamic model equations with respect to parameters " << endl
                           << "%                                              Dynare may prepend or append auxiliary equations, see M_.aux_vars" << endl
                           << "%   gp        [M_.endo_nbr by #dynamic variables by #params] double    Derivative of the Jacobian matrix of the dynamic model equations with respect to the parameters" << endl
                           << "%                                                           rows: equations in order of declaration" << endl
                           << "%                                                           columns: variables in order stored in M_.lead_lag_incidence" << endl
                           << "%   rpp       [#second_order_residual_terms by 4] double   Hessian matrix of second derivatives of residuals with respect to parameters;" << endl
                           << "%                                                              rows: respective derivative term" << endl
                           << "%                                                              1st column: equation number of the term appearing" << endl
                           << "%                                                              2nd column: number of the first parameter in derivative" << endl
                           << "%                                                              3rd column: number of the second parameter in derivative" << endl
                           << "%                                                              4th column: value of the Hessian term" << endl
                           << "%   gpp      [#second_order_Jacobian_terms by 5] double   Hessian matrix of second derivatives of the Jacobian with respect to the parameters;" << endl
                           << "%                                                              rows: respective derivative term" << endl
                           << "%                                                              1st column: equation number of the term appearing" << endl
                           << "%                                                              2nd column: column number of variable in Jacobian of the dynamic model" << endl
                           << "%                                                              3rd column: number of the first parameter in derivative" << endl
                           << "%                                                              4th column: number of the second parameter in derivative" << endl
                           << "%                                                              5th column: value of the Hessian term" << endl
                           << "%   hp      [#first_order_Hessian_terms by 5] double   Jacobian matrix of derivatives of the dynamic Hessian with respect to the parameters;" << endl
                           << "%                                                              rows: respective derivative term" << endl
                           << "%                                                              1st column: equation number of the term appearing" << endl
                           << "%                                                              2nd column: column number of first variable in Hessian of the dynamic model" << endl
                           << "%                                                              3rd column: column number of second variable in Hessian of the dynamic model" << endl
                           << "%                                                              4th column: number of the parameter in derivative" << endl
                           << "%                                                              5th column: value of the Hessian term" << endl
                           << "%" << endl
                           << "%" << endl
                           << "% Warning : this file is generated automatically by Dynare" << endl
                           << "%           from model file (.mod)" << endl << endl
                           << "T = NaN(" << params_derivs_temporary_terms_idxs.size() << ",1);" << endl
                           << model_local_vars_output.str()
                           << model_output.str()
                           << "rp = zeros(" << equations.size() << ", "
                           << symbol_table.param_nbr() << ");" << endl
                           << jacobian_output.str()
                           << "gp = zeros(" << equations.size() << ", " << dynJacobianColsNbr << ", " << symbol_table.param_nbr() << ");" << endl
                           << hessian_output.str()
                           << "if nargout >= 3" << endl
                           << "rpp = zeros(" << residuals_params_second_derivatives.size() << ",4);" << endl
                           << hessian1_output.str()
                           << "gpp = zeros(" << jacobian_params_second_derivatives.size() << ",5);" << endl
                           << third_derivs_output.str()
                           << "end" << endl
                           << "if nargout >= 5" << endl
                           << "hp = zeros(" << hessian_params_derivatives.size() << ",5);" << endl
                           << third_derivs1_output.str()
                           << "end" << endl
                           << "end" << endl;
        }
      else
        paramsDerivsFile << "module " << basename << "DynamicParamsDerivs" << endl
                         << "#" << endl
                         << "# NB: this file was automatically generated by Dynare" << endl
                         << "#     from " << basename << ".mod" << endl
                         << "#" << endl
                         << "export params_derivs" << endl << endl
                         << "function params_derivs(y, x, paramssteady_state, it_, "
                         << "ss_param_deriv, ss_param_2nd_deriv)" << endl
                         << model_local_vars_output.str()
                         << model_output.str()
                         << "rp = zeros(" << equations.size() << ", "
                         << symbol_table.param_nbr() << ");" << endl
                         << jacobian_output.str()
                         << "gp = zeros(" << equations.size() << ", " << dynJacobianColsNbr << ", " << symbol_table.param_nbr() << ");" << endl
                         << hessian_output.str()
                         << "rpp = zeros(" << residuals_params_second_derivatives.size() << ",4);" << endl
                         << hessian1_output.str()
                         << "gpp = zeros(" << jacobian_params_second_derivatives.size() << ",5);" << endl
                         << third_derivs_output.str()
                         << "hp = zeros(" << hessian_params_derivatives.size() << ",5);" << endl
                         << third_derivs1_output.str()
                         << "(rp, gp, rpp, gpp, hp)" << endl
                         << "end" << endl
                         << "end" << endl;
    
      paramsDerivsFile.close();
    }
    
    void
    DynamicModel::writeLatexFile(const string &basename, const bool write_equation_tags) const
    {
      writeLatexModelFile(basename + "_dynamic", oLatexDynamicModel, write_equation_tags);
    }
    
    void
    DynamicModel::writeLatexOriginalFile(const string &basename, const bool write_equation_tags) const
    {
      writeLatexModelFile(basename + "_original", oLatexDynamicModel, write_equation_tags);
    }
    
    void
    DynamicModel::substituteEndoLeadGreaterThanTwo(bool deterministic_model)
    {
      substituteLeadLagInternal(avEndoLead, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteEndoLagGreaterThanTwo(bool deterministic_model)
    {
      substituteLeadLagInternal(avEndoLag, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteExoLead(bool deterministic_model)
    {
      substituteLeadLagInternal(avExoLead, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteExoLag(bool deterministic_model)
    {
      substituteLeadLagInternal(avExoLag, deterministic_model, vector<string>());
    }
    
    void
    DynamicModel::substituteLeadLagInternal(aux_var_t type, bool deterministic_model, const vector<string> &subset)
    {
      ExprNode::subst_table_t subst_table;
      vector<BinaryOpNode *> neweqs;
    
      // Substitute in used model local variables
      set<int> used_local_vars;
      for (auto & equation : equations)
        equation->collectVariables(eModelLocalVariable, used_local_vars);
    
      for (int used_local_var : used_local_vars)
        {
          const expr_t value = local_variables_table.find(used_local_var)->second;
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = value->substituteEndoLeadGreaterThanTwo(subst_table, neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = value->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = value->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = value->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = value->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          local_variables_table[used_local_var] = subst;
        }
    
      // Substitute in equations
      for (auto & equation : equations)
        {
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = equation->substituteEndoLeadGreaterThanTwo(subst_table, neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = equation->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = equation->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = equation->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = equation->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          auto *substeq = dynamic_cast<BinaryOpNode *>(subst);
          assert(substeq != nullptr);
          equation = substeq;
        }
    
      // Substitute in aux_equations
      // Without this loop, the auxiliary equations in equations
      // will diverge from those in aux_equations
      for (auto & aux_equation : aux_equations)
        {
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = aux_equation->substituteEndoLeadGreaterThanTwo(subst_table,
                                                                         neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = aux_equation->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = aux_equation->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = aux_equation->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = aux_equation->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          auto *substeq = dynamic_cast<BinaryOpNode *>(subst);
          assert(substeq != nullptr);
          aux_equation = substeq;
        }
    
     // Substitute in diff_aux_equations
      // Without this loop, the auxiliary equations in equations
      // will diverge from those in diff_aux_equations
      for (auto & diff_aux_equation : diff_aux_equations)
        {
          expr_t subst;
          switch (type)
            {
            case avEndoLead:
              subst = diff_aux_equation->substituteEndoLeadGreaterThanTwo(subst_table,
                                                                         neweqs, deterministic_model);
              break;
            case avEndoLag:
              subst = diff_aux_equation->substituteEndoLagGreaterThanTwo(subst_table, neweqs);
              break;
            case avExoLead:
              subst = diff_aux_equation->substituteExoLead(subst_table, neweqs, deterministic_model);
              break;
            case avExoLag:
              subst = diff_aux_equation->substituteExoLag(subst_table, neweqs);
              break;
            case avDiffForward:
              subst = diff_aux_equation->differentiateForwardVars(subset, subst_table, neweqs);
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          auto *substeq = dynamic_cast<BinaryOpNode *>(subst);
          assert(substeq != nullptr);
          diff_aux_equation = substeq;
        }
    
      // Add new equations
      for (auto & neweq : neweqs)
        addEquation(neweq, -1);
    
      // Order of auxiliary variable definition equations:
      //  - expectation (entered before this function is called)
      //  - lead variables from lower lead to higher lead
      //  - lag variables from lower lag to higher lag
      copy(neweqs.begin(), neweqs.end(), back_inserter(aux_equations));
    
      if (neweqs.size() > 0)
        {
          cout << "Substitution of ";
          switch (type)
            {
            case avEndoLead:
              cout << "endo leads >= 2";
              break;
            case avEndoLag:
              cout << "endo lags >= 2";
              break;
            case avExoLead:
              cout << "exo leads";
              break;
            case avExoLag:
              cout << "exo lags";
              break;
            case avExpectation:
              cout << "expectation";
              break;
            case avDiffForward:
              cout << "forward vars";
              break;
            default:
              cerr << "DynamicModel::substituteLeadLagInternal: impossible case" << endl;
              exit(EXIT_FAILURE);
            }
          cout << ": added " << neweqs.size() << " auxiliary variables and equations." << endl;
        }
    }
    
    void
    DynamicModel::substituteAdl()
    {
      for (auto & equation : equations)
        equation = dynamic_cast<BinaryOpNode *>(equation->substituteAdl());
    }
    
    void
    DynamicModel::getEquationNumbersFromTags(vector<int> &eqnumbers, set<string> &eqtags) const
    {
      for (auto & eqtag : eqtags)
        for (const auto & equation_tag : equation_tags)
          if (equation_tag.second.first == "name"
              && equation_tag.second.second == eqtag)
            {
              eqnumbers.push_back(equation_tag.first);
              break;
            }
    }
    
    void
    DynamicModel::findPacExpectationEquationNumbers(vector<int> &eqnumbers) const
    {
      int i = 0;
      for (auto & equation : equations)
        {
          if (equation->containsPacExpectation())
            if (find(eqnumbers.begin(), eqnumbers.end(), i) == eqnumbers.end())
              eqnumbers.push_back(i);
          i++;
        }
    }
    
    void
    DynamicModel::substituteUnaryOps(StaticModel &static_model)
    {
      vector<int> eqnumbers(equations.size());
      iota(eqnumbers.begin(), eqnumbers.end(), 0);
      substituteUnaryOps(static_model, eqnumbers);
    }
    
    void
    DynamicModel::substituteUnaryOps(StaticModel &static_model, set<string> &var_model_eqtags)
    {
      vector<int> eqnumbers;
      getEquationNumbersFromTags(eqnumbers, var_model_eqtags);
      findPacExpectationEquationNumbers(eqnumbers);
      substituteUnaryOps(static_model, eqnumbers);
    }
    
    void
    DynamicModel::substituteUnaryOps(StaticModel &static_model, vector<int> &eqnumbers)
    {
      diff_table_t nodes;
    
      // Find matching unary ops that may be outside of diffs (i.e., those with different lags)
      set<int> used_local_vars;
      for (int eqnumber : eqnumbers)
        equations[eqnumber]->collectVariables(eModelLocalVariable, used_local_vars);
    
      // Only substitute unary ops in model local variables that appear in VAR equations
      for (auto & it : local_variables_table)
        if (used_local_vars.find(it.first) != used_local_vars.end())
          it.second->findUnaryOpNodesForAuxVarCreation(static_model, nodes);
    
      for (int eqnumber : eqnumbers)
        equations[eqnumber]->findUnaryOpNodesForAuxVarCreation(static_model, nodes);
    
      // Substitute in model local variables
      ExprNode::subst_table_t subst_table;
      vector<BinaryOpNode *> neweqs;
      for (auto & it : local_variables_table)
        it.second = it.second->substituteUnaryOpNodes(static_model, nodes, subst_table, neweqs);
    
      // Substitute in equations
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->
                                                       substituteUnaryOpNodes(static_model, nodes, subst_table, neweqs));
          assert(substeq != nullptr);
          equation = substeq;
        }
    
      // Add new equations
      for (auto & neweq : neweqs)
        addEquation(neweq, -1);
    
      copy(neweqs.begin(), neweqs.end(), front_inserter(diff_aux_equations));
    
      if (subst_table.size() > 0)
        cout << "Substitution of Unary Ops: added " << neweqs.size() << " auxiliary variables and equations." << endl;
    }
    
    void
    DynamicModel::substituteDiff(StaticModel &static_model, ExprNode::subst_table_t &diff_subst_table)
    {
      set<int> used_local_vars;
      for (const auto & equation : equations)
        equation->collectVariables(eModelLocalVariable, used_local_vars);
    
      // Only substitute diffs in model local variables that appear in VAR equations
      diff_table_t diff_table;
      for (auto & it : local_variables_table)
        if (used_local_vars.find(it.first) != used_local_vars.end())
          it.second->findDiffNodes(static_model, diff_table);
    
      for (const auto & equation : equations)
        equation->findDiffNodes(static_model, diff_table);
    
      // Substitute in model local variables
      vector<BinaryOpNode *> neweqs;
      for (auto & it : local_variables_table)
        it.second = it.second->substituteDiff(static_model, diff_table, diff_subst_table, neweqs);
    
      // Substitute in equations
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->
                                                       substituteDiff(static_model, diff_table, diff_subst_table, neweqs));
          assert(substeq != nullptr);
          equation = substeq;
        }
    
      // Add new equations
      for (auto & neweq : neweqs)
        addEquation(neweq, -1);
    
      copy(neweqs.begin(), neweqs.end(), front_inserter(diff_aux_equations));
    
      if (diff_subst_table.size() > 0)
        cout << "Substitution of Diff operator: added " << neweqs.size() << " auxiliary variables and equations." << endl;
    }
    
    void
    DynamicModel::combineDiffAuxEquations()
    {
      copy(diff_aux_equations.begin(), diff_aux_equations.end(), front_inserter(aux_equations));
    }
    
    void
    DynamicModel::substituteExpectation(bool partial_information_model)
    {
      ExprNode::subst_table_t subst_table;
      vector<BinaryOpNode *> neweqs;
    
      // Substitute in model local variables
      for (auto & it : local_variables_table)
        it.second = it.second->substituteExpectation(subst_table, neweqs, partial_information_model);
    
      // Substitute in equations
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->substituteExpectation(subst_table, neweqs, partial_information_model));
          assert(substeq != nullptr);
          equation = substeq;
        }
    
      // Add new equations
      for (auto & neweq : neweqs)
        addEquation(neweq, -1);
    
      // Add the new set of equations at the *beginning* of aux_equations
      copy(neweqs.rbegin(), neweqs.rend(), front_inserter(aux_equations));
    
      if (subst_table.size() > 0)
        {
          if (partial_information_model)
            cout << "Substitution of Expectation operator: added " << subst_table.size() << " auxiliary variables and " << neweqs.size() << " auxiliary equations." << endl;
          else
            cout << "Substitution of Expectation operator: added " << neweqs.size() << " auxiliary variables and equations." << endl;
        }
    }
    
    void
    DynamicModel::transformPredeterminedVariables()
    {
      for (auto & it : local_variables_table)
        it.second = it.second->decreaseLeadsLagsPredeterminedVariables();
    
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->decreaseLeadsLagsPredeterminedVariables());
          assert(substeq != nullptr);
          equation = substeq;
        }
    }
    
    void
    DynamicModel::detrendEquations()
    {
      // We go backwards in the list of trend_vars, to deal correctly with I(2) processes
      for (nonstationary_symbols_map_t::const_reverse_iterator it = nonstationary_symbols_map.rbegin();
           it != nonstationary_symbols_map.rend(); ++it)
        for (auto & equation : equations)
          {
            auto *substeq = dynamic_cast<BinaryOpNode *>(equation->detrend(it->first, it->second.first, it->second.second));
            assert(substeq != nullptr);
            equation = dynamic_cast<BinaryOpNode *>(substeq);
          }
    
      for (auto & equation : equations)
        {
          BinaryOpNode *substeq = dynamic_cast<BinaryOpNode *>(equation->removeTrendLeadLag(trend_symbols_map));
          assert(substeq != nullptr);
          equation = dynamic_cast<BinaryOpNode *>(substeq);
        }
    }
    
    void
    DynamicModel::removeTrendVariableFromEquations()
    {
      for (auto & equation : equations)
        {
          auto *substeq = dynamic_cast<BinaryOpNode *>(equation->replaceTrendVar());
          assert(substeq != nullptr);
          equation = dynamic_cast<BinaryOpNode *>(substeq);
        }
    }
    
    void
    DynamicModel::differentiateForwardVars(const vector<string> &subset)
    {
      substituteLeadLagInternal(avDiffForward, true, subset);
    }
    
    void
    DynamicModel::fillEvalContext(eval_context_t &eval_context) const
    {
      // First, auxiliary variables
      for (auto aux_equation : aux_equations)
        {
          assert(aux_equation->get_op_code() == oEqual);
          auto *auxvar = dynamic_cast<VariableNode *>(aux_equation->get_arg1());
          assert(auxvar != nullptr);
          try
            {
              double val = aux_equation->get_arg2()->eval(eval_context);
              eval_context[auxvar->get_symb_id()] = val;
            }
          catch (ExprNode::EvalException &e)
            {
              // Do nothing
            }
        }
    
      // Second, model local variables
      for (auto it : local_variables_table)
        {
          try
            {
              const expr_t expression = it.second;
              double val = expression->eval(eval_context);
              eval_context[it.first] = val;
            }
          catch (ExprNode::EvalException &e)
            {
              // Do nothing
            }
        }
    
      //Third, trend variables
      vector <int> trendVars = symbol_table.getTrendVarIds();
      for (vector <int>::const_iterator it = trendVars.begin();
           it != trendVars.end(); it++)
        eval_context[*it] = 2;                               //not <= 0 bc of log, not 1 bc of powers
    }
    
    bool
    DynamicModel::isModelLocalVariableUsed() const
    {
      set<int> used_local_vars;
      size_t i = 0;
      while (i < equations.size() && used_local_vars.size() == 0)
        {
          equations[i]->collectVariables(eModelLocalVariable, used_local_vars);
          i++;
        }
      return used_local_vars.size() > 0;
    }
    
    void
    DynamicModel::addStaticOnlyEquation(expr_t eq, int lineno, const vector<pair<string, string>> &eq_tags)
    {
      auto *beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq != nullptr && beq->get_op_code() == oEqual);
    
      vector<pair<string, string>> soe_eq_tags;
      for (const auto & eq_tag : eq_tags)
        soe_eq_tags.push_back(eq_tag);
    
      static_only_equations.push_back(beq);
      static_only_equations_lineno.push_back(lineno);
      static_only_equations_equation_tags.push_back(soe_eq_tags);
    }
    
    size_t
    DynamicModel::staticOnlyEquationsNbr() const
    {
      return static_only_equations.size();
    }
    
    size_t
    DynamicModel::dynamicOnlyEquationsNbr() const
    {
      set<int> eqs;
    
      for (const auto & equation_tag : equation_tags)
        if (equation_tag.second.first == "dynamic")
          eqs.insert(equation_tag.first);
    
      return eqs.size();
    }
    
    #ifndef PRIVATE_BUFFER_SIZE
    # define PRIVATE_BUFFER_SIZE 1024
    #endif
    
    bool
    DynamicModel::isChecksumMatching(const string &basename) const
    {
      boost::crc_32_type result;
    
      std::stringstream buffer;
    
      // Write equation tags
      for (const auto & equation_tag : equation_tags)
        buffer << "  " << equation_tag.first + 1
               << equation_tag.second.first
               << equation_tag.second.second;
    
      ExprNodeOutputType buffer_type = oCDynamicModel;
    
      for (int eq = 0; eq < (int) equations.size(); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->get_arg1();
          expr_t rhs = eq_node->get_arg2();
    
          // Test if the right hand side of the equation is empty.
          double vrhs = 1.0;
          try
            {
              vrhs = rhs->eval(eval_context_t());
            }
          catch (ExprNode::EvalException &e)
            {
            }
    
          if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
            {
              buffer << "lhs =";
              lhs->writeOutput(buffer, buffer_type, temporary_terms, temporary_terms_idxs);
              buffer << ";" << endl;
    
              buffer << "rhs =";
              rhs->writeOutput(buffer, buffer_type, temporary_terms, temporary_terms_idxs);
              buffer << ";" << endl;
    
              buffer << "residual" << LEFT_ARRAY_SUBSCRIPT(buffer_type)
                     << eq + ARRAY_SUBSCRIPT_OFFSET(buffer_type)
                     << RIGHT_ARRAY_SUBSCRIPT(buffer_type)
                     << "= lhs-rhs;" << endl;
            }
          else // The right hand side of the equation is empty ==> residual=lhs;
            {
              buffer << "residual" << LEFT_ARRAY_SUBSCRIPT(buffer_type)
                     << eq + ARRAY_SUBSCRIPT_OFFSET(buffer_type)
                     << RIGHT_ARRAY_SUBSCRIPT(buffer_type)
                     << " = ";
              lhs->writeOutput(buffer, buffer_type, temporary_terms, temporary_terms_idxs);
              buffer << ";" << endl;
            }
        }
    
      char private_buffer[PRIVATE_BUFFER_SIZE];
      while (buffer)
        {
          buffer.get(private_buffer, PRIVATE_BUFFER_SIZE);
          result.process_bytes(private_buffer, strlen(private_buffer));
        }
    
      bool basename_dir_exists = false;
    #ifdef _WIN32
      int r = mkdir(basename.c_str());
    #else
      int r = mkdir(basename.c_str(), 0777);
    #endif
      if (r < 0)
        if (errno != EEXIST)
          {
            perror("ERROR");
            exit(EXIT_FAILURE);
          }
        else
          basename_dir_exists = true;
    
      // check whether basename directory exist. If not, create it.
      // If it does, read old checksum if it exist
      fstream checksum_file;
      string filename = basename + "/checksum";
      unsigned int old_checksum = 0;
      // read old checksum if it exists
      if (basename_dir_exists)
        {
          checksum_file.open(filename.c_str(), ios::in | ios::binary);
          if (checksum_file.is_open())
            {
              checksum_file >> old_checksum;
              checksum_file.close();
            }
        }
      // write new checksum file if none or different from old checksum
      if (old_checksum != result.checksum())
        {
          checksum_file.open(filename.c_str(), ios::out | ios::binary);
          if (!checksum_file.is_open())
            {
              cerr << "ERROR: Can't open file " << filename << endl;
              exit(EXIT_FAILURE);
            }
          checksum_file << result.checksum();
          checksum_file.close();
          return false;
        }
    
      return true;
    }
    
    void
    DynamicModel::writeCOutput(ostream &output, const string &basename, bool block_decomposition, bool byte_code, bool use_dll, int order, bool estimation_present) const
    {
      int lag_presence[3];
      // Loop on endogenous variables
      vector<int> zeta_back, zeta_mixed, zeta_fwrd, zeta_static;
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        {
          // Loop on periods
          for (int lag = 0; lag <= 2; lag++)
            {
              lag_presence[lag] = 1;
              try
                {
                  getDerivID(symbol_table.getID(eEndogenous, endoID), lag-1);
                }
              catch (UnknownDerivIDException &e)
                {
                  lag_presence[lag] = 0;
                }
            }
          if (lag_presence[0] == 1)
            if (lag_presence[2] == 1)
              zeta_mixed.push_back(endoID);
            else
              zeta_back.push_back(endoID);
          else if (lag_presence[2] == 1)
            zeta_fwrd.push_back(endoID);
          else
            zeta_static.push_back(endoID);
    
        }
      output << "size_t nstatic = " << zeta_static.size() << ";" << endl
             << "size_t nfwrd   = " << zeta_fwrd.size() << ";" << endl
             << "size_t nback   = " << zeta_back.size() << ";" << endl
             << "size_t nmixed  = " << zeta_mixed.size() << ";" << endl;
      output << "size_t zeta_static[" << zeta_static.size() << "] = {";
      for (auto i = zeta_static.begin(); i != zeta_static.end(); ++i)
        {
          if (i != zeta_static.begin())
            output << ",";
          output << *i;
        }
      output << "};" << endl;
    
      output << "size_t zeta_back[" << zeta_back.size() << "] = {";
      for (auto i = zeta_back.begin(); i != zeta_back.end(); ++i)
        {
          if (i != zeta_back.begin())
            output << ",";
          output << *i;
        }
      output << "};" << endl;
    
      output << "size_t zeta_fwrd[" << zeta_fwrd.size() << "] = {";
      for (auto i = zeta_fwrd.begin(); i != zeta_fwrd.end(); ++i)
        {
          if (i != zeta_fwrd.begin())
            output << ",";
          output << *i;
        }
      output << "};" << endl;
    
      output << "size_t zeta_mixed[" << zeta_mixed.size() << "] = {";
      for (auto i = zeta_mixed.begin(); i != zeta_mixed.end(); ++i)
        {
          if (i != zeta_mixed.begin())
            output << ",";
          output << *i;
        }
      output << "};" << endl;
    
      // Write number of non-zero derivatives
      // Use -1 if the derivatives have not been computed
      output << "int *NNZDerivatives[3] = {";
      switch (order)
        {
        case 0:
          output << NNZDerivatives[0] << ",-1,-1};" << endl;
          break;
        case 1:
          output << NNZDerivatives[0] << "," << NNZDerivatives[1] << ",-1};" << endl;
          break;
        case 2:
          output << NNZDerivatives[0] << "," << NNZDerivatives[1] << "," << NNZDerivatives[2] << "};" << endl;
          break;
        default:
          cerr << "Order larger than 3 not implemented" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    DynamicModel::writeResidualsC(const string &basename, bool cuda) const
    {
      string filename = basename + "_residuals.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes residuals of the model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model " << basename << "(.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      // even for residuals if doing Ramsey
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      mDynamicModelFile << "void Residuals(const double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual)" << endl
                        << "{" << endl;
    
      ostringstream model_output;    // Used for storing model equations
      writeModelEquations(model_output, oCDynamic2Model);
    
      mDynamicModelFile << "  double lhs, rhs;" << endl
                        << endl
                        << "  /* Residual equations */" << endl
                        << model_output.str()
                        << "}" << endl;
    
      writePowerDeriv(mDynamicModelFile);
      writeNormcdf(mDynamicModelFile);
      mDynamicModelFile.close();
    
    }
    
    void
    DynamicModel::writeFirstDerivativesC(const string &basename, bool cuda) const
    {
      string filename = basename + "_first_derivatives.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes first order derivatives of the model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model " << basename << "(.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      mDynamicModelFile << "void FirstDerivatives(const double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3)" << endl
                        << "{" << endl;
    
      // Writing Jacobian
      for (const auto & first_derivative : first_derivatives)
        {
          int eq = first_derivative.first.first;
          int var = first_derivative.first.second;
          expr_t d1 = first_derivative.second;
    
          jacobianHelper(mDynamicModelFile, eq, getDynJacobianCol(var), oCDynamicModel);
          mDynamicModelFile << "=";
          // oCStaticModel makes reference to the static variables
          // oCDynamicModel makes reference to the dynamic variables
          d1->writeOutput(mDynamicModelFile, oCDynamicModel, temporary_terms, {}, {});
          mDynamicModelFile << ";" << endl;
        }
    
      mDynamicModelFile << "}" << endl;
    
      mDynamicModelFile.close();
    
    }
    
    // using compressed sparse row format (CSR)
    void
    DynamicModel::writeFirstDerivativesC_csr(const string &basename, bool cuda) const
    {
      string filename = basename + "_first_derivatives.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes first order derivatives of the model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model " << basename << "(.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      mDynamicModelFile << "void FirstDerivatives(const double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, int *row_ptr, int *col_ptr, double *value)" << endl
                        << "{" << endl;
    
      int cols_nbr = 3*symbol_table.endo_nbr() + symbol_table.exo_nbr() + symbol_table.exo_det_nbr();
    
      // Indexing derivatives in column order
      vector<derivative> D;
      for (const auto & first_derivative : first_derivatives)
        {
          int eq = first_derivative.first.first;
          int dynvar = first_derivative.first.second;
          int lag = getLagByDerivID(dynvar);
          int symb_id = getSymbIDByDerivID(dynvar);
          SymbolType type = getTypeByDerivID(dynvar);
          int tsid = symbol_table.getTypeSpecificID(symb_id);
          int col_id;
          switch (type)
            {
            case eEndogenous:
              col_id = tsid+(lag+1)*symbol_table.endo_nbr();
              break;
            case eExogenous:
              col_id = tsid+3*symbol_table.endo_nbr();
              break;
            case eExogenousDet:
              col_id = tsid+3*symbol_table.endo_nbr()+symbol_table.exo_nbr();
              break;
            default:
              std::cerr << "This case shouldn't happen" << std::endl;
              exit(EXIT_FAILURE);
            }
          derivative deriv(col_id + eq *cols_nbr, col_id, eq, first_derivative.second);
          D.push_back(deriv);
        }
      sort(D.begin(), D.end(), derivative_less_than());
    
      // writing sparse Jacobian
      vector<int> row_ptr(equations.size());
      fill(row_ptr.begin(), row_ptr.end(), 0.0);
      int k = 0;
      for (vector<derivative>::const_iterator it = D.begin(); it != D.end(); ++it)
        {
          row_ptr[it->row_nbr]++;
          mDynamicModelFile << "col_ptr[" << k << "] "
                            << "=" << it->col_nbr << ";" << endl;
          mDynamicModelFile << "value[" << k << "] = ";
          // oCstaticModel makes reference to the static variables
          it->value->writeOutput(mDynamicModelFile, oCDynamic2Model, temporary_terms, {}, {});
          mDynamicModelFile << ";" << endl;
          k++;
        }
    
      // row_ptr must point to the relative address of the first element of the row
      int cumsum = 0;
      mDynamicModelFile << "int row_ptr_data[" <<  row_ptr.size() + 1 << "] = { 0";
      for (int & it : row_ptr)
        {
          cumsum += it;
          mDynamicModelFile << ", " << cumsum;
        }
      mDynamicModelFile << "};" << endl
                        << "int i;" << endl
                        << "for (i=0; i < " << row_ptr.size() + 1 << "; i++) row_ptr[i] = row_ptr_data[i];" << endl;
      mDynamicModelFile << "}" << endl;
    
      mDynamicModelFile.close();
    
    }
    void
    DynamicModel::writeSecondDerivativesC_csr(const string &basename, bool cuda) const
    {
    
      string filename = basename + "_second_derivatives.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes second order derivatives of the model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model " << basename << "(.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      mDynamicModelFile << "void SecondDerivatives(const double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, int *row_ptr, int *col_ptr, double *value)" << endl
                        << "{" << endl;
    
      // Indexing derivatives in column order
      vector<derivative> D;
      int hessianColsNbr = dynJacobianColsNbr*dynJacobianColsNbr;
      for (const auto & second_derivative : second_derivatives)
        {
          int eq, var1, var2;
          tie(eq, var1, var2) = second_derivative.first;
    
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
    
          int col_nb = id1 * dynJacobianColsNbr + id2;
    
          derivative deriv(col_nb + eq *hessianColsNbr, col_nb, eq, second_derivative.second);
          D.push_back(deriv);
          if (id1 != id2)
            {
              col_nb = id2 * dynJacobianColsNbr + id1;
              derivative deriv(col_nb + eq *hessianColsNbr, col_nb, eq, second_derivative.second);
              D.push_back(deriv);
            }
        }
      sort(D.begin(), D.end(), derivative_less_than());
    
      // Writing Hessian
      vector<int> row_ptr(equations.size());
      fill(row_ptr.begin(), row_ptr.end(), 0.0);
      int k = 0;
      for (vector<derivative>::const_iterator it = D.begin(); it != D.end(); ++it)
        {
          row_ptr[it->row_nbr]++;
          mDynamicModelFile << "col_ptr[" << k << "] "
                            << "=" << it->col_nbr << ";" << endl;
          mDynamicModelFile << "value[" << k << "] = ";
          // oCstaticModel makes reference to the static variables
          it->value->writeOutput(mDynamicModelFile, oCStaticModel, temporary_terms, {}, {});
          mDynamicModelFile << ";" << endl;
          k++;
        }
    
      // row_ptr must point to the relative address of the first element of the row
      int cumsum = 0;
      mDynamicModelFile << "row_ptr = [ 0";
      for (int & it : row_ptr)
        {
          cumsum += it;
          mDynamicModelFile << ", " << cumsum;
        }
      mDynamicModelFile << "];" << endl;
    
      mDynamicModelFile << "}" << endl;
    
      writePowerDeriv(mDynamicModelFile);
      writeNormcdf(mDynamicModelFile);
      mDynamicModelFile.close();
    }
    
    void
    DynamicModel::writeThirdDerivativesC_csr(const string &basename, bool cuda) const
    {
      string filename = basename + "_third_derivatives.c";
      ofstream mDynamicModelFile, mDynamicMexFile;
    
      mDynamicModelFile.open(filename.c_str(), ios::out | ios::binary);
      if (!mDynamicModelFile.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      mDynamicModelFile << "/*" << endl
                        << " * " << filename << " : Computes third order derivatives of the model for Dynare" << endl
                        << " *" << endl
                        << " * Warning : this file is generated automatically by Dynare" << endl
                        << " *           from model " << basename << "(.mod)" << endl
                        << " */" << endl
    #if defined(_WIN32) || defined(__CYGWIN32__) || defined(__MINGW32__)
                        << "#ifdef _MSC_VER" << endl
                        << "#define _USE_MATH_DEFINES" << endl
                        << "#endif" << endl
    #endif
                        << "#include <math.h>" << endl;
    
      mDynamicModelFile << "#include <stdlib.h>" << endl;
    
      mDynamicModelFile << "#define max(a, b) (((a) > (b)) ? (a) : (b))" << endl
                        << "#define min(a, b) (((a) > (b)) ? (b) : (a))" << endl;
    
      // Write function definition if oPowerDeriv is used
      writePowerDerivCHeader(mDynamicModelFile);
      writeNormcdfCHeader(mDynamicModelFile);
    
      mDynamicModelFile << "void ThirdDerivatives(const double *y, double *x, int nb_row_x, double *params, double *steady_state, int it_, double *residual, double *g1, double *v2, double *v3)" << endl
                        << "{" << endl;
    
      vector<derivative> D;
      int hessianColsNbr = dynJacobianColsNbr*dynJacobianColsNbr;
      int thirdDerivativesColsNbr = hessianColsNbr*dynJacobianColsNbr;
      for (const auto & third_derivative : third_derivatives)
        {
          int eq, var1, var2, var3;
          tie(eq, var1, var2, var3) = third_derivative.first;
    
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
          int id3 = getDynJacobianCol(var3);
    
          // Reference column number for the g3 matrix (with symmetrical derivatives)
          vector<long unsigned int>  cols;
          long unsigned int col_nb = id1 * hessianColsNbr + id2 * dynJacobianColsNbr + id3;
          int thirdDColsNbr = hessianColsNbr*dynJacobianColsNbr;
          derivative deriv(col_nb + eq *thirdDColsNbr, col_nb, eq, third_derivative.second);
          D.push_back(deriv);
          cols.push_back(col_nb);
          col_nb = id1 * hessianColsNbr + id3 * dynJacobianColsNbr + id2;
          if (find(cols.begin(), cols.end(), col_nb) == cols.end())
            {
              derivative deriv(col_nb + eq *thirdDerivativesColsNbr, col_nb, eq, third_derivative.second);
              D.push_back(deriv);
              cols.push_back(col_nb);
            }
          col_nb = id2 * hessianColsNbr + id1 * dynJacobianColsNbr + id3;
          if (find(cols.begin(), cols.end(), col_nb) == cols.end())
            {
              derivative deriv(col_nb + eq *thirdDerivativesColsNbr, col_nb, eq, third_derivative.second);
              D.push_back(deriv);
              cols.push_back(col_nb);
            }
          col_nb = id2 * hessianColsNbr + id3 * dynJacobianColsNbr + id1;
          if (find(cols.begin(), cols.end(), col_nb) == cols.end())
            {
              derivative deriv(col_nb + eq *thirdDerivativesColsNbr, col_nb, eq, third_derivative.second);
              D.push_back(deriv);
              cols.push_back(col_nb);
            }
          col_nb = id3 * hessianColsNbr + id1 * dynJacobianColsNbr + id2;
          if (find(cols.begin(), cols.end(), col_nb) == cols.end())
            {
              derivative deriv(col_nb + eq *thirdDerivativesColsNbr, col_nb, eq, third_derivative.second);
              D.push_back(deriv);
              cols.push_back(col_nb);
            }
          col_nb = id3 * hessianColsNbr + id2 * dynJacobianColsNbr + id1;
          if (find(cols.begin(), cols.end(), col_nb) == cols.end())
            {
              derivative deriv(col_nb + eq *thirdDerivativesColsNbr, col_nb, eq, third_derivative.second);
              D.push_back(deriv);
            }
        }
    
      sort(D.begin(), D.end(), derivative_less_than());
    
      vector<int> row_ptr(equations.size());
      fill(row_ptr.begin(), row_ptr.end(), 0.0);
      int k = 0;
      for (vector<derivative>::const_iterator it = D.begin(); it != D.end(); ++it)
        {
          row_ptr[it->row_nbr]++;
          mDynamicModelFile << "col_ptr[" << k << "] "
                            << "=" << it->col_nbr << ";" << endl;
          mDynamicModelFile << "value[" << k << "] = ";
          // oCstaticModel makes reference to the static variables
          it->value->writeOutput(mDynamicModelFile, oCStaticModel, temporary_terms, {}, {});
          mDynamicModelFile << ";" << endl;
          k++;
        }
    
      // row_ptr must point to the relative address of the first element of the row
      int cumsum = 0;
      mDynamicModelFile << "row_ptr = [ 0";
      for (int & it : row_ptr)
        {
          cumsum += it;
          mDynamicModelFile << ", " << cumsum;
        }
      mDynamicModelFile << "];" << endl;
    
      mDynamicModelFile << "}" << endl;
    
      writePowerDeriv(mDynamicModelFile);
      writeNormcdf(mDynamicModelFile);
      mDynamicModelFile.close();
    
    }
    
    void
    DynamicModel::writeCCOutput(ostream &output, const string &basename, bool block_decomposition, bool byte_code, bool use_dll, int order, bool estimation_present) const
    {
      int lag_presence[3];
      // Loop on endogenous variables
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        {
          // Loop on periods
          for (int lag = 0; lag <= 2; lag++)
            {
              lag_presence[lag] = 1;
              try
                {
                  getDerivID(symbol_table.getID(eEndogenous, endoID), lag-1);
                }
              catch (UnknownDerivIDException &e)
                {
                  lag_presence[lag] = 0;
                }
            }
          if (lag_presence[0] == 1)
            if (lag_presence[2] == 1)
              output << "zeta_mixed.push_back(" << endoID << ");" << endl;
            else
              output << "zeta_back.push_back(" << endoID << ");" << endl;
          else if (lag_presence[2] == 1)
            output << "zeta_fwrd.push_back(" << endoID << ");" << endl;
          else
            output << "zeta_static.push_back(" << endoID << ");" << endl;
    
        }
      output << "nstatic = zeta_static.size();" << endl
             << "nfwrd   = zeta_fwrd.size();" << endl
             << "nback   = zeta_back.size();" << endl
             << "nmixed  = zeta_mixed.size();" << endl;
    
      // Write number of non-zero derivatives
      // Use -1 if the derivatives have not been computed
      output << endl
             << "NNZDerivatives.push_back(" << NNZDerivatives[0] << ");" << endl;
      if (order > 1)
        {
          output << "NNZDerivatives.push_back(" << NNZDerivatives[1] << ");" << endl;
          if (order > 2)
            output << "NNZDerivatives.push_back(" << NNZDerivatives[2] << ");" << endl;
          else
            output << "NNZDerivatives.push_back(-1);" << endl;
        }
      else
        output << "NNZDerivatives.push_back(-1);" << endl
               << "NNZDerivatives.push_back(-1);" << endl;
    }
    
    void
    DynamicModel::writeJsonOutput(ostream &output) const
    {
      writeJsonModelEquations(output, false);
      output << ", ";
      writeJsonXrefs(output);
    }
    
    void
    DynamicModel::writeJsonXrefsHelper(ostream &output, const map<pair<int, int>, set<int>> &xrefs) const
    {
      for (auto it = xrefs.begin();
           it != xrefs.end(); it++)
        {
          if (it != xrefs.begin())
            output << ", ";
          output << "{\"name\": \"" << symbol_table.getName(it->first.first) << "\""
                 << ", \"shift\": " << it->first.second
                 << ", \"equations\": [";
          for (auto it1 = it->second.begin();
               it1 != it->second.end(); it1++)
            {
              if (it1 != it->second.begin())
                output << ", ";
              output << *it1 + 1;
            }
          output << "]}";
        }
    }
    
    void
    DynamicModel::writeJsonXrefs(ostream &output) const
    {
      output << "\"xrefs\": {"
             << "\"parameters\": [";
      writeJsonXrefsHelper(output, xref_param);
      output << "]"
             << ", \"endogenous\": [";
      writeJsonXrefsHelper(output, xref_endo);
      output << "]"
             << ", \"exogenous\": [";
        writeJsonXrefsHelper(output, xref_exo);
      output << "]"
             << ", \"exogenous_deterministic\": [";
      writeJsonXrefsHelper(output, xref_exo_det);
      output << "]}" << endl;
    }
    
    void
    DynamicModel::writeJsonOriginalModelOutput(ostream &output) const
    {
      writeJsonModelEquations(output, false);
    }
    
    void
    DynamicModel::writeJsonDynamicModelInfo(ostream &output) const
    {
      output << "\"model_info\": {"
             << "\"lead_lag_incidence\": [";
      // Loop on endogenous variables
      int nstatic = 0,
        nfwrd   = 0,
        npred   = 0,
        nboth   = 0;
      for (int endoID = 0; endoID < symbol_table.endo_nbr(); endoID++)
        {
          if (endoID != 0)
            output << ",";
          output << "[";
          int sstatic = 1,
            sfwrd   = 0,
            spred   = 0,
            sboth   = 0;
          // Loop on periods
          for (int lag = -max_endo_lag; lag <= max_endo_lead; lag++)
            {
              // Print variableID if exists with current period, otherwise print 0
              try
                {
                  if (lag != -max_endo_lag)
                    output << ",";
                  int varID = getDerivID(symbol_table.getID(eEndogenous, endoID), lag);
                  output << " " << getDynJacobianCol(varID) + 1;
                  if (lag == -1)
                    {
                      sstatic = 0;
                      spred = 1;
                    }
                  else if (lag == 1)
                    {
                      if (spred == 1)
                        {
                          sboth = 1;
                          spred = 0;
                        }
                      else
                        {
                          sstatic = 0;
                          sfwrd = 1;
                        }
                    }
                }
              catch (UnknownDerivIDException &e)
                {
                  output << " 0";
                }
            }
          nstatic += sstatic;
          nfwrd   += sfwrd;
          npred   += spred;
          nboth   += sboth;
          output << "]";
        }
      output << "], "
             << "\"nstatic\": " << nstatic << ", "
             << "\"nfwrd\": " << nfwrd << ", "
             << "\"npred\": " << npred << ", "
             << "\"nboth\": " << nboth << ", "
             << "\"nsfwrd\": " << nfwrd+nboth << ", "
             << "\"nspred\": " << npred+nboth << ", "
             << "\"ndynamic\": " << npred+nboth+nfwrd << endl;
      output << "}";
    }
    
    void
    DynamicModel::writeJsonComputingPassOutput(ostream &output, bool writeDetails) const
    {
      ostringstream model_local_vars_output;  // Used for storing model local vars
      ostringstream model_output;             // Used for storing model temp vars and equations
      ostringstream jacobian_output;          // Used for storing jacobian equations
      ostringstream hessian_output;           // Used for storing Hessian equations
      ostringstream third_derivatives_output; // Used for storing third order derivatives equations
    
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temp_term_empty;
      temporary_terms_t temp_term_union = temporary_terms_res;
      temporary_terms_t temp_term_union_m_1;
    
      string concat = "";
      int hessianColsNbr = dynJacobianColsNbr * dynJacobianColsNbr;
    
      writeJsonModelLocalVariables(model_local_vars_output, tef_terms);
    
      writeJsonTemporaryTerms(temporary_terms_res, temp_term_union_m_1, model_output, tef_terms, concat);
      model_output << ", ";
      writeJsonModelEquations(model_output, true);
    
      // Writing Jacobian
      temp_term_union_m_1 = temp_term_union;
      temp_term_union.insert(temporary_terms_g1.begin(), temporary_terms_g1.end());
      concat = "jacobian";
      writeJsonTemporaryTerms(temp_term_union, temp_term_union_m_1, jacobian_output, tef_terms, concat);
      jacobian_output << ", \"jacobian\": {"
                      << "  \"nrows\": " << equations.size()
                      << ", \"ncols\": " << dynJacobianColsNbr
                      << ", \"entries\": [";
      for (auto it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          if (it != first_derivatives.begin())
            jacobian_output << ", ";
    
          int eq, var;
          tie(eq, var) = it->first;
          int col =  getDynJacobianCol(var);
          expr_t d1 = it->second;
    
          if (writeDetails)
            jacobian_output << "{\"eq\": " << eq + 1;
          else
            jacobian_output << "{\"row\": " << eq + 1;
    
          jacobian_output << ", \"col\": " << col + 1;
    
          if (writeDetails)
            jacobian_output << ", \"var\": \"" << symbol_table.getName(getSymbIDByDerivID(var)) << "\""
                            << ", \"shift\": " << getLagByDerivID(var);
    
          jacobian_output << ", \"val\": \"";
          d1->writeJsonOutput(jacobian_output, temp_term_union, tef_terms);
          jacobian_output << "\"}" << endl;
        }
      jacobian_output << "]}";
    
      // Writing Hessian
      temp_term_union_m_1 = temp_term_union;
      temp_term_union.insert(temporary_terms_g2.begin(), temporary_terms_g2.end());
      concat = "hessian";
      writeJsonTemporaryTerms(temp_term_union, temp_term_union_m_1, hessian_output, tef_terms, concat);
      hessian_output << ", \"hessian\": {"
                     << "  \"nrows\": " << equations.size()
                     << ", \"ncols\": " << hessianColsNbr
                     << ", \"entries\": [";
      for (auto it = second_derivatives.begin();
           it != second_derivatives.end(); it++)
        {
          if (it != second_derivatives.begin())
            hessian_output << ", ";
    
          int eq, var1, var2;
          tie(eq, var1, var2) = it->first;
          expr_t d2 = it->second;
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
          int col_nb = id1 * dynJacobianColsNbr + id2;
          int col_nb_sym = id2 * dynJacobianColsNbr + id1;
    
          if (writeDetails)
            hessian_output << "{\"eq\": " << eq + 1;
          else
            hessian_output << "{\"row\": " << eq + 1;
    
          hessian_output << ", \"col\": [" << col_nb + 1;
          if (id1 != id2)
            hessian_output << ", " << col_nb_sym + 1;
          hessian_output << "]";
    
          if (writeDetails)
            hessian_output << ", \"var1\": \"" << symbol_table.getName(getSymbIDByDerivID(var1)) << "\""
                           << ", \"shift1\": " << getLagByDerivID(var1)
                           << ", \"var2\": \"" << symbol_table.getName(getSymbIDByDerivID(var2)) << "\""
                           << ", \"shift2\": " << getLagByDerivID(var2);
    
          hessian_output << ", \"val\": \"";
          d2->writeJsonOutput(hessian_output, temp_term_union, tef_terms);
          hessian_output << "\"}" << endl;
        }
      hessian_output << "]}";
    
      // Writing third derivatives
      temp_term_union_m_1 = temp_term_union;
      temp_term_union.insert(temporary_terms_g3.begin(), temporary_terms_g3.end());
      concat = "third_derivatives";
      writeJsonTemporaryTerms(temp_term_union, temp_term_union_m_1, third_derivatives_output, tef_terms, concat);
      third_derivatives_output << ", \"third_derivative\": {"
                               << "  \"nrows\": " << equations.size()
                               << ", \"ncols\": " << hessianColsNbr * dynJacobianColsNbr
                               << ", \"entries\": [";
      for (auto it = third_derivatives.begin();
           it != third_derivatives.end(); it++)
        {
          if (it != third_derivatives.begin())
            third_derivatives_output << ", ";
    
          int eq, var1, var2, var3;
          tie(eq, var1, var2, var3) = it->first;
          expr_t d3 = it->second;
    
          if (writeDetails)
            third_derivatives_output << "{\"eq\": " << eq + 1;
          else
            third_derivatives_output << "{\"row\": " << eq + 1;
    
          int id1 = getDynJacobianCol(var1);
          int id2 = getDynJacobianCol(var2);
          int id3 = getDynJacobianCol(var3);
          set<int> cols;
          cols.insert(id1 * hessianColsNbr + id2 * dynJacobianColsNbr + id3);
          cols.insert(id1 * hessianColsNbr + id3 * dynJacobianColsNbr + id2);
          cols.insert(id2 * hessianColsNbr + id1 * dynJacobianColsNbr + id3);
          cols.insert(id2 * hessianColsNbr + id3 * dynJacobianColsNbr + id1);
          cols.insert(id3 * hessianColsNbr + id1 * dynJacobianColsNbr + id2);
          cols.insert(id3 * hessianColsNbr + id2 * dynJacobianColsNbr + id1);
    
          third_derivatives_output << ", \"col\": [";
          for (auto it2 = cols.begin(); it2 != cols.end(); it2++)
            {
              if (it2 != cols.begin())
                third_derivatives_output << ", ";
              third_derivatives_output << *it2 + 1;
            }
          third_derivatives_output << "]";
    
          if (writeDetails)
            third_derivatives_output << ", \"var1\": \"" << symbol_table.getName(getSymbIDByDerivID(var1)) << "\""
                                     << ", \"shift1\": " << getLagByDerivID(var1)
                                     << ", \"var2\": \"" << symbol_table.getName(getSymbIDByDerivID(var2)) << "\""
                                     << ", \"shift2\": " << getLagByDerivID(var2)
                                     << ", \"var3\": \"" << symbol_table.getName(getSymbIDByDerivID(var3)) << "\""
                                     << ", \"shift3\": " << getLagByDerivID(var3);
    
          third_derivatives_output << ", \"val\": \"";
          d3->writeJsonOutput(third_derivatives_output, temp_term_union, tef_terms);
          third_derivatives_output << "\"}" << endl;
        }
      third_derivatives_output << "]}";
    
      if (writeDetails)
        output << "\"dynamic_model\": {";
      else
        output << "\"dynamic_model_simple\": {";
      output << model_local_vars_output.str()
             << ", " << model_output.str()
             << ", " << jacobian_output.str()
             << ", " << hessian_output.str()
             << ", " << third_derivatives_output.str()
             << "}";
    }
    
    void
    DynamicModel::writeJsonParamsDerivativesFile(ostream &output, bool writeDetails) const
    {
      if (!residuals_params_derivatives.size()
          && !residuals_params_second_derivatives.size()
          && !jacobian_params_derivatives.size()
          && !jacobian_params_second_derivatives.size()
          && !hessian_params_derivatives.size())
        return;
    
      ostringstream model_local_vars_output;   // Used for storing model local vars
      ostringstream model_output;              // Used for storing model temp vars and equations
      ostringstream jacobian_output;           // Used for storing jacobian equations
      ostringstream hessian_output;            // Used for storing Hessian equations
      ostringstream hessian1_output;           // Used for storing Hessian equations
      ostringstream third_derivs_output;       // Used for storing third order derivatives equations
      ostringstream third_derivs1_output;      // Used for storing third order derivatives equations
    
      deriv_node_temp_terms_t tef_terms;
      writeJsonModelLocalVariables(model_local_vars_output, tef_terms);
    
      temporary_terms_t temp_terms_empty;
      string concat = "all";
      writeJsonTemporaryTerms(params_derivs_temporary_terms, temp_terms_empty, model_output, tef_terms, concat);
      jacobian_output << "\"deriv_wrt_params\": {"
                      << "  \"neqs\": " << equations.size()
                      << ", \"nparamcols\": " << symbol_table.param_nbr()
                      << ", \"entries\": [";
      for (auto it = residuals_params_derivatives.begin();
           it != residuals_params_derivatives.end(); it++)
        {
          if (it != residuals_params_derivatives.begin())
            jacobian_output << ", ";
    
          int eq, param;
          tie(eq, param) = it->first;
          expr_t d1 = it->second;
    
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            jacobian_output << "{\"eq\": " << eq + 1;
          else
            jacobian_output << "{\"row\": " << eq + 1;
    
          jacobian_output << ", \"param_col\": " << param_col + 1;
    
          if (writeDetails)
            jacobian_output << ", \"param\": \"" << symbol_table.getName(getSymbIDByDerivID(param)) << "\"";
    
          jacobian_output << ", \"val\": \"";
          d1->writeJsonOutput(jacobian_output, params_derivs_temporary_terms, tef_terms);
          jacobian_output << "\"}" << endl;
        }
      jacobian_output << "]}";
      hessian_output << "\"deriv_jacobian_wrt_params\": {"
                     << "  \"neqs\": " << equations.size()
                     << ", \"nvarcols\": " << dynJacobianColsNbr
                     << ", \"nparamcols\": " << symbol_table.param_nbr()
                     << ", \"entries\": [";
      for (auto it = jacobian_params_derivatives.begin();
           it != jacobian_params_derivatives.end(); it++)
        {
          if (it != jacobian_params_derivatives.begin())
            hessian_output << ", ";
    
          int eq, var, param;
          tie(eq, var, param) = it->first;
          expr_t d2 = it->second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            hessian_output << "{\"eq\": " << eq + 1;
          else
            hessian_output << "{\"row\": " << eq + 1;
    
          hessian_output << ", \"var_col\": " << var_col + 1
                         << ", \"param_col\": " << param_col + 1;
    
          if (writeDetails)
          hessian_output << ", \"var\": \"" << symbol_table.getName(getSymbIDByDerivID(var)) << "\""
                         << ", \"lag\": " << getLagByDerivID(var)
                         << ", \"param\": \"" << symbol_table.getName(getSymbIDByDerivID(param)) << "\"";
    
          hessian_output << ", \"val\": \"";
          d2->writeJsonOutput(hessian_output, params_derivs_temporary_terms, tef_terms);
          hessian_output << "\"}" << endl;
        }
      hessian_output << "]}";
    
      hessian1_output << "\"second_deriv_residuals_wrt_params\": {"
                      << "  \"nrows\": " << equations.size()
                      << ", \"nparam1cols\": " << symbol_table.param_nbr()
                      << ", \"nparam2cols\": " << symbol_table.param_nbr()
                      << ", \"entries\": [";
      for (auto it = residuals_params_second_derivatives.begin();
           it != residuals_params_second_derivatives.end(); ++it)
        {
          if (it != residuals_params_second_derivatives.begin())
            hessian1_output << ", ";
    
          int eq, param1, param2;
          tie(eq, param1, param2) = it->first;
          expr_t d2 = it->second;
    
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          if (writeDetails)
            hessian1_output << "{\"eq\": " << eq + 1;
          else
            hessian1_output << "{\"row\": " << eq + 1;
          hessian1_output << ", \"param1_col\": " << param1_col + 1
                          << ", \"param2_col\": " << param2_col + 1;
    
          if (writeDetails)
            hessian1_output << ", \"param1\": \"" << symbol_table.getName(getSymbIDByDerivID(param1)) << "\""
                            << ", \"param2\": \"" << symbol_table.getName(getSymbIDByDerivID(param2)) << "\"";
    
          hessian1_output << ", \"val\": \"";
          d2->writeJsonOutput(hessian1_output, params_derivs_temporary_terms, tef_terms);
          hessian1_output << "\"}" << endl;
        }
      hessian1_output << "]}";
      third_derivs_output << "\"second_deriv_jacobian_wrt_params\": {"
                          << "  \"neqs\": " << equations.size()
                          << ", \"nvarcols\": " << dynJacobianColsNbr
                          << ", \"nparam1cols\": " << symbol_table.param_nbr()
                          << ", \"nparam2cols\": " << symbol_table.param_nbr()
                          << ", \"entries\": [";
      for (auto it = jacobian_params_second_derivatives.begin();
           it != jacobian_params_second_derivatives.end(); ++it)
        {
          if (it != jacobian_params_second_derivatives.begin())
            third_derivs_output << ", ";
    
          int eq, var, param1, param2;
          tie(eq, var, param1, param2) = it->first;
          expr_t d2 = it->second;
    
          int var_col = getDynJacobianCol(var) + 1;
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          if (writeDetails)
            third_derivs_output << "{\"eq\": " << eq + 1;
          else
            third_derivs_output << "{\"row\": " << eq + 1;
    
          third_derivs_output << ", \"var_col\": " << var_col + 1
                              << ", \"param1_col\": " << param1_col + 1
                              << ", \"param2_col\": " << param2_col + 1;
    
          if (writeDetails)
            third_derivs_output << ", \"var\": \"" << symbol_table.getName(var) << "\""
                                << ", \"lag\": " << getLagByDerivID(var)
                                << ", \"param1\": \"" << symbol_table.getName(getSymbIDByDerivID(param1)) << "\""
                                << ", \"param2\": \"" << symbol_table.getName(getSymbIDByDerivID(param2)) << "\"";
    
          third_derivs_output << ", \"val\": \"";
          d2->writeJsonOutput(third_derivs_output, params_derivs_temporary_terms, tef_terms);
          third_derivs_output << "\"}" << endl;
        }
      third_derivs_output << "]}" << endl;
    
      third_derivs1_output << "\"derivative_hessian_wrt_params\": {"
                           << "  \"neqs\": " << equations.size()
                           << ", \"nvar1cols\": " << dynJacobianColsNbr
                           << ", \"nvar2cols\": " << dynJacobianColsNbr
                           << ", \"nparamcols\": " << symbol_table.param_nbr()
                           << ", \"entries\": [";
      for (auto it = hessian_params_derivatives.begin();
           it != hessian_params_derivatives.end(); ++it)
        {
          if (it != hessian_params_derivatives.begin())
            third_derivs1_output << ", ";
    
          int eq, var1, var2, param;
          tie(eq, var1, var2, param) = it->first;
          expr_t d2 = it->second;
    
          int var1_col = getDynJacobianCol(var1) + 1;
          int var2_col = getDynJacobianCol(var2) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            third_derivs1_output << "{\"eq\": " << eq + 1;
          else
            third_derivs1_output << "{\"row\": " << eq + 1;
    
          third_derivs1_output << ", \"var1_col\": " << var1_col + 1
                               << ", \"var2_col\": " << var2_col + 1
                               << ", \"param_col\": " << param_col + 1;
    
          if (writeDetails)
            third_derivs1_output << ", \"var1\": \"" << symbol_table.getName(getSymbIDByDerivID(var1)) << "\""
                                 << ", \"lag1\": " << getLagByDerivID(var1)
                                 << ", \"var2\": \"" << symbol_table.getName(getSymbIDByDerivID(var2)) << "\""
                                 << ", \"lag2\": " << getLagByDerivID(var2)
                                 << ", \"param\": \"" << symbol_table.getName(getSymbIDByDerivID(param)) << "\"";
    
          third_derivs1_output << ", \"val\": \"";
          d2->writeJsonOutput(third_derivs1_output, params_derivs_temporary_terms, tef_terms);
          third_derivs1_output << "\"}" << endl;
        }
      third_derivs1_output << "]}" << endl;
    
      if (writeDetails)
        output << "\"dynamic_model_params_derivative\": {";
      else
        output << "\"dynamic_model_params_derivatives_simple\": {";
      output << model_local_vars_output.str()
             << ", " << model_output.str()
             << ", " << jacobian_output.str()
             << ", " << hessian_output.str()
             << ", " << hessian1_output.str()
             << ", " << third_derivs_output.str()
             << ", " << third_derivs1_output.str()
             << "}";
    }