Select Git revision
dyn_ramsey_static.m
Forked from
Dynare / dynare
9798 commits behind the upstream repository.
-
Sébastien Villemot authored
If the steady state file was modifying parameters, the changes were not taken fully taken into account. Thanks to Junior Maih for noticing and proposing the fix.
Sébastien Villemot authoredIf the steady state file was modifying parameters, the changes were not taken fully taken into account. Thanks to Junior Maih for noticing and proposing the fix.
dyn_ramsey_static.m 5.73 KiB
function [steady_state,params,check] = dyn_ramsey_static(x,M,options_,oo)
% function [steady_state,params,check] = dyn_ramsey_static_(x)
% Computes the static first order conditions for optimal policy
%
% INPUTS
% x: vector of endogenous variables or instruments
%
% OUTPUTS
% resids: residuals of non linear equations
% rJ: Jacobian
% mult: Lagrangian multipliers
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2003-2012 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
steady_state = [];
params = M.params;
check = 0;
options_.steadystate.nocheck = 1;
% dyn_ramsey_static_1 is a subfunction
nl_func = @(x) dyn_ramsey_static_1(x,M,options_,oo);
% check_static_model is a subfunction
if check_static_model(oo.steady_state,M,options_,oo)
steady_state = oo.steady_state;
return
elseif options_.steadystate_flag
k_inst = [];
instruments = options_.instruments;
inst_nbr = size(options_.instruments,1);
for i = 1:inst_nbr
k_inst = [k_inst; strmatch(options_.instruments(i,:), ...
M.endo_names,'exact')];
end
if inst_nbr == 1
inst_val = csolve(nl_func,oo.steady_state(k_inst),'',options_.solve_tolf,100);
else
[inst_val,info1] = dynare_solve(nl_func,ys(k_inst),0);
end
ys(k_inst) = inst_val;
exo_ss = [oo.exo_steady_state oo.exo_det_steady_state];
[xx,params,check] = evaluate_steady_state_file(ys,exo_ss,M,options_);
[junk,jun,steady_state] = nl_func(inst_val);
else
n_var = M.orig_endo_nbr;
xx = oo.steady_state(1:n_var);
[xx,info1] = dynare_solve(nl_func,xx,0);
[junk,junk,steady_state] = nl_func(xx);
end
function [resids,rJ,steady_state] = dyn_ramsey_static_1(x,M,options_,oo)
resids = [];
rJ = [];
mult = [];
% recovering usefull fields
params = M.params;
endo_nbr = M.endo_nbr;
endo_names = M.endo_names;
exo_nbr = M.exo_nbr;
orig_endo_nbr = M.orig_endo_nbr;
aux_vars_type = [M.aux_vars.type];
orig_endo_aux_nbr = orig_endo_nbr + min(find(aux_vars_type == 6)) - 1;
orig_eq_nbr = M.orig_eq_nbr;
inst_nbr = orig_endo_aux_nbr - orig_eq_nbr;
% indices of Lagrange multipliers
i_mult = [orig_endo_aux_nbr+(1:orig_eq_nbr)]';
fname = M.fname;
max_lead = M.maximum_lead;
max_lag = M.maximum_lag;
% indices of all endogenous variables
i_endo = [1:endo_nbr]';
% indices of endogenous variable except instruments
% i_inst = M.instruments;
% lead_lag incidence matrix
i_lag = M.lead_lag_incidence;
if options_.steadystate_flag
k_inst = [];
instruments = options_.instruments;
for i = 1:size(instruments,1)
k_inst = [k_inst; strmatch(instruments(i,:), ...
endo_names,'exact')];
end
oo.steady_state(k_inst) = x;
[x,params,check] = evaluate_steady_state_file(oo.steady_state,...
[oo.exo_steady_state; ...
oo.exo_det_steady_state], ...
M,options_);
end
xx = zeros(endo_nbr,1);
xx(1:length(x)) = x;
% setting steady state of auxiliary variables
% that depends on original endogenous variables
if any([M.aux_vars.type] ~= 6)
needs_set_auxiliary_variables = 1;
fh = str2func([M.fname '_set_auxiliary_variables']);
s_a_v_func = @(z) fh(z,...
[oo.exo_steady_state,...
oo.exo_det_steady_state],...
params);
xx = s_a_v_func(xx);
else
needs_set_auxiliary_variables = 0;
end
% value and Jacobian of objective function
ex = zeros(1,M.exo_nbr);
[U,Uy,Uyy] = feval([fname '_objective_static'],x,ex, params);
Uy = Uy';
Uyy = reshape(Uyy,endo_nbr,endo_nbr);
% set multipliers and auxiliary variables that
% depends on multipliers to 0 to compute residuals
if (options_.bytecode)
[chck, res, junk] = bytecode('static',xx,[oo.exo_simul oo.exo_det_simul], ...
params, 'evaluate');
fJ = junk.g1;
else
[res,fJ] = feval([fname '_static'],xx,[oo.exo_simul oo.exo_det_simul], ...
params);
end
% index of multipliers and corresponding equations
% the auxiliary variables before the Lagrange multipliers are treated
% as ordinary endogenous variables
aux_eq = [1:orig_endo_aux_nbr, orig_endo_aux_nbr+orig_eq_nbr+1:size(fJ,1)];
A = fJ(aux_eq,orig_endo_aux_nbr+1:end);
y = res(aux_eq);
mult = -A\y;
resids1 = y+A*mult;
if inst_nbr == 1
r1 = sqrt(resids1'*resids1);
else
[q,r,e] = qr([A y]');
k = size(A,1)+(1-inst_nbr:0);
r1 = r(end,k)';
end
if options_.steadystate_flag
resids = r1;
else
resids = [res(orig_endo_nbr+(1:orig_endo_nbr-inst_nbr)); r1];
end
rJ = [];
if needs_set_auxiliary_variables
steady_state = s_a_v_func([xx(1:orig_endo_aux_nbr); mult]);
else
steady_state = [xx(1:orig_endo_aux_nbr); mult];
end
function result = check_static_model(ys,M,options_,oo)
result = false;
if (options_.bytecode)
[chck, res, junk] = bytecode('static',ys,[oo.exo_simul oo.exo_det_simul], ...
M.params, 'evaluate');
else
res = feval([M.fname '_static'],ys,[oo.exo_simul oo.exo_det_simul], ...
M.params);
end
if norm(res) < options_.solve_tolf
result = true;
end