Skip to content
Snippets Groups Projects
Commit 904ce4b4 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Fixed backward model IRFs and added an interface for baseline scenario.

Note that there is an additional argument (2nd position) for the shocks
baseline scenario.
parent 0565c4aa
Branches
Tags
No related merge requests found
function irfs = backward_model_irf(initialcondition, listofshocks, listofvariables, varargin)
function [deviations, baseline, irfs] = backward_model_irf(initialcondition, innovationbaseline, listofshocks, listofvariables, varargin)
% Returns impulse response functions.
%
% INPUTS
% - initialcondition [dseries,dates] Initial conditions for the endogenous variables, or period 0.
% - listofshocks [cell of strings] The innovations for which the IRFs need to be computed.
% - listofvariables [cell of strings] The endogenous variables which will be returned.
% INPUTS
% - initialcondition [dseries] Initial conditions for the endogenous variables, or period 0.
% - innovationbaseline [dseries] Baseline for the future innovations. If empty the baseline scenario is zero for future shocks.
% - listofshocks [cell of strings] The innovations for which the IRFs need to be computed.
% - listofvariables [cell of strings] The endogenous variables which will be returned.
% - periods [integer] scalar, the number of periods.
%
% OUTPUTS
% - irfs [struct of dseries]
% OUTPUTS
% - irfs [struct of dseries]
%
% REMARKS
% The names of the fields in the returned structure are given by the name
% of the innovations listed in the second input argument. Each field gather
% the associated paths for endogenous variables listed in the third input
% argument.
% REMARKS
% - The names of the fields in the returned structure are given by the name
% of the innovations listed in the second input argument. Each field gather
% the associated paths for endogenous variables listed in the third input
% argument.
% - If second argument is not empty, periods must not be greater than innovationbaseline.nobs.
% Copyright (C) 2017 Dynare Team
%
......@@ -43,7 +44,7 @@ if M_.maximum_lead
end
% Set default value for the fourth input argument.
if nargin<4
if nargin<5
periods = 40;
notransform = true;
else
......@@ -51,39 +52,78 @@ else
end
% Set default value for the last input argument (no transformation).
if nargin<5
if nargin<6
notransform = true;
else
notransform = false;
transform = varargin{2};
end
baselineflag = false;
% Set default values for the baseline paths.
%
% TODO zero for all variables is probably a poor choice. It should be
% zero for additive exogenous variables and 1 for multiplicative
% exogenous variables.
Innovations = zeros(periods, M_.exo_nbr);
if ~isempty(innovationbaseline)
if ~isdseries(innovationbaseline)
error('If not empty, the second argument has to be a dseries object!')
end
if ~isequal(innovationbaseline.dates(1)-initialcondition.dates(end), 1)
error('The first date of the second input argument must follow the last date of the first input argument!')
end
if innovationbaseline.nobs<periods
error('The second input argument must at least have %s observations or lower the number of periods.', periods)
end
% Fill innovations with provided paths for the innovations.
exonames = cellstr(M_.exo_names);
for i = 1:length(exonames)
if ~isempty(strmatch(exonames{i}, innovationbaseline.name))
Innovations(:,i) = innovationbaseline{exonames{i}}.data(1:periods);
end
end
baselineflag = true;
end
% Set up initial conditions
[initialcondition, periods, innovations, DynareOptions, DynareModel, DynareOutput, endonames, exonames, nx, ny1, iy1, jdx, model_dynamic, y] = ...
simul_backward_model_init(initialcondition, periods, options_, M_, oo_, zeros(periods, M_.exo_nbr));
[initialcondition, periods, Innovations, DynareOptions, DynareModel, DynareOutput, endonames, exonames, nx, ny1, iy1, jdx, model_dynamic, y] = ...
simul_backward_model_init(initialcondition, periods, options_, M_, oo_, Innovations);
% Get the covariance matrix of the shocks.
Sigma = M_.Sigma_e + 1e-14*eye(M_.exo_nbr);
sigma = transpose(chol(Sigma));
% Initialization of the returned argument. Each will be a dseries object containing the IRFS for the endogenous variables listed in the third input argument.
deviations = struct();
baseline = dseries();
irfs = struct();
% Baseline paths (get transition paths induced by the initial condition and
% baseline innovations).
if options_.linear
ysim__0 = simul_backward_linear_model_(initialcondition, periods, DynareOptions, DynareModel, DynareOutput, Innovations, nx, ny1, iy1, jdx, model_dynamic);
else
ysim__0 = simul_backward_nonlinear_model_(initialcondition, periods, DynareOptions, DynareModel, DynareOutput, Innovations, iy1, model_dynamic);
end
% Transform the endogenous variables.
if notransform
endo_simul__0 = ysim__0;
else
endo_simul__0 = feval(transform, ysim__0);
end
% Compute the IRFs (loop over innovations).
for i=1:length(listofshocks)
innovations = zeros(periods, DynareModel.exo_nbr);
% Get transition paths induced by the initial condition.
if options_.linear
ysim__0 = simul_backward_linear_model_(initialcondition, periods, DynareOptions, DynareModel, DynareOutput, innovations, nx, ny1, iy1, jdx, model_dynamic);
else
ysim__0 = simul_backward_nonlinear_model_(initialcondition, periods, DynareOptions, DynareModel, DynareOutput, innovations, iy1, model_dynamic);
end
innovations = Innovations;
% Add the shock.
j = find(strcmp(listofshocks{i}, exonames));
if isempty(j)
error('backward_model_irf: Exogenous variable %s is unknown!', listofshocks{i})
end
innovations(1,:) = transpose(sigma(:,j));
innovations(1,:) = innovations(1,:) + transpose(sigma(:,j));
if options_.linear
ysim__1 = simul_backward_linear_model_(initialcondition, periods, DynareOptions, DynareModel, DynareOutput, innovations, nx, ny1, iy1, jdx, model_dynamic);
else
......@@ -91,14 +131,22 @@ for i=1:length(listofshocks)
end
% Transform the endogenous variables
if notransform
endo_simul__0 = ysim__0;
endo_simul__1 = ysim__1;
else
endo_simul__0 = feval(transform, ysim__0);
endo_simul__1 = feval(transform, ysim__1);
end
% Instantiate a dseries object (with all the endogenous variables)
allirfs = dseries(transpose(endo_simul__1-endo_simul__0), initialcondition.init, endonames, cellstr(DynareModel.endo_names_tex));
alldeviations = dseries(transpose(endo_simul__1-endo_simul__0), initialcondition.init, endonames(1:M_.orig_endo_nbr), cellstr(DynareModel.endo_names_tex(1:M_.orig_endo_nbr,:)));
if nargout>2
allirfs = dseries(transpose(endo_simul__1), initialcondition.init, endonames(1:M_.orig_endo_nbr), cellstr(DynareModel.endo_names_tex(1:M_.orig_endo_nbr,:)));
end
% Extract a sub-dseries object
irfs.(listofshocks{i}) = allirfs{listofvariables{:}};
deviations.(listofshocks{i}) = alldeviations{listofvariables{:}};
if nargout>2
irfs.(listofshocks{i}) = allirfs{listofvariables{:}};
end
end
if nargout>1
baseline = dseries(transpose(endo_simul__0), initialcondition.init, endonames(1:M_.orig_endo_nbr), cellstr(DynareModel.endo_names_tex(1:M_.orig_endo_nbr,:)));
end
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment