Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Frédéric Karamé
dynare
Commits
adb8ef3c
Commit
adb8ef3c
authored
13 years ago
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Added routine for computing weights and nodes of the Gauss Legendre quadrature.
parent
58f4feb6
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/gauss_legendre_weights_and_nodes.m
+132
-0
132 additions, 0 deletions
matlab/gauss_legendre_weights_and_nodes.m
with
132 additions
and
0 deletions
matlab/gauss_legendre_weights_and_nodes.m
0 → 100644
+
132
−
0
View file @
adb8ef3c
function
[
nodes
,
weights
]
=
gauss_legendre_weights_and_nodes
(
n
,
a
,
b
)
%
Computes
the
weights
and
nodes
for
a
Legendre
Gaussian
quadrature
rule
.
%
@info
:
%!
@deftypefn
{
Function
File
}
{
@var
{
nodes
},
@var
{
weights
}
=
}
gauss_hermite_weights_and_nodes
(
@var
{
n
})
%!
@anchor
{
gauss_legendre_weights_and_nodes
}
%!
@sp
1
%!
Computes
the
weights
and
nodes
for
a
Legendre
Gaussian
quadrature
rule
.
designed
to
approximate
integrals
%!
on
the
finite
interval
(
-
1
,
1
)
of
an
unweighted
smooth
function
.
%!
@sp
2
%!
@strong
{
Inputs
}
%!
@sp
1
%!
@table
@
@var
%!
@item
n
%!
Positive
integer
scalar
,
number
of
nodes
(
order
of
approximation
).
%!
@item
a
%!
Double
scalar
,
lower
bound
.
%!
@item
b
%!
Double
scalar
,
upper
bound
.
%!
@end
table
%!
@sp
1
%!
@strong
{
Outputs
}
%!
@sp
1
%!
@table
@
@var
%!
@item
nodes
%!
n
*
1
vector
of
doubles
,
the
nodes
(
roots
of
an
order
n
Legendre
polynomial
)
%!
@item
weights
%!
n
*
1
vector
of
doubles
,
the
associated
weights
.
%!
@end
table
%!
@sp
2
%!
@strong
{
Remarks
:
}
%!
Only
the
first
input
argument
(
the
number
of
nodes
)
is
mandatory
.
The
second
and
third
input
arguments
%!
are
used
if
a
change
of
variables
is
necessary
(
ie
if
we
need
nodes
over
the
interval
[
a
,
b
]
instead
of
%!
of
the
default
interval
[
-
1
,
1
]).
%!
@sp
2
%!
@strong
{
This
function
is
called
by
:
}
%!
@sp
2
%!
@strong
{
This
function
calls
:
}
%!
@sp
2
%!
@end
deftypefn
%
@eod
:
%
Copyright
(
C
)
2012
Dynare
Team
%
%
This
file
is
part
of
Dynare
.
%
%
Dynare
is
free
software
:
you
can
redistribute
it
and
/
or
modify
%
it
under
the
terms
of
the
GNU
General
Public
License
as
published
by
%
the
Free
Software
Foundation
,
either
version
3
of
the
License
,
or
%
(
at
your
option
)
any
later
version
.
%
%
Dynare
is
distributed
in
the
hope
that
it
will
be
useful
,
%
but
WITHOUT
ANY
WARRANTY
;
without
even
the
implied
warranty
of
%
MERCHANTABILITY
or
FITNESS
FOR
A
PARTICULAR
PURPOSE
.
See
the
%
GNU
General
Public
License
for
more
details
.
%
%
You
should
have
received
a
copy
of
the
GNU
General
Public
License
%
along
with
Dynare
.
If
not
,
see
<
http
:
//www.gnu.org/licenses/>.
%
AUTHOR
(
S
)
stephane
DOT
adjemian
AT
univ
DASH
lemans
DOT
fr
bb
=
sqrt
(
1
.
/
(
4
-
(
1
.
/
transpose
(
1
:
n
-
1
)).
^
2
));
aa
=
zeros
(
n
,
1
);
JacobiMatrix
=
diag
(
bb
,
1
)
+
diag
(
aa
)
+
diag
(
bb
,
-
1
);
[
JacobiEigenVectors
,
JacobiEigenValues
]
=
eig
(
JacobiMatrix
);
[
nodes
,
idx
]
=
sort
(
diag
(
JacobiEigenValues
));
JacobiEigenVector
=
JacobiEigenVectors
(
1
,
:
);
JacobiEigenVector
=
transpose
(
JacobiEigenVector
(
idx
));
weights
=
2
*
JacobiEigenVector
.
^
2
;
if
nargin
==
3
weights
=
.
5
*
(
b
-
a
)
*
weights
;
nodes
=
.
5
*
(
nodes
+
1
)
*
(
b
-
a
)
+
a
;
end
%
@test
:
1
%
$
[
n2
,
w2
]
=
gauss_legendre_weights_and_nodes
(
2
);
%
$
[
n3
,
w3
]
=
gauss_legendre_weights_and_nodes
(
3
);
%
$
[
n4
,
w4
]
=
gauss_legendre_weights_and_nodes
(
4
);
%
$
[
n5
,
w5
]
=
gauss_legendre_weights_and_nodes
(
5
);
%
$
[
n7
,
w7
]
=
gauss_legendre_weights_and_nodes
(
7
);
%
$
%
$
%
$
%
Expected
nodes
(
taken
from
Judd
(
1998
,
table
7
.
2
)).
%
$
e2
=
.
5773502691
;
e2
=
[
-
e2
;
e2
];
%
$
e3
=
.
7745966692
;
e3
=
[
-
e3
;
0
;
e3
];
%
$
e4
=
[.
8611363115
;
.
3399810435
];
e4
=
[
-
e4
;
flipud
(
e4
)];
%
$
e5
=
[.
9061798459
;
.
5384693101
];
e5
=
[
-
e5
;
0
;
flipud
(
e5
)];
%
$
e7
=
[.
9491079123
;
.
7415311855
;
.
4058451513
];
e7
=
[
-
e7
;
0
;
flipud
(
e7
)];
%
$
%
$
%
Expected
weights
(
taken
from
Judd
(
1998
,
table
7
.
2
)
and
http
:
//en.wikipedia.org/wiki/Gaussian_quadrature).
%
$
f2
=
[
1
;
1
];
%
$
f3
=
[
5
;
8
;
5
]
/
9
;
%
$
f4
=
[
18
-
sqrt
(
30
)
;
18
+
sqrt
(
30
)];
f4
=
[
f4
;
flipud
(
f4
)]
/
36
;
%
$
f5
=
[
322
-
13
*
sqrt
(
70
)
;
322
+
13
*
sqrt
(
70
)]
/
900
;
f5
=
[
f5
;
128
/
225
;
flipud
(
f5
)];
%
$
f7
=
[.
1294849661
;
.
2797053914
;
.
3818300505
];
f7
=
[
f7
;
.
4179591836
;
flipud
(
f7
)];
%
$
%
$
%
Check
the
results
.
%
$
t
(
1
)
=
dyn_assert
(
e2
,
n2
,
1e-9
);
%
$
t
(
2
)
=
dyn_assert
(
e3
,
n3
,
1e-9
);
%
$
t
(
3
)
=
dyn_assert
(
e4
,
n4
,
1e-9
);
%
$
t
(
4
)
=
dyn_assert
(
e5
,
n5
,
1e-9
);
%
$
t
(
5
)
=
dyn_assert
(
e7
,
n7
,
1e-9
);
%
$
t
(
6
)
=
dyn_assert
(
w2
,
f2
,
1e-9
);
%
$
t
(
7
)
=
dyn_assert
(
w3
,
f3
,
1e-9
);
%
$
t
(
8
)
=
dyn_assert
(
w4
,
f4
,
1e-9
);
%
$
t
(
9
)
=
dyn_assert
(
w5
,
f5
,
1e-9
);
%
$
t
(
10
)
=
dyn_assert
(
w7
,
f7
,
1e-9
);
%
$
T
=
all
(
t
);
%
@eof
:
1
%
@test
:
2
%
$
nmax
=
50
;
%
$
%
$
t
=
zeros
(
nmax
,
1
);
%
$
%
$
for
i
=
1
:
nmax
%
$
[
n
,
w
]
=
gauss_legendre_weights_and_nodes
(
i
);
%
$
t
(
i
)
=
dyn_assert
(
sum
(
w
),
2
,
1e-12
);
%
$
end
%
$
%
$
T
=
all
(
t
);
%
@eof
:
2
%
@test
:
3
%
$
[
n
,
w
]
=
gauss_legendre_weights_and_nodes
(
9
,
pi
,
2
*
pi
);
%
$
%
Check
that
the
%
$
t
(
1
)
=
all
(
n
>
pi
);
%
$
t
(
2
)
=
all
(
n
<
2
*
pi
);
%
$
t
(
3
)
=
dyn_assert
(
sum
(
w
),
pi
,
1e-12
);
%
$
T
=
all
(
t
);
%
@eof
:
3
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment