Skip to content
Snippets Groups Projects
Commit c152bbed authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Added main routine for non linear filters.

parent bf69bac1
No related branches found
No related tags found
No related merge requests found
function [fval,exit_flag,ys,trend_coeff,info,Model,DynareOptions,BayesInfo,DynareResults] = non_linear_dsge_likelihood(xparam1,DynareDataset,DynareOptions,Model,EstimatedParameters,BayesInfo,DynareResults)
% Evaluates the posterior kernel of a dsge model using a non linear filter.
%@info:
%! @deftypefn {Function File} {[@var{fval},@var{exit_flag},@var{ys},@var{trend_coeff},@var{info},@var{Model},@var{DynareOptions},@var{BayesInfo},@var{DynareResults}] =} non_linear_dsge_likelihood (@var{xparam1},@var{DynareDataset},@var{DynareOptions},@var{Model},@var{EstimatedParameters},@var{BayesInfo},@var{DynareResults})
%! @anchor{dsge_likelihood}
%! @sp 1
%! Evaluates the posterior kernel of a dsge model using a non linear filter.
%! @sp 2
%! @strong{Inputs}
%! @sp 1
%! @table @ @var
%! @item xparam1
%! Vector of doubles, current values for the estimated parameters.
%! @item DynareDataset
%! Matlab's structure describing the dataset (initialized by dynare, see @ref{dataset_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item Model
%! Matlab's structure describing the Model (initialized by dynare, see @ref{M_}).
%! @item EstimatedParamemeters
%! Matlab's structure describing the estimated_parameters (initialized by dynare, see @ref{estim_params_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @end table
%! @sp 2
%! @strong{Outputs}
%! @sp 1
%! @table @ @var
%! @item fval
%! Double scalar, value of (minus) the likelihood.
%! @item exit_flag
%! Integer scalar, equal to zero if the routine return with a penalty (one otherwise).
%! @item ys
%! Vector of doubles, steady state level for the endogenous variables.
%! @item trend_coeffs
%! Matrix of doubles, coefficients of the deterministic trend in the measurement equation.
%! @item info
%! Integer scalar, error code.
%! @table @ @code
%! @item info==0
%! No error.
%! @item info==1
%! The model doesn't determine the current variables uniquely.
%! @item info==2
%! MJDGGES returned an error code.
%! @item info==3
%! Blanchard & Kahn conditions are not satisfied: no stable equilibrium.
%! @item info==4
%! Blanchard & Kahn conditions are not satisfied: indeterminacy.
%! @item info==5
%! Blanchard & Kahn conditions are not satisfied: indeterminacy due to rank failure.
%! @item info==6
%! The jacobian evaluated at the deterministic steady state is complex.
%! @item info==19
%! The steadystate routine thrown an exception (inconsistent deep parameters).
%! @item info==20
%! Cannot find the steady state, info(2) contains the sum of square residuals (of the static equations).
%! @item info==21
%! The steady state is complex, info(2) contains the sum of square of imaginary parts of the steady state.
%! @item info==22
%! The steady has NaNs.
%! @item info==23
%! M_.params has been updated in the steadystate routine and has complex valued scalars.
%! @item info==24
%! M_.params has been updated in the steadystate routine and has some NaNs.
%! @item info==30
%! Ergodic variance can't be computed.
%! @item info==41
%! At least one parameter is violating a lower bound condition.
%! @item info==42
%! At least one parameter is violating an upper bound condition.
%! @item info==43
%! The covariance matrix of the structural innovations is not positive definite.
%! @item info==44
%! The covariance matrix of the measurement errors is not positive definite.
%! @item info==45
%! Likelihood is not a number (NaN).
%! @item info==45
%! Likelihood is a complex valued number.
%! @end table
%! @item Model
%! Matlab's structure describing the model (initialized by dynare, see @ref{M_}).
%! @item DynareOptions
%! Matlab's structure describing the options (initialized by dynare, see @ref{options_}).
%! @item BayesInfo
%! Matlab's structure describing the priors (initialized by dynare, see @ref{bayesopt_}).
%! @item DynareResults
%! Matlab's structure gathering the results (initialized by dynare, see @ref{oo_}).
%! @end table
%! @sp 2
%! @strong{This function is called by:}
%! @sp 1
%! @ref{dynare_estimation_1}, @ref{mode_check}
%! @sp 2
%! @strong{This function calls:}
%! @sp 1
%! @ref{dynare_resolve}, @ref{lyapunov_symm}, @ref{priordens}
%! @end deftypefn
%@eod:
% Copyright (C) 2010-2011 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR(S) stephane DOT adjemian AT univ DASH lemans DOT fr
% frederic DOT karame AT univ DASH lemans DOT fr
% Declaration of the penalty as a persistent variable.
persistent penalty
persistent init_flag
persistent restrict_variables_idx observed_variables_idx state_variables_idx mf0 mf1
persistent sample_size number_of_state_variables number_of_observed_variables number_of_structural_innovations
% Initialization of the persistent variable.
if ~nargin || isempty(penalty)
penalty = 1e8;
if ~nargin, return, end
end
if nargin==1
penalty = xparam1;
return
end
% Initialization of the returned arguments.
fval = [];
ys = [];
trend_coeff = [];
cost_flag = 1;
% Set the number of observed variables
nvobs = DynareDataset.info.vobs;
%------------------------------------------------------------------------------
% 1. Get the structural parameters & define penalties
%------------------------------------------------------------------------------
% Return, with endogenous penalty, if some parameters are smaller than the lower bound of the prior domain.
if (DynareOptions.mode_compute~=1) & any(xparam1<BayesInfo.lb)
k = find(xparam1 < BayesInfo.lb);
fval = penalty+sum((BayesInfo.lb(k)-xparam1(k)).^2);
cost_flag = 0;
info = 41;
return
end
% Return, with endogenous penalty, if some parameters are greater than the upper bound of the prior domain.
if (DynareOptions.mode_compute~=1) & any(xparam1>BayesInfo.ub)
k = find(xparam1>BayesInfo.ub);
fval = penalty+sum((xparam1(k)-BayesInfo.ub(k)).^2);
cost_flag = 0;
info = 42;
return
end
% Get the diagonal elements of the covariance matrices for the structural innovations (Q) and the measurement error (H).
Q = Model.Sigma_e;
H = Model.H;
for i=1:EstimatedParameters_.nvx
k =EstimatedParameters_.var_exo(i,1);
Q(k,k) = xparam1(i)*xparam1(i);
end
offset = EstimatedParameters_.nvx;
if EstimatedParameters_.nvn
for i=1:EstimatedParameters_.nvn
k = EstimatedParameters_.var_endo(i,1);
H(k,k) = xparam1(i+offset)*xparam1(i+offset);
end
offset = offset+EstimatedParameters_.nvn;
else
H = zeros(nvobs);
end
% Get the off-diagonal elements of the covariance matrix for the structural innovations. Test if Q is positive definite.
if EstimatedParameters_.ncx
for i=1:EstimatedParameters_.ncx
k1 =EstimatedParameters_.corrx(i,1);
k2 =EstimatedParameters_.corrx(i,2);
Q(k1,k2) = xparam1(i+offset)*sqrt(Q(k1,k1)*Q(k2,k2));
Q(k2,k1) = Q(k1,k2);
end
% Try to compute the cholesky decomposition of Q (possible iff Q is positive definite)
[CholQ,testQ] = chol(Q);
if testQ
% The variance-covariance matrix of the structural innovations is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
a = diag(eig(Q));
k = find(a < 0);
if k > 0
fval = penalty+sum(-a(k));
cost_flag = 0;
info = 43;
return
end
end
offset = offset+EstimatedParameters_.ncx;
end
% Get the off-diagonal elements of the covariance matrix for the measurement errors. Test if H is positive definite.
if EstimatedParameters_.ncn
for i=1:EstimatedParameters_.ncn
k1 = DynareOptions.lgyidx2varobs(EstimatedParameters_.corrn(i,1));
k2 = DynareOptions.lgyidx2varobs(EstimatedParameters_.corrn(i,2));
H(k1,k2) = xparam1(i+offset)*sqrt(H(k1,k1)*H(k2,k2));
H(k2,k1) = H(k1,k2);
end
% Try to compute the cholesky decomposition of H (possible iff H is positive definite)
[CholH,testH] = chol(H);
if testH
% The variance-covariance matrix of the measurement errors is not definite positive. We have to compute the eigenvalues of this matrix in order to build the endogenous penalty.
a = diag(eig(H));
k = find(a < 0);
if k > 0
fval = penalty+sum(-a(k));
cost_flag = 0;
info = 44;
return
end
end
offset = offset+EstimatedParameters_.ncn;
end
% Update estimated structural parameters in Mode.params.
if EstimatedParameters_.np > 0
Model.params(EstimatedParameters_.param_vals(:,1)) = xparam1(offset+1:end);
end
% Update Model.Sigma_e and Model.H.
Model.Sigma_e = Q;
Model.H = H;
%------------------------------------------------------------------------------
% 2. call model setup & reduction program
%------------------------------------------------------------------------------
% Linearize the model around the deterministic sdteadystate and extract the matrices of the state equation (T and R).
[T,R,SteadyState,info,Model,DynareOptions,DynareResults] = dynare_resolve(Model,DynareOptions,DynareResults,'restrict');
if info(1) == 1 || info(1) == 2 || info(1) == 5
fval = penalty+1;
cost_flag = 0;
return
elseif info(1) == 3 || info(1) == 4 || info(1)==6 ||info(1) == 19 || info(1) == 20 || info(1) == 21
fval = penalty+info(2);
cost_flag = 0;
return
end
% Define a vector of indices for the observed variables. Is this really usefull?...
BayesInfo.mf = BayesInfo.mf1;
% Define the deterministic linear trend of the measurement equation.
if DynareOptions.noconstant
constant = zeros(nvobs,1);
else
if DynareOptions.loglinear
constant = log(SteadyState(BayesInfo.mfys));
else
constant = SteadyState(BayesInfo.mfys);
end
end
% Define the deterministic linear trend of the measurement equation.
if BayesInfo.with_trend
trend_coeff = zeros(DynareDataset.info.nvobs,1);
t = DynareOptions.trend_coeffs;
for i=1:length(t)
if ~isempty(t{i})
trend_coeff(i) = evalin('base',t{i});
end
end
trend = repmat(constant,1,DynareDataset.info.ntobs)+trend_coeff*[1:DynareDataset.info.ntobs];
else
trend = repmat(constant,1,DynareDataset.info.ntobs);
end
% Get needed informations for kalman filter routines.
start = DynareOptions.presample+1;
np = size(T,1);
mf = BayesInfo.mf;
Y = transpose(dataset_.rawdata);
%------------------------------------------------------------------------------
% 3. Initial condition of the Kalman filter
%------------------------------------------------------------------------------
% Get decision rules and transition equations.
dr = DynareResults.dr;
% Set persistent variables (first call).
if isempty(init_flag)
mf0 = BayesInfo.mf0;
mf1 = BayesInfo.mf1;
restrict_variables_idx = BayesInfo.restrict_var_list;
observed_variables_idx = restrict_variables_idx(mf1);
state_variables_idx = restrict_variables_idx(mf0);
sample_size = size(Y,2);
number_of_state_variables = length(mf0);
number_of_observed_variables = length(mf1);
number_of_structural_innovations = length(Q);
init_flag = 1;
end
ReducedForm.ghx = dr.ghx(restrict_variables_idx,:);
ReducedForm.ghu = dr.ghu(restrict_variables_idx,:);
ReducedForm.ghxx = dr.ghxx(restrict_variables_idx,:);
ReducedForm.ghuu = dr.ghuu(restrict_variables_idx,:);
ReducedForm.ghxu = dr.ghxu(restrict_variables_idx,:);
ReducedForm.steadystate = dr.ys(dr.order_var(restrict_variables_idx));
ReducedForm.constant = ReducedForm.steadystate + .5*dr.ghs2(restrict_variables_idx);
ReducedForm.state_variables_steady_state = dr.ys(dr.order_var(state_variables_idx));
ReducedForm.Q = Q;
ReducedForm.H = H;
ReducedForm.mf0 = mf0;
ReducedForm.mf1 = mf1;
% Set initial condition.
switch DynareOptions.particle.initialization
case 1% Initial state vector variance is the ergodic variance associated to the first order Taylor-approximation of the model.
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = lyapunov_symm(ReducedForm.ghx(mf0,:),ReducedForm.ghu(mf0,:)*ReducedForm.Q*ReducedForm.ghu(mf0,:)',1e-12,1e-12);
case 2% Initial state vector variance is a monte-carlo based estimate of the ergodic variance (consistent with a k-order Taylor-approximation of the model).
StateVectorMean = ReducedForm.constant(mf0);
old_DynareOptionsperiods = DynareOptions.periods;
DynareOptions.periods = 5000;
y_ = simult(oo_.steady_state, dr);
y_ = y_(state_variables_idx,2001:5000);
StateVectorVariance = cov(y_');
DynareOptions.periods = old_DynareOptionsperiods;
clear('old_DynareOptionsperiods','y_');
case 3
StateVectorMean = ReducedForm.constant(mf0);
StateVectorVariance = DynareOptions.particle.initial_state_prior_std*eye(number_of_state_variables);
otherwise
error('Unknown initialization option!')
end
ReducedForm.StateVectorMean = StateVectorMean;
ReducedForm.StateVectorVariance = StateVectorVariance;
%------------------------------------------------------------------------------
% 4. Likelihood evaluation
%------------------------------------------------------------------------------
DynareOptions.warning_for_steadystate = 0;
LIK = feval(DynareOptions.particle.algorithm,ReducedForm,Y,[]);
if imag(LIK)
likelihood = penalty;
cost_flag = 0;
elseif isnan(LIK)
likelihood = penalty;
cost_flag = 0;
else
likelihood = LIK;
end
DynareOptions.warning_for_steadystate = 1;
% ------------------------------------------------------------------------------
% Adds prior if necessary
% ------------------------------------------------------------------------------
lnprior = priordens(xparam1,BayesInfo.pshape,BayesInfo.p6,BayesInfo.p7,BayesInfo.p3,BayesInfo.p4);
fval = (likelihood-lnprior);
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment