Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
dseries
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Johannes Pfeifer
dseries
Commits
164fe3b5
Verified
Commit
164fe3b5
authored
6 years ago
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Updated README file.
parent
00b2ba6a
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
README.md
+204
-0
204 additions, 0 deletions
README.md
with
204 additions
and
0 deletions
README.md
+
204
−
0
View file @
164fe3b5
[

](https://git.dynare.org/Dynare/dseries/commits/master)
This Matlab/Octave toolbox comes with two classes:
-
`@dates`
which is used to handle dates.
-
`@dseries`
which is used to handle time series data.
The package is a dependence of
[
Dynare
](
https=//git.dynare.org/Dynare/dynare
)
, but can also be used
as a standalone package without Dynare. The package is
compatible with Matlab 2008a and following versions, and (almost
compatible with) the latest Octave version.
## Installation
The toolbox can be installed by cloning the Git repository:
~$ git clone https://git.dynare.org/Dynare/dseries.git
or downloading a zip archive:
~$ wget https://git.dynare.org/Dynare/dseries/-/archive/master/dseries-master.zip
~$ unsip dseries-master.zip
-$ mv dseries-master dseries
## Usage
Add the
`dseries/src`
folder to the Matlab/Octave path, and run the following command (on Matlab/Octave) prompt:
>> dseries.initialize()
which, depending on your system, will add the necessary subfolders to
the Matlab/Octave path. Also, if
[
X13-ARIMA-SEATS
](
https://www.census.gov/srd/www/x13as/
)
is not
installed in your system (on debian it is possible to install it with
the
`apt-get`
) you will need (only the first time) to install the
binary. Scripts are available to install (or update) this
dependency. From the Matlab/Octave prompt:
>> cd dseries/externals/x13
>> installx13()
and run the configuration again:
>> dseries.initialize()
You should not see the warning related to the missing
`x13as`
binary. You are then ready to go. A full documentation will come soon,
but you can already obtain a general idea by looking into the Dynare
reference manual.
## Examples
### Instantiate a dseries object from an array
>> A = randn(50, 3);
>> d = dseries(A, dates('2000Q1'), {'A1', 'A2', 'A3'});
The first argument of the
`dseries`
constructor is an array of data,
observations and variables are respectively along the rows and
columns. The second argument is the initial period of the dataset. The
last argument is a cell array of row character arrays for the names of
the variables.
>> d
d is a dseries object:
| A1 | A2 | A3
2000Q1 | -1.0891 | -2.1384 | -0.29375
2000Q2 | 0.032557 | -0.83959 | -0.84793
2000Q3 | 0.55253 | 1.3546 | -1.1201
2000Q4 | 1.1006 | -1.0722 | 2.526
2001Q1 | 1.5442 | 0.96095 | 1.6555
2001Q2 | 0.085931 | 0.12405 | 0.30754
2001Q3 | -1.4916 | 1.4367 | -1.2571
2001Q4 | -0.7423 | -1.9609 | -0.86547
2002Q1 | -1.0616 | -0.1977 | -0.17653
2002Q2 | 2.3505 | -1.2078 | 0.79142
| | |
2009Q4 | -1.7947 | 0.96423 | 0.62519
2010Q1 | 0.84038 | 0.52006 | 0.18323
2010Q2 | -0.88803 | -0.020028 | -1.0298
2010Q3 | 0.10009 | -0.034771 | 0.94922
2010Q4 | -0.54453 | -0.79816 | 0.30706
2011Q1 | 0.30352 | 1.0187 | 0.13517
2011Q2 | -0.60033 | -0.13322 | 0.51525
2011Q3 | 0.48997 | -0.71453 | 0.26141
2011Q4 | 0.73936 | 1.3514 | -0.94149
2012Q1 | 1.7119 | -0.22477 | -0.16234
2012Q2 | -0.19412 | -0.58903 | -0.14605
>>
### Instantiate a dseries object from a file
It is possible to instantiate a
`dseries`
object from a
`.csv`
,
`.xls`
,
`.xlsx`
,
`.mat`
or
`m`
file, see the Dynare reference manual
for a complete description of the constraints on the content of these
files.
>> websave('US_CMR_data_t.csv', 'http://www.dynare.org/Datasets/US_CMR_data_t.csv');
>> d = dseries('US_CMR_data_t.csv');
>> d
d is a dseries object:
| gdp_rpc | conso_rpc | inves_rpc | defgdp | ... | networth_rpc | re | slope | creditspread
1980Q1 | 47941413.1257 | NaN | NaN | 0.40801 | ... | 33.6814 | 0.15047 | -0.0306 | 0.014933
1980Q2 | 46775570.3923 | NaN | NaN | 0.41772 | ... | 32.2721 | 0.12687 | -0.0221 | 0.028833
1980Q3 | 46528261.9561 | NaN | NaN | 0.42705 | ... | 36.6499 | 0.098367 | 0.011167 | 0.022167
1980Q4 | 47249592.2997 | NaN | NaN | 0.43818 | ... | 39.4069 | 0.15853 | -0.0343 | 0.022467
1981Q1 | 48059176.868 | NaN | NaN | 0.44972 | ... | 37.9954 | 0.1657 | -0.0361 | 0.0229
1981Q2 | 47531422.174 | NaN | NaN | 0.45863 | ... | 38.6262 | 0.1778 | -0.0403 | 0.0202
1981Q3 | 47951509.5055 | NaN | NaN | 0.46726 | ... | 36.3246 | 0.17577 | -0.0273 | 0.016333
1981Q4 | 47273009.6902 | NaN | NaN | 0.47534 | ... | 34.8693 | 0.13587 | 0.005 | 0.025933
1982Q1 | 46501690.1111 | NaN | NaN | 0.48188 | ... | 32.0964 | 0.14227 | 0.00066667 | 0.027367
1982Q2 | 46525455.3206 | NaN | NaN | 0.48814 | ... | 31.6967 | 0.14513 | -0.0058333 | 0.0285
| | | | | ... | | | |
2016Q1 | 85297205.4011 | 51926452.5716 | 21892729.0934 | 1.0514 | ... | 420.7154 | 0.0016 | 0.0203 | 0.0323
2016Q2 | 85407205.5913 | 52096454.9154 | 21824323.7487 | 1.0506 | ... | 398.7084 | 0.0036 | 0.0156 | 0.0339
2016Q3 | 85796604.1157 | 52436447.9843 | 21874814.014 | 1.0578 | ... | 424.8703 | 0.0037333 | 0.0138 | 0.029167
2016Q4 | 86101149.6919 | 52595613.0404 | 22010921.8985 | 1.0617 | ... | 444.622 | 0.0039667 | 0.011667 | 0.026967
2017Q1 | 86376652.4732 | 52795431.0988 | 22399301.0801 | 1.0672 | ... | 450.8777 | 0.0045 | 0.0168 | 0.0251
2017Q2 | 86982016.8089 | 53164725.076 | 22671020.5449 | 1.0728 | ... | 481.8778 | 0.007 | 0.017433 | 0.022167
2017Q3 | 87605975.0339 | 53451779.0342 | 23033324.7981 | 1.0758 | ... | 496.3342 | 0.0095 | 0.013133 | 0.022367
2017Q4 | 88111231.6601 | 53601437.7291 | 23477516.6946 | 1.081 | ... | 509.1968 | 0.011533 | 0.0109 | 0.020867
2018Q1 | 88557263.9759 | 53960814.0875 | 23726936.444 | 1.0882 | ... | 536.4746 | 0.012033 | 0.011667 | 0.019
2018Q2 | 88817646.3122 | 53931032.9449 | 23989494.0402 | 1.0937 | ... | 560.3093 | 0.014467 | 0.013133 | 0.0171
2018Q3 | 89689102.8539 | 54343965.1391 | 24123408.6269 | 1.1027 | ... | 554.472 | 0.017367 | 0.011833 | 0.0186
>>
### Create time series
Using an existing
`dseries`
object it is possible to create new time series:
>> d.cy = d.conso_rpc/d.gdp_rpc
d is a dseries object:
| conso_rpc | creditspread | cy | defgdp | ... | pinves_defl | re | slope | wage_rph
1980Q1 | NaN | 0.014933 | NaN | 0.40801 | ... | 145.6631 | 0.15047 | -0.0306 | 65.0376
1980Q2 | NaN | 0.028833 | NaN | 0.41772 | ... | 145.6095 | 0.12687 | -0.0221 | 65.1872
1980Q3 | NaN | 0.022167 | NaN | 0.42705 | ... | 145.3811 | 0.098367 | 0.011167 | 65.3858
1980Q4 | NaN | 0.022467 | NaN | 0.43818 | ... | 144.3745 | 0.15853 | -0.0343 | 65.5028
1981Q1 | NaN | 0.0229 | NaN | 0.44972 | ... | 144.6055 | 0.1657 | -0.0361 | 65.4385
1981Q2 | NaN | 0.0202 | NaN | 0.45863 | ... | 145.6512 | 0.1778 | -0.0403 | 65.3054
1981Q3 | NaN | 0.016333 | NaN | 0.46726 | ... | 144.7545 | 0.17577 | -0.0273 | 65.5074
1981Q4 | NaN | 0.025933 | NaN | 0.47534 | ... | 145.4748 | 0.13587 | 0.005 | 65.4142
1982Q1 | NaN | 0.027367 | NaN | 0.48188 | ... | 144.924 | 0.14227 | 0.00066667 | 66.1617
1982Q2 | NaN | 0.0285 | NaN | 0.48814 | ... | 144.4647 | 0.14513 | -0.0058333 | 65.8827
| | | | | ... | | | |
2016Q1 | 51926452.5716 | 0.0323 | 0.60877 | 1.0514 | ... | 98.7988 | 0.0016 | 0.0203 | 102.4176
2016Q2 | 52096454.9154 | 0.0339 | 0.60998 | 1.0506 | ... | 98.2923 | 0.0036 | 0.0156 | 102.5282
2016Q3 | 52436447.9843 | 0.029167 | 0.61117 | 1.0578 | ... | 98.1811 | 0.0037333 | 0.0138 | 102.0061
2016Q4 | 52595613.0404 | 0.026967 | 0.61086 | 1.0617 | ... | 98.0833 | 0.0039667 | 0.011667 | 102.1861
2017Q1 | 52795431.0988 | 0.0251 | 0.61122 | 1.0672 | ... | 97.8223 | 0.0045 | 0.0168 | 102.8336
2017Q2 | 53164725.076 | 0.022167 | 0.61122 | 1.0728 | ... | 97.6873 | 0.007 | 0.017433 | 103.4761
2017Q3 | 53451779.0342 | 0.022367 | 0.61014 | 1.0758 | ... | 97.8137 | 0.0095 | 0.013133 | 103.5137
2017Q4 | 53601437.7291 | 0.020867 | 0.60834 | 1.081 | ... | 97.4819 | 0.011533 | 0.0109 | 104.3091
2018Q1 | 53960814.0875 | 0.019 | 0.60933 | 1.0882 | ... | 97.4234 | 0.012033 | 0.011667 | 104.1112
2018Q2 | 53931032.9449 | 0.0171 | 0.60721 | 1.0937 | ... | 97.5643 | 0.014467 | 0.013133 | 104.5487
2018Q3 | 54343965.1391 | 0.0186 | 0.60591 | 1.1027 | ... | 97.8751 | 0.017367 | 0.011833 | 103.7128
>>
Recursive definitions for new time series are also possible. For
instance one can create a sample from an ARMA(1,1) stochastic process
as follows:
>> e = dseries(randn(100, 1), '2000Q1', 'e', '\varepsilon');
>> y = dseries(zeros(100, 1), '2000Q1', 'y');
>> from 2000Q2 to 2024Q4 do y(t)=.9*y(t-1)+e(t)-.4*e(t-1);
>> y
y is a dseries object:
| y
2000Q1 | 0
2000Q2 | -0.95221
2000Q3 | -0.6294
2000Q4 | -1.8935
2001Q1 | -1.1536
2001Q2 | -1.5905
2001Q3 | 0.97056
2001Q4 | 1.1409
2002Q1 | -1.9255
2002Q2 | -0.29287
|
2022Q2 | -1.4683
2022Q3 | -1.3758
2022Q4 | -1.2218
2023Q1 | -0.98145
2023Q2 | -0.96542
2023Q3 | -0.23203
2023Q4 | -0.34404
2024Q1 | 1.4606
2024Q2 | 0.901
2024Q3 | 2.4906
2024Q4 | 0.79661
>>
Any univariate nonlinear recursive model can be simulated with this approach.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment