Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
D
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Johannes Pfeifer
dynare
Commits
8b49b30f
Commit
8b49b30f
authored
9 years ago
by
Johannes Pfeifer
Browse files
Options
Downloads
Patches
Plain Diff
Add unit tests for prior sampling
parent
b5aeefe5
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/prior_draw.m
+367
-1
367 additions, 1 deletion
matlab/prior_draw.m
with
367 additions
and
1 deletion
matlab/prior_draw.m
+
367
−
1
View file @
8b49b30f
...
...
@@ -15,7 +15,7 @@ function pdraw = prior_draw(init,uniform) % --*-- Unitary tests --*--
% NOTE 1. Input arguments 1 an 2 are only needed for initialization.
% NOTE 2. A given draw from the joint prior distribution does not satisfy BK conditions a priori.
% Copyright (C) 2006-201
0
Dynare Team
% Copyright (C) 2006-201
5
Dynare Team
%
% This file is part of Dynare.
%
...
...
@@ -149,3 +149,369 @@ if inverse_gamma_2_draws
end
end
%@test:1
%$ %% Initialize required structures
%$ options_.prior_trunc=0;
%$ options_.initialize_estimated_parameters_with_the_prior_mode=0;
%$
%$ M_.dname='test';
%$ M_.param_names = 'alp';
%$ ndraws=100000;
%$ global estim_params_
%$ estim_params_.var_exo = [];
%$ estim_params_.var_endo = [];
%$ estim_params_.corrx = [];
%$ estim_params_.corrn = [];
%$ estim_params_.param_vals = [];
%$ estim_params_.param_vals = [1, NaN, (-Inf), Inf, 1, 0.356, 0.02, NaN, NaN, NaN ];
%$
%$ %% beta
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 1;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<0) || any(pdraw_vec>1)
%$ error('Beta prior wrong')
%$ end
%$
%$
%$ %% Gamma
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 2;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<0)
%$ error('Gamma prior wrong')
%$ end
%$
%$ %% Normal
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 3;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4
%$ error('Normal prior wrong')
%$ end
%$
%$ %% inverse gamma distribution (type 1)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 4;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<0)
%$ error('inverse gamma distribution (type 1) prior wrong')
%$ end
%$
%$ %% Uniform
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 5;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=sqrt(12)^(-1)*(1-0);
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-2 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-3 || any(pdraw_vec<0) || any(pdraw_vec>1)
%$ error('Uniform prior wrong')
%$ end
%$
%$ %% inverse gamma distribution (type 2)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 6;%Shape
%$ estim_params_.param_vals(1,6)=0.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<0)
%$ error('inverse gamma distribution (type 2) prior wrong')
%$ end
%$
%$
%$ %%%%%%%%%%%%%%%%%%%%%% Generalized distributions %%%%%%%%%%%%%%%%%%%%%
%$
%$ %% beta
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 1;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=3;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<estim_params_.param_vals(1,3)) || any(pdraw_vec>estim_params_.param_vals(1,4))
%$ error('Beta prior wrong')
%$ end
%$
%$ %% Gamma
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 2;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<estim_params_.param_vals(1,8))
%$ error('Gamma prior wrong')
%$ end
%$
%$ %% inverse gamma distribution (type 1)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 4;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<estim_params_.param_vals(1,8))
%$ error('inverse gamma distribution (type 1) prior wrong')
%$ end
%$
%$ %% Uniform
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 5;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<estim_params_.param_vals(1,3)) || any(pdraw_vec>estim_params_.param_vals(1,4))
%$ error('Uniform prior wrong')
%$ end
%$
%$ %% inverse gamma distribution (type 2)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 6;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>1e-4 || abs(std(pdraw_vec)-estim_params_.param_vals(1,7))>1e-4 || any(pdraw_vec<estim_params_.param_vals(1,8))
%$ error('inverse gamma distribution (type 2) prior wrong')
%$ end
%$
%$ %%%%%%%%%%%% With prior truncation
%$ options_.prior_trunc=.4;
%$
%$ %% beta
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 1;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=3;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$ bounds = prior_bounds(bayestopt_,options_)';
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>5e-3 || any(pdraw_vec<bounds.lb) || any(pdraw_vec>bounds.ub)
%$ error('Beta prior wrong')
%$ end
%$
%$ %% Gamma
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 2;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$ bounds = prior_bounds(bayestopt_,options_)';
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>5e-3 || any(pdraw_vec<bounds.lb) || any(pdraw_vec>bounds.ub)
%$ error('Gamma prior wrong')
%$ end
%$
%$ %% inverse gamma distribution (type 1)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 4;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$ bounds = prior_bounds(bayestopt_,options_)';
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>5e-3 || any(pdraw_vec<bounds.lb) || any(pdraw_vec>bounds.ub)
%$ error('inverse gamma distribution (type 1) prior wrong')
%$ end
%$
%$ %% Uniform
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 5;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=NaN;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$ bounds = prior_bounds(bayestopt_,options_)';
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>5e-3 || any(pdraw_vec<bounds.lb) || any(pdraw_vec>bounds.ub)
%$ error('Uniform prior wrong')
%$ end
%$
%$
%$ %% inverse gamma distribution (type 2)
%$ estim_params_.param_vals(1,3)= -Inf;%LB
%$ estim_params_.param_vals(1,4)= +Inf;%UB
%$ estim_params_.param_vals(1,5)= 6;%Shape
%$ estim_params_.param_vals(1,6)=1.5;
%$ estim_params_.param_vals(1,7)=0.01;
%$ estim_params_.param_vals(1,8)=1;
%$ estim_params_.param_vals(1,9)=NaN;
%$
%$ [xparam1, estim_params_, bayestopt_, lb, ub, M_]=set_prior(estim_params_, M_, options_);
%$ bounds = prior_bounds(bayestopt_,options_)';
%$
%$ pdraw = prior_draw(1,0);
%$ pdraw_vec=NaN(ndraws,1);
%$ for ii=1:ndraws
%$ pdraw_vec(ii)=prior_draw(0,0);
%$ end
%$
%$ if abs(mean(pdraw_vec)-estim_params_.param_vals(1,6))>5e-3 || any(pdraw_vec<bounds.lb) || any(pdraw_vec>bounds.ub)
%$ error('inverse gamma distribution (type 2) prior wrong')
%$ end
%$
%@eof:1
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment