Skip to content
Snippets Groups Projects
Verified Commit de576398 authored by Johannes Pfeifer's avatar Johannes Pfeifer Committed by Sébastien Villemot
Browse files

Speed up testsuite

(manually cherry picked from commit 01e3f513)
parent bc6b7833
No related branches found
No related tags found
No related merge requests found
Showing
with 12 additions and 12 deletions
......@@ -47,7 +47,7 @@ s2df = 1;
// form expression for the joint posterior marginal distribution of β, a Gibbs
// sampling algorithm is used (the prior for β and the inverse of σ² are independent).
gibbslength = 1000000; // Set the number of iterations in Gibbs
gibbslength = 300000; // Set the number of iterations in Gibbs
burnin = 10000; // Set the number of iterations to be discarded (try to remove the effects of the initial condition).
steps = 10; // Do not record all iterations (try to remove the dependence between the draws).
......
......@@ -50,14 +50,14 @@ s2df = 1;
// form expression for the joint posterior marginal distribution of β, a Gibbs
// sampling algorithm is used (the prior for β and the inverse of σ² are independent).
gibbslength = 1000000; // Set the number of iterations in Gibbs
gibbslength = 100000; // Set the number of iterations in Gibbs
burnin = 10000; // Set the number of iterations to be discarded (try to remove the effects of the initial condition).
steps = 10; // Do not record all iterations (try to remove the dependence between the draws).
ds = olsgibbs(ds, 'eqols', beta0, V0, s2priormean, s2df, gibbslength, burnin, steps, {'eqols', 'eqols_olsgibbs_fit'}, 'olsgibbs_eq',{'b2'; 'b3'});
// Since we use a diffuse prior for β, the posterior mean of β should be close to the OLS estimate.
if max(abs(oo_.ols.ols_eq.beta-oo_.olsgibbs.olsgibbs_eq.posterior.mean.beta))>.1
if max(abs(oo_.ols.ols_eq.beta-oo_.olsgibbs.olsgibbs_eq.posterior.mean.beta))>.01
error('Something is wrong in the Gibbs sampling routine (univariate model)')
end
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_loglin_no_prefilt_first_obs_MC_Exp_AR1_trend_
mode_compute=4,silent_optimizer,first_obs=1000,loglinear,smoother,forecast=100,prefilter=0,
mcmc_jumping_covariance='Trend_loglin_no_prefilt_first_obs_MC_MCMC_jump_covar',
filtered_vars, filter_step_ahead = [1,2,4],
mh_nblocks=1,mh_jscale=0.3,no_posterior_kernel_density) P_obs Y_obs junk2;
mh_nblocks=1,mh_jscale=0.3,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_loglin_no_prefilt_first_obs_MC_Exp_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_loglin_prefilt_first_obs_MC_Exp_AR1_trend_dat
mode_compute=4,silent_optimizer,first_obs=1000,loglinear,smoother,forecast=100,prefilter=1,
mcmc_jumping_covariance='Trend_loglin_prefilt_first_obs_MC_MCMC_jump_covar_prefilter',
filtered_vars, filter_step_ahead = [1,2,4],
mh_nblocks=1,mh_jscale=1e-4,no_posterior_kernel_density) P_obs Y_obs junk2;
mh_nblocks=1,mh_jscale=1e-4,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_loglin_prefilt_first_obs_MC_Exp_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_loglinear_no_prefilter_MC_Exp_AR1_trend_data_
mode_compute=4,silent_optimizer,first_obs=1,loglinear,diffuse_filter,smoother,forecast=100,prefilter=0,
mcmc_jumping_covariance='Trend_loglinear_no_prefilter_MC_MCMC_jump_covar',
filtered_vars, filter_step_ahead = [1,2,4],
mh_nblocks=1,mh_jscale=0.3) P_obs Y_obs junk2;
mh_nblocks=1,mh_jscale=0.3,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_loglinear_no_prefilter_MC_Exp_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_loglinear_prefilter_MC_Exp_AR1_trend_data_wit
mode_compute=4,silent_optimizer,first_obs=1,loglinear,smoother,forecast=100,prefilter=1,
mcmc_jumping_covariance='Trend_loglinear_prefilter_MC_MCMC_jump_covar_prefilter',
filtered_vars, filter_step_ahead = [1,2,4],
mh_nblocks=1,mh_jscale=1e-4) P_obs Y_obs junk2;
mh_nblocks=1,mh_jscale=1e-4,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_loglinear_prefilter_MC_Exp_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -6,7 +6,7 @@ generate_trend_stationary_AR1(M_.fname);
estimation(order=1,datafile='Trend_no_prefilter_MC_AR1_trend_data_with_constant',mh_replic=400,silent_optimizer,
mode_compute=4,first_obs=1,smoother,mh_nblocks=1,mh_jscale=0.3,
filtered_vars, filter_step_ahead = [1,2,4],
mcmc_jumping_covariance='Trend_no_prefilter_MC_MCMC_jump_covar',forecast=100,prefilter=0) P_obs Y_obs junk2;
mcmc_jumping_covariance='Trend_no_prefilter_MC_MCMC_jump_covar',forecast=100,prefilter=0,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_no_prefilter_MC_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_no_prefilter_first_obs_MC_AR1_trend_data_with
mh_replic=400,mode_compute=4,silent_optimizer,first_obs=1000,smoother,forecast=100,prefilter=0,
mcmc_jumping_covariance='Trend_no_prefilter_first_obs_MC_MCMC_jump_covar',
filtered_vars, filter_step_ahead = [1,2,4],
mh_nblocks=1,mh_jscale=0.3,no_posterior_kernel_density) P_obs Y_obs junk2;
mh_nblocks=1,mh_jscale=0.3,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_no_prefilter_first_obs_MC_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_prefilter_MC_AR1_trend_data_with_constant',mh
first_obs=1,smoother,prefilter=1,
mh_nblocks=1,mh_jscale=1e-4,
filtered_vars, filter_step_ahead = [1,2,4],
mcmc_jumping_covariance='Trend_prefilter_MC_MCMC_jump_covar_prefilter',forecast=100) P_obs Y_obs junk2;
mcmc_jumping_covariance='Trend_prefilter_MC_MCMC_jump_covar_prefilter',forecast=100,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_prefilter_MC_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -7,7 +7,7 @@ estimation(order=1,datafile='Trend_prefilter_first_obs_MC_AR1_trend_data_with_co
first_obs=1000,smoother,prefilter=1,
mh_nblocks=1,mh_jscale=1e-4,
filtered_vars, filter_step_ahead = [1,2,4],
mcmc_jumping_covariance='Trend_prefilter_first_obs_MC_MCMC_jump_covar_prefilter',forecast=100,no_posterior_kernel_density) P_obs Y_obs junk2;
mcmc_jumping_covariance='Trend_prefilter_first_obs_MC_MCMC_jump_covar_prefilter',forecast=100,no_posterior_kernel_density,nograph,sub_draws=100) P_obs Y_obs junk2;
load('Trend_prefilter_first_obs_MC_AR1_trend_data_with_constant');
@#include "../Trend_load_data_common.inc"
......
......@@ -105,7 +105,7 @@ varobs y l i ;
%datatomfile('mysample')
%return;
data(file='./mysample.m',first_obs=801Y,nobs=200); %no measurement errors added in the simulated data
data(file='./mysample.m',first_obs=801Y,nobs=50); %no measurement errors added in the simulated data
@#if LINEAR_KALMAN
estimation(nograph,order=1,mode_compute=8,silent_optimizer,mh_replic=0,additional_optimizer_steps=[8 4],mode_check);
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment