Select Git revision
Dynare AIM use Doc.mht
Forked from
Dynare / dynare
Source project has a limited visibility.
display_problematic_vars_Jacobian.m 8.50 KiB
function display_problematic_vars_Jacobian(problemrow, problemcol, M_, x, type, caller_string)
% display_problematic_vars_Jacobian(problemrow,problemcol,M_,x,caller_string)
% print the equation numbers and variables associated with problematic entries
% of the Jacobian
%
% INPUTS
% problemrow [vector] rows associated with problematic entries
% problemcol [vector] columns associated with problematic entries
% M_ [matlab structure] Definition of the model.
% x [vector] point at which the Jacobian was evaluated
% type [string] 'static' or 'dynamic' depending on the type of
% Jacobian
% caller_string [string] contains name of calling function for printing
% Copyright © 2014-2024 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
skipline();
if nargin<6
caller_string='';
end
initial_aux_eq_nbr=M_.ramsey_orig_endo_nbr;
if strcmp(type,'dynamic')
for ii=1:length(problemrow)
if problemcol(ii) <= 3*M_.endo_nbr % Endogenous
endo = true;
var_index = mod(problemcol(ii)-1, M_.endo_nbr)+1;
if problemcol(ii) <= M_.endo_nbr
type_string='lag of';
elseif problemcol(ii) <= 2*M_.endo_nbr
type_string='';
else
type_string='lead of';
end
elseif problemcol(ii) <= 3*M_.endo_nbr+M_.exo_nbr % Exogenous
endo = false;
var_index = problemcol(ii) - 3*M_.endo_nbr;
else % Exogenous deterministic, ignore
continue
end
if endo && var_index <= M_.orig_endo_nbr
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{var_index}, M_.endo_names{var_index}, x(var_index));
end
elseif endo && var_index > M_.orig_endo_nbr % auxiliary vars
if M_.aux_vars(1, var_index - M_.orig_endo_nbr).type==6 %Ramsey Lagrange Multiplier
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s of Lagrange multiplier of equation %s (initial value: %g) \n', ...
eq_nbr, type_string, M_.aux_vars(1, var_index-M_.orig_endo_nbr).eq_nbr, x(var_index));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s of Lagrange multiplier of equation %s (initial value: %g) \n', ...
eq_nbr, type_string, M_.aux_vars(1, var_index-M_.orig_endo_nbr).eq_nbr, x(var_index));
end
else
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Auxiliary Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
orig_var_index = M_.aux_vars(1,var_index-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Equation %d with respect to %s Variable %s (initial value of %s: %g) \n', ...
eq_nbr, type_string, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(orig_var_index));
end
end
else % Exogenous
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to %s shock %s \n', ...
eq_nbr, type_string, M_.exo_names{var_index});
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to %s shock %s \n', ...
eq_nbr, type_string, M_.exo_names{var_index});
end
end
end
fprintf('\n%s The problem most often occurs, because a variable with\n', caller_string)
fprintf('%s exponent smaller than 0 has been initialized to 0. Taking the derivative\n', caller_string)
fprintf('%s and evaluating it at the steady state then results in a division by 0.\n', caller_string)
fprintf('%s If you are using model-local variables (# operator), check their values as well.\n', caller_string)
elseif strcmp(type, 'static')
for ii=1:length(problemrow)
if problemcol(ii)<=M_.orig_endo_nbr
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{problemcol(ii)}, M_.endo_names{problemcol(ii)}, x(problemcol(ii)));
end
else %auxiliary vars
if M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).type ==6 %Ramsey Lagrange Multiplier
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
fprintf('Derivative of Auxiliary Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
fprintf('Derivative of Equation %d with respect to Lagrange multiplier of equation %d (initial value: %g) \n', ...
eq_nbr, M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).eq_nbr, x(problemcol(ii)));
end
else
if problemrow(ii)<=initial_aux_eq_nbr
eq_nbr = problemrow(ii);
orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Auxiliary Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
else
eq_nbr = problemrow(ii)-initial_aux_eq_nbr;
orig_var_index = M_.aux_vars(1,problemcol(ii)-M_.orig_endo_nbr).orig_index;
fprintf('Derivative of Equation %d with respect to Variable %s (initial value of %s: %g) \n', ...
eq_nbr, M_.endo_names{orig_var_index}, M_.endo_names{orig_var_index}, x(problemcol(ii)));
end
end
end
end
fprintf('\n%s The problem most often occurs, because a variable with\n', caller_string)
fprintf('%s exponent smaller than 1 has been initialized to 0. Taking the derivative\n', caller_string)
fprintf('%s and evaluating it at the steady state then results in a division by 0.\n', caller_string)
fprintf('%s If you are using model-local variables (# operator), check their values as well.\n', caller_string)
else
error('Unknown Type')
end