Skip to content
Snippets Groups Projects
Select Git revision
  • 12b61e4817553cbebaa08db35cf1c1b221fbaa24
  • master default protected
  • pac_composite_target_mce
  • ramsey_k_order
  • 4.6
  • occbin
  • uop
  • rework_pac
  • aux_vars_fix
  • created_preprocessor_repo
10 results

StaticModel.cc

Blame
  • Forked from Dynare / preprocessor
    835 commits behind the upstream repository.
    MichelJuillard's avatar
    MichelJuillard authored and Sébastien Villemot committed
    9773bafc
    History
    StaticModel.cc 123.69 KiB
    /*
     * Copyright © 2003-2021 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <iostream>
    #include <cmath>
    #include <cstdlib>
    #include <cassert>
    #include <algorithm>
    #include <sstream>
    
    #include "StaticModel.hh"
    #include "DynamicModel.hh"
    
    void
    StaticModel::copyHelper(const StaticModel &m)
    {
    }
    
    StaticModel::StaticModel(SymbolTable &symbol_table_arg,
                             NumericalConstants &num_constants_arg,
                             ExternalFunctionsTable &external_functions_table_arg) :
      ModelTree{symbol_table_arg, num_constants_arg, external_functions_table_arg}
    {
    }
    
    StaticModel::StaticModel(const StaticModel &m) :
      ModelTree{m}
    {
      copyHelper(m);
    }
    
    StaticModel &
    StaticModel::operator=(const StaticModel &m)
    {
      ModelTree::operator=(m);
    
      copyHelper(m);
    
      return *this;
    }
    
    StaticModel::StaticModel(const DynamicModel &m) :
      ModelTree{m.symbol_table, m.num_constants, m.external_functions_table}
    {
      // Convert model local variables (need to be done first)
      for (int it : m.local_variables_vector)
        AddLocalVariable(it, m.local_variables_table.find(it)->second->toStatic(*this));
    
      // Convert equations
      int static_only_index = 0;
      set<int> dynamic_equations = m.equation_tags.getDynamicEqns();
      for (int i = 0; i < static_cast<int>(m.equations.size()); i++)
        try
          {
            // If equation is dynamic, replace it by an equation marked [static]
            if (dynamic_equations.find(i) != dynamic_equations.end())
              {
                auto [static_only_equations,
                      static_only_equations_lineno,
                      static_only_equations_equation_tags] = m.getStaticOnlyEquationsInfo();
    
                addEquation(static_only_equations[static_only_index]->toStatic(*this),
                            static_only_equations_lineno[static_only_index],
                            static_only_equations_equation_tags.getTagsByEqn(static_only_index));
                static_only_index++;
              }
            else
              addEquation(m.equations[i]->toStatic(*this),
                          m.equations_lineno[i],
                          m.equation_tags.getTagsByEqn(i));
          }
        catch (DataTree::DivisionByZeroException)
          {
            cerr << "...division by zero error encountred when converting equation " << i << " to static" << endl;
            exit(EXIT_FAILURE);
          }
    
      // Convert auxiliary equations
      for (auto aux_eq : m.aux_equations)
        addAuxEquation(aux_eq->toStatic(*this));
    
      user_set_add_flags = m.user_set_add_flags;
      user_set_subst_flags = m.user_set_subst_flags;
      user_set_add_libs = m.user_set_add_libs;
      user_set_subst_libs = m.user_set_subst_libs;
      user_set_compiler = m.user_set_compiler;
    }
    
    void
    StaticModel::compileDerivative(ofstream &code_file, unsigned int &instruction_number, int eq, int symb_id, const temporary_terms_t &temporary_terms, const temporary_terms_idxs_t &temporary_terms_idxs) const
    {
      if (auto it = derivatives[1].find({ eq, getDerivID(symbol_table.getID(SymbolType::endogenous, symb_id), 0) });
          it != derivatives[1].end())
        it->second->compile(code_file, instruction_number, false, temporary_terms, temporary_terms_idxs, false, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    StaticModel::compileChainRuleDerivative(ofstream &code_file, unsigned int &instruction_number, int blk, int eq, int var, int lag, const temporary_terms_t &temporary_terms, const temporary_terms_idxs_t &temporary_terms_idxs) const
    {
      if (auto it = blocks_derivatives[blk].find({ eq, var, lag });
          it != blocks_derivatives[blk].end())
        it->second->compile(code_file, instruction_number, false, temporary_terms, temporary_terms_idxs, false, false);
      else
        {
          FLDZ_ fldz;
          fldz.write(code_file, instruction_number);
        }
    }
    
    void
    StaticModel::writeStaticPerBlockHelper(int blk, ostream &output, ExprNodeOutputType output_type, temporary_terms_t &temporary_terms) const
    {
      BlockSimulationType simulation_type = blocks[blk].simulation_type;
      int block_recursive_size = blocks[blk].getRecursiveSize();
    
      // The equations
      deriv_node_temp_terms_t tef_terms;
    
      auto write_eq_tt = [&](int eq)
                         {
                           for (auto it : blocks_temporary_terms[blk][eq])
                             {
                               if (dynamic_cast<AbstractExternalFunctionNode *>(it))
                                 it->writeExternalFunctionOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs, tef_terms);
    
                               output << "  ";
                               it->writeOutput(output, output_type, blocks_temporary_terms[blk][eq], blocks_temporary_terms_idxs, tef_terms);
                               output << '=';
                               it->writeOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs, tef_terms);
                               temporary_terms.insert(it);
                               output << ';' << endl;
                             }
                         };
    
      for (int eq = 0; eq < blocks[blk].size; eq++)
        {
          write_eq_tt(eq);
    
          EquationType equ_type = getBlockEquationType(blk, eq);
          BinaryOpNode *e = getBlockEquationExpr(blk, eq);
          expr_t lhs = e->arg1, rhs = e->arg2;
          switch (simulation_type)
            {
            case BlockSimulationType::evaluateBackward:
            case BlockSimulationType::evaluateForward:
              evaluation:
              if (equ_type == EquationType::evaluateRenormalized)
                {
                  e = getBlockEquationRenormalizedExpr(blk, eq);
                  lhs = e->arg1;
                  rhs = e->arg2;
                }
              else if (equ_type != EquationType::evaluate)
                {
                  cerr << "Type mismatch for equation " << getBlockEquationID(blk, eq)+1  << endl;
                  exit(EXIT_FAILURE);
                }
              output << "  ";
              lhs->writeOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs);
              output << '=';
              rhs->writeOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs);
              output << ';' << endl;
              break;
            case BlockSimulationType::solveBackwardSimple:
            case BlockSimulationType::solveForwardSimple:
            case BlockSimulationType::solveBackwardComplete:
            case BlockSimulationType::solveForwardComplete:
              if (eq < block_recursive_size)
                goto evaluation;
              output << "  residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                     << eq-block_recursive_size+ARRAY_SUBSCRIPT_OFFSET(output_type)
                     << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=(";
              lhs->writeOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs);
              output << ")-(";
              rhs->writeOutput(output, output_type, temporary_terms, blocks_temporary_terms_idxs);
              output << ");" << endl;
              break;
            default:
              cerr << "Incorrect type for block " << blk+1 << endl;
              exit(EXIT_FAILURE);
            }
        }
      // The Jacobian if we have to solve the block
      if (simulation_type != BlockSimulationType::evaluateBackward
          && simulation_type != BlockSimulationType::evaluateForward)
        {
          // Write temporary terms for derivatives
          write_eq_tt(blocks[blk].size);
    
          ostringstream i_output, j_output, v_output;
          int line_counter = ARRAY_SUBSCRIPT_OFFSET(output_type);
          for (const auto &[indices, d] : blocks_derivatives[blk])
            {
              auto [eq, var, ignore] = indices;
              i_output << "  g1_i" << LEFT_ARRAY_SUBSCRIPT(output_type) << line_counter
                       << RIGHT_ARRAY_SUBSCRIPT(output_type) << '=' << eq+1-block_recursive_size
                       << ';' << endl;
              j_output << "  g1_j" << LEFT_ARRAY_SUBSCRIPT(output_type) << line_counter
                       << RIGHT_ARRAY_SUBSCRIPT(output_type) << '=' << var+1-block_recursive_size
                       << ';' << endl;
              v_output << "  g1_v" << LEFT_ARRAY_SUBSCRIPT(output_type) << line_counter
                       << RIGHT_ARRAY_SUBSCRIPT(output_type) << '=';
              d->writeOutput(v_output, output_type, temporary_terms, blocks_temporary_terms_idxs);
              v_output << ';' << endl;
              line_counter++;
            }
          output << i_output.str() << j_output.str() << v_output.str();
        }
    }
    
    void
    StaticModel::writeStaticPerBlockMFiles(const string &basename) const
    {
      temporary_terms_t temporary_terms; // Temp terms written so far
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        {
          BlockSimulationType simulation_type = blocks[blk].simulation_type;
    
          string filename = packageDir(basename + ".block") + "/static_" + to_string(blk+1) + ".m";
          ofstream output;
          output.open(filename, ios::out | ios::binary);
          if (!output.is_open())
            {
              cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
              exit(EXIT_FAILURE);
            }
          output << "%" << endl
                 << "% " << filename << " : Computes static version of one block" << endl
                 << "%" << endl
                 << "% Warning : this file is generated automatically by Dynare" << endl
                 << "%           from model file (.mod)" << endl << endl
                 << "%" << endl;
          if (simulation_type == BlockSimulationType::evaluateBackward
              || simulation_type == BlockSimulationType::evaluateForward)
            output << "function [y, T] = static_" << blk+1 << "(y, x, params, T)" << endl;
          else
            output << "function [residual, y, T, g1] = static_" << blk+1 << "(y, x, params, T)" << endl;
    
          output << "  % ////////////////////////////////////////////////////////////////////////" << endl
                 << "  % //" << string("                     Block ").substr(static_cast<int>(log10(blk + 1))) << blk+1
                 << "                                        //" << endl
                 << "  % //                     Simulation type "
                 << BlockSim(simulation_type) << "  //" << endl
                 << "  % ////////////////////////////////////////////////////////////////////////" << endl;
    
          if (simulation_type != BlockSimulationType::evaluateBackward
              && simulation_type != BlockSimulationType::evaluateForward)
            output << "  residual=zeros(" << blocks[blk].mfs_size << ",1);" << endl
                   << "  g1_i=zeros(" << blocks_derivatives[blk].size() << ",1);" << endl
                   << "  g1_j=zeros(" << blocks_derivatives[blk].size() << ",1);" << endl
                   << "  g1_v=zeros(" << blocks_derivatives[blk].size() << ",1);" << endl
                   << endl;
    
          writeStaticPerBlockHelper(blk, output, ExprNodeOutputType::matlabStaticModel, temporary_terms);
    
          if (simulation_type != BlockSimulationType::evaluateBackward
              && simulation_type != BlockSimulationType::evaluateForward)
            output << endl
                   << "  g1=sparse(g1_i, g1_j, g1_v, "  << blocks[blk].mfs_size << "," << blocks[blk].mfs_size << ");" << endl;
    
          output << "end" << endl;
          output.close();
        }
    }
    
    void
    StaticModel::writeStaticPerBlockCFiles(const string &basename) const
    {
      temporary_terms_t temporary_terms; // Temp terms written so far
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        {
          BlockSimulationType simulation_type = blocks[blk].simulation_type;
    
          string filename = basename + "/model/src/static_" + to_string(blk+1) + ".c";
          ofstream output;
          output.open(filename, ios::out | ios::binary);
          if (!output.is_open())
            {
              cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
              exit(EXIT_FAILURE);
            }
          output << "/* Block " << blk+1 << endl
                 << "   " << BlockSim(simulation_type) << " */" << endl
                 << endl
                 << "#include <math.h>" << endl
                 << "#include <stdlib.h>" << endl
                 << R"(#include "mex.h")" << endl
                 << endl;
    
          // Write function definition if BinaryOpcode::powerDeriv is used
          writePowerDerivHeader(output);
    
          output << endl;
    
          if (simulation_type == BlockSimulationType::evaluateBackward
              || simulation_type == BlockSimulationType::evaluateForward)
            output << "void static_" << blk+1 << "(double *restrict y, const double *restrict x, const double *restrict params, double *restrict T)" << endl;
          else
            output << "void static_" << blk+1 << "(double *restrict y, const double *restrict x, const double *restrict params, double *restrict T, double *restrict residual, double *restrict g1_i, double *restrict g1_j, double *restrict g1_v)" << endl;
          output << '{' << endl;
    
          writeStaticPerBlockHelper(blk, output, ExprNodeOutputType::CStaticModel, temporary_terms);
    
          output << '}' << endl
                 << endl;
    
          ostringstream header;
          if (simulation_type == BlockSimulationType::evaluateBackward
              || simulation_type == BlockSimulationType::evaluateForward)
            {
              header << "void static_" << blk+1 << "_mx(mxArray *y, const mxArray *x, const mxArray *params, mxArray *T)";
              output << header.str() << endl
                     << '{' << endl
                     << "  static_" << blk+1 << "(mxGetPr(y), mxGetPr(x), mxGetPr(params), mxGetPr(T));" << endl
                     << '}' << endl;
            }
          else
            {
              header << "void static_" << blk+1 << "_mx(mxArray *y, const mxArray *x, const mxArray *params, mxArray *T, mxArray **residual, mxArray **g1)";
              output << header.str() << endl
                     << '{' << endl
                     << "  *residual = mxCreateDoubleMatrix(" << blocks[blk].mfs_size << ",1,mxREAL);" << endl
                     << "  mxArray *g1_i = mxCreateDoubleMatrix(" << blocks_derivatives[blk].size() << ",1,mxREAL);" << endl
                     << "  mxArray *g1_j = mxCreateDoubleMatrix(" << blocks_derivatives[blk].size() << ",1,mxREAL);" << endl
                     << "  mxArray *g1_v = mxCreateDoubleMatrix(" << blocks_derivatives[blk].size() << ",1,mxREAL);" << endl
                     << "  static_" << blk+1 << "(mxGetPr(y), mxGetPr(x), mxGetPr(params), mxGetPr(T), mxGetPr(*residual), mxGetPr(g1_i), mxGetPr(g1_j), mxGetPr(g1_v));" << endl
                     << "  mxArray *plhs[1];" << endl
                     << "  mxArray *m = mxCreateDoubleScalar(" << blocks[blk].mfs_size << ");" << endl
                     << "  mxArray *n = mxCreateDoubleScalar(" << blocks[blk].mfs_size << ");" << endl
                     << "  mxArray *prhs[5] = { g1_i, g1_j, g1_v, m, n };" << endl
                     << R"(  mexCallMATLAB(1, plhs, 5, prhs, "sparse");)" << endl
                     << "  *g1 = plhs[0];" << endl
                     << "  mxDestroyArray(g1_i);" << endl
                     << "  mxDestroyArray(g1_j);" << endl
                     << "  mxDestroyArray(g1_v);" << endl
                     << "  mxDestroyArray(m);" << endl
                     << "  mxDestroyArray(n);" << endl
                     << '}' << endl;
            }
    
          output.close();
    
          filename = basename + "/model/src/static_" + to_string(blk+1) + ".h";
          ofstream header_output;
          header_output.open(filename, ios::out | ios::binary);
          if (!header_output.is_open())
            {
              cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
              exit(EXIT_FAILURE);
            }
          header_output << header.str() << ';' << endl;
          header_output.close();
        }
    }
    
    void
    StaticModel::writeStaticBytecode(const string &basename) const
    {
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      bool file_open = false;
    
      string main_name = basename + "/model/bytecode/static.cod";
      code_file.open(main_name, ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cerr << R"(Error : Can't open file ")" << main_name << R"(" for writing)" << endl;
          exit(EXIT_FAILURE);
        }
      int count_u;
      int u_count_int = 0;
    
      writeBytecodeBinFile(basename + "/model/bytecode/static.bin", u_count_int, file_open, false);
      file_open = true;
    
      // Compute the union of temporary terms from residuals and 1st derivatives
      temporary_terms_t temporary_terms = temporary_terms_derivatives[0];
      copy(temporary_terms_derivatives[1].begin(), temporary_terms_derivatives[1].end(),
           inserter(temporary_terms, temporary_terms.end()));
    
      //Temporary variables declaration
      FDIMST_ fdimst(temporary_terms.size());
      fdimst.write(code_file, instruction_number);
      FBEGINBLOCK_ fbeginblock(symbol_table.endo_nbr(),
                               BlockSimulationType::solveForwardComplete,
                               0,
                               symbol_table.endo_nbr(),
                               endo_idx_block2orig,
                               eq_idx_block2orig,
                               false,
                               symbol_table.endo_nbr(),
                               0,
                               0,
                               u_count_int,
                               symbol_table.endo_nbr());
      fbeginblock.write(code_file, instruction_number);
    
      temporary_terms_t temporary_terms_union;
      compileTemporaryTerms(code_file, instruction_number, false, false, temporary_terms_union, temporary_terms_idxs);
    
      compileModelEquations(code_file, instruction_number, false, false, temporary_terms_union, temporary_terms_idxs);
    
      FENDEQU_ fendequ;
      fendequ.write(code_file, instruction_number);
    
      // Get the current code_file position and jump if eval = true
      streampos pos1 = code_file.tellp();
      FJMPIFEVAL_ fjmp_if_eval(0);
      fjmp_if_eval.write(code_file, instruction_number);
      int prev_instruction_number = instruction_number;
    
      vector<vector<pair<int, int>>> my_derivatives(symbol_table.endo_nbr());
      count_u = symbol_table.endo_nbr();
      for (const auto & [indices, d1] : derivatives[1])
        {
          int deriv_id = indices[1];
          if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
            {
              int eq = indices[0];
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, eq, var);
              fnumexpr.write(code_file, instruction_number);
              if (!my_derivatives[eq].size())
                my_derivatives[eq].clear();
              my_derivatives[eq].emplace_back(var, count_u);
    
              d1->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, false, false);
    
              FSTPSU_ fstpsu(count_u);
              fstpsu.write(code_file, instruction_number);
              count_u++;
            }
        }
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          FLDR_ fldr(i);
          fldr.write(code_file, instruction_number);
          if (my_derivatives[i].size())
            {
              for (auto it = my_derivatives[i].begin(); it != my_derivatives[i].end(); ++it)
                {
                  FLDSU_ fldsu(it->second);
                  fldsu.write(code_file, instruction_number);
                  FLDSV_ fldsv{static_cast<int>(SymbolType::endogenous), static_cast<unsigned int>(it->first)};
                  fldsv.write(code_file, instruction_number);
                  FBINARY_ fbinary{static_cast<int>(BinaryOpcode::times)};
                  fbinary.write(code_file, instruction_number);
                  if (it != my_derivatives[i].begin())
                    {
                      FBINARY_ fbinary{static_cast<int>(BinaryOpcode::plus)};
                      fbinary.write(code_file, instruction_number);
                    }
                }
              FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
              fbinary.write(code_file, instruction_number);
            }
          FSTPSU_ fstpsu(i);
          fstpsu.write(code_file, instruction_number);
        }
      // Get the current code_file position and jump = true
      streampos pos2 = code_file.tellp();
      FJMP_ fjmp(0);
      fjmp.write(code_file, instruction_number);
      // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
      streampos pos3 = code_file.tellp();
      code_file.seekp(pos1);
      FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
      fjmp_if_eval1.write(code_file, instruction_number);
      code_file.seekp(pos3);
      prev_instruction_number = instruction_number;
    
      temporary_terms_t tt2, tt3;
    
      // The Jacobian if we have to solve the block determinsitic bloc
      for (const auto & [indices, d1] : derivatives[1])
        {
          int deriv_id = indices[1];
          if (getTypeByDerivID(deriv_id) == SymbolType::endogenous)
            {
              int eq = indices[0];
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, eq, var);
              fnumexpr.write(code_file, instruction_number);
              if (!my_derivatives[eq].size())
                my_derivatives[eq].clear();
              my_derivatives[eq].emplace_back(var, count_u);
    
              d1->compile(code_file, instruction_number, false, temporary_terms_union, temporary_terms_idxs, false, false);
              FSTPG2_ fstpg2(eq, var);
              fstpg2.write(code_file, instruction_number);
            }
        }
    
      // Set codefile position to previous JMP_ and set the number of instructions to jump
      pos1 = code_file.tellp();
      code_file.seekp(pos2);
      FJMP_ fjmp1(instruction_number - prev_instruction_number);
      fjmp1.write(code_file, instruction_number);
      code_file.seekp(pos1);
    
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    StaticModel::writeStaticBlockBytecode(const string &basename) const
    {
      struct Uff_l
      {
        int u, var, lag;
        Uff_l *pNext;
      };
    
      struct Uff
      {
        Uff_l *Ufl, *Ufl_First;
      };
    
      int i, v;
      string tmp_s;
      ostringstream tmp_output;
      ofstream code_file;
      unsigned int instruction_number = 0;
      expr_t lhs = nullptr, rhs = nullptr;
      BinaryOpNode *eq_node;
      Uff Uf[symbol_table.endo_nbr()];
      map<expr_t, int> reference_count;
      vector<int> feedback_variables;
      bool file_open = false;
    
      string main_name = basename + "/model/bytecode/static.cod";
      code_file.open(main_name, ios::out | ios::binary | ios::ate);
      if (!code_file.is_open())
        {
          cerr << R"(Error : Can't open file ")" << main_name << R"(" for writing)" << endl;
          exit(EXIT_FAILURE);
        }
      //Temporary variables declaration
    
      FDIMST_ fdimst(blocks_temporary_terms_idxs.size());
      fdimst.write(code_file, instruction_number);
    
      temporary_terms_t temporary_terms_union;
    
      for (int block = 0; block < static_cast<int>(blocks.size()); block++)
        {
          feedback_variables.clear();
          if (block > 0)
            {
              FENDBLOCK_ fendblock;
              fendblock.write(code_file, instruction_number);
            }
          int count_u;
          int u_count_int = 0;
          BlockSimulationType simulation_type = blocks[block].simulation_type;
          int block_size = blocks[block].size;
          int block_mfs = blocks[block].mfs_size;
          int block_recursive = blocks[block].getRecursiveSize();
    
          if (simulation_type == BlockSimulationType::solveTwoBoundariesSimple
              || simulation_type == BlockSimulationType::solveTwoBoundariesComplete
              || simulation_type == BlockSimulationType::solveBackwardComplete
              || simulation_type == BlockSimulationType::solveForwardComplete)
            {
              writeBlockBytecodeBinFile(basename, block, u_count_int, file_open);
              file_open = true;
            }
    
          FBEGINBLOCK_ fbeginblock(block_mfs,
                                   simulation_type,
                                   blocks[block].first_equation,
                                   block_size,
                                   endo_idx_block2orig,
                                   eq_idx_block2orig,
                                   blocks[block].linear,
                                   symbol_table.endo_nbr(),
                                   0,
                                   0,
                                   u_count_int,
                                   block_size);
    
          fbeginblock.write(code_file, instruction_number);
    
          // Get the current code_file position and jump if eval = true
          streampos pos1 = code_file.tellp();
          FJMPIFEVAL_ fjmp_if_eval(0);
          fjmp_if_eval.write(code_file, instruction_number);
          int prev_instruction_number = instruction_number;
    
          //The Temporary terms
          deriv_node_temp_terms_t tef_terms;
          /* Keep a backup of temporary_terms_union here, since temp. terms are
             written a second time below. This is probably unwanted… */
          temporary_terms_t ttu_old = temporary_terms_union;
    
          auto write_eq_tt = [&](int eq)
                             {
                               for (auto it : blocks_temporary_terms[block][eq])
                                 {
                                   if (dynamic_cast<AbstractExternalFunctionNode *>(it))
                                     it->compileExternalFunctionOutput(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false, tef_terms);
    
                                   FNUMEXPR_ fnumexpr(ExpressionType::TemporaryTerm, static_cast<int>(blocks_temporary_terms_idxs.at(it)));
                                   fnumexpr.write(code_file, instruction_number);
                                   it->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false, tef_terms);
                                   FSTPST_ fstpst(static_cast<int>(blocks_temporary_terms_idxs.at(it)));
                                   fstpst.write(code_file, instruction_number);
                                   temporary_terms_union.insert(it);
                                 }
                             };
    
          for (i = 0; i < block_size; i++)
            {
              write_eq_tt(i);
    
              // The equations
              int variable_ID, equation_ID;
              EquationType equ_type;
              switch (simulation_type)
                {
                evaluation:
                case BlockSimulationType::evaluateBackward:
                case BlockSimulationType::evaluateForward:
                  equ_type = getBlockEquationType(block, i);
                  {
                    FNUMEXPR_ fnumexpr(ExpressionType::ModelEquation, getBlockEquationID(block, i));
                    fnumexpr.write(code_file, instruction_number);
                  }
                  if (equ_type == EquationType::evaluate)
                    {
                      eq_node = getBlockEquationExpr(block, i);
                      lhs = eq_node->arg1;
                      rhs = eq_node->arg2;
                      rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                    }
                  else if (equ_type == EquationType::evaluateRenormalized)
                    {
                      eq_node = getBlockEquationRenormalizedExpr(block, i);
                      lhs = eq_node->arg1;
                      rhs = eq_node->arg2;
                      rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                    }
                  break;
                case BlockSimulationType::solveBackwardComplete:
                case BlockSimulationType::solveForwardComplete:
                  if (i < block_recursive)
                    goto evaluation;
                  variable_ID = getBlockVariableID(block, i);
                  equation_ID = getBlockEquationID(block, i);
                  feedback_variables.push_back(variable_ID);
                  Uf[equation_ID].Ufl = nullptr;
                  goto end;
                default:
                end:
                  FNUMEXPR_ fnumexpr(ExpressionType::ModelEquation, getBlockEquationID(block, i));
                  fnumexpr.write(code_file, instruction_number);
                  eq_node = getBlockEquationExpr(block, i);
                  lhs = eq_node->arg1;
                  rhs = eq_node->arg2;
                  lhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                  rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
    
                  FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
                  fbinary.write(code_file, instruction_number);
    
                  FSTPR_ fstpr(i - block_recursive);
                  fstpr.write(code_file, instruction_number);
                }
            }
          FENDEQU_ fendequ;
          fendequ.write(code_file, instruction_number);
    
          // The Jacobian if we have to solve the block
          if (simulation_type != BlockSimulationType::evaluateBackward
              && simulation_type != BlockSimulationType::evaluateForward)
            {
              // Write temporary terms for derivatives
              write_eq_tt(blocks[block].size);
    
              switch (simulation_type)
                {
                case BlockSimulationType::solveBackwardSimple:
                case BlockSimulationType::solveForwardSimple:
                  {
                    FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, 0, 0);
                    fnumexpr.write(code_file, instruction_number);
                  }
                  compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), temporary_terms_union, blocks_temporary_terms_idxs);
                  {
                    FSTPG_ fstpg(0);
                    fstpg.write(code_file, instruction_number);
                  }
                  break;
    
                case BlockSimulationType::solveBackwardComplete:
                case BlockSimulationType::solveForwardComplete:
                  count_u = feedback_variables.size();
                  for (const auto &[indices, ignore2] : blocks_derivatives[block])
                    {
                      auto [eq, var, ignore] = indices;
                      int eqr = getBlockEquationID(block, eq);
                      int varr = getBlockVariableID(block, var);
                      if (eq >= block_recursive && var >= block_recursive)
                        {
                          if (!Uf[eqr].Ufl)
                            {
                              Uf[eqr].Ufl = static_cast<Uff_l *>(malloc(sizeof(Uff_l)));
                              Uf[eqr].Ufl_First = Uf[eqr].Ufl;
                            }
                          else
                            {
                              Uf[eqr].Ufl->pNext = static_cast<Uff_l *>(malloc(sizeof(Uff_l)));
                              Uf[eqr].Ufl = Uf[eqr].Ufl->pNext;
                            }
                          Uf[eqr].Ufl->pNext = nullptr;
                          Uf[eqr].Ufl->u = count_u;
                          Uf[eqr].Ufl->var = varr;
                          FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, eqr, varr);
                          fnumexpr.write(code_file, instruction_number);
                          compileChainRuleDerivative(code_file, instruction_number, block, eq, var, 0, temporary_terms_union, blocks_temporary_terms_idxs);
                          FSTPSU_ fstpsu(count_u);
                          fstpsu.write(code_file, instruction_number);
                          count_u++;
                        }
                    }
                  for (i = 0; i < block_size; i++)
                    {
                      if (i >= block_recursive)
                        {
                          FLDR_ fldr(i-block_recursive);
                          fldr.write(code_file, instruction_number);
    
                          FLDZ_ fldz;
                          fldz.write(code_file, instruction_number);
    
                          v = getBlockEquationID(block, i);
                          for (Uf[v].Ufl = Uf[v].Ufl_First; Uf[v].Ufl; Uf[v].Ufl = Uf[v].Ufl->pNext)
                            {
                              FLDSU_ fldsu(Uf[v].Ufl->u);
                              fldsu.write(code_file, instruction_number);
                              FLDSV_ fldsv{static_cast<int>(SymbolType::endogenous), static_cast<unsigned int>(Uf[v].Ufl->var)};
                              fldsv.write(code_file, instruction_number);
    
                              FBINARY_ fbinary{static_cast<int>(BinaryOpcode::times)};
                              fbinary.write(code_file, instruction_number);
    
                              FCUML_ fcuml;
                              fcuml.write(code_file, instruction_number);
                            }
                          Uf[v].Ufl = Uf[v].Ufl_First;
                          while (Uf[v].Ufl)
                            {
                              Uf[v].Ufl_First = Uf[v].Ufl->pNext;
                              free(Uf[v].Ufl);
                              Uf[v].Ufl = Uf[v].Ufl_First;
                            }
                          FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
                          fbinary.write(code_file, instruction_number);
    
                          FSTPSU_ fstpsu(i - block_recursive);
                          fstpsu.write(code_file, instruction_number);
    
                        }
                    }
                  break;
                default:
                  break;
                }
            }
    
          // Get the current code_file position and jump = true
          streampos pos2 = code_file.tellp();
          FJMP_ fjmp(0);
          fjmp.write(code_file, instruction_number);
          // Set code_file position to previous JMPIFEVAL_ and set the number of instructions to jump
          streampos pos3 = code_file.tellp();
          code_file.seekp(pos1);
          FJMPIFEVAL_ fjmp_if_eval1(instruction_number - prev_instruction_number);
          fjmp_if_eval1.write(code_file, instruction_number);
          code_file.seekp(pos3);
          prev_instruction_number = instruction_number;
    
          tef_terms.clear();
          temporary_terms_union = ttu_old;
    
          for (i = 0; i < block_size; i++)
            {
              write_eq_tt(i);
    
              // The equations
              int variable_ID, equation_ID;
              EquationType equ_type;
              switch (simulation_type)
                {
                evaluation_l:
                case BlockSimulationType::evaluateBackward:
                case BlockSimulationType::evaluateForward:
                  equ_type = getBlockEquationType(block, i);
                  {
                    FNUMEXPR_ fnumexpr(ExpressionType::ModelEquation, getBlockEquationID(block, i));
                    fnumexpr.write(code_file, instruction_number);
                  }
                  if (equ_type == EquationType::evaluate)
                    {
                      eq_node = getBlockEquationExpr(block, i);
                      lhs = eq_node->arg1;
                      rhs = eq_node->arg2;
                      rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                    }
                  else if (equ_type == EquationType::evaluateRenormalized)
                    {
                      eq_node = getBlockEquationRenormalizedExpr(block, i);
                      lhs = eq_node->arg1;
                      rhs = eq_node->arg2;
                      rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                      lhs->compile(code_file, instruction_number, true, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                    }
                  break;
                case BlockSimulationType::solveBackwardComplete:
                case BlockSimulationType::solveForwardComplete:
                  if (i < block_recursive)
                    goto evaluation_l;
                  variable_ID = getBlockVariableID(block, i);
                  equation_ID = getBlockEquationID(block, i);
                  feedback_variables.push_back(variable_ID);
                  Uf[equation_ID].Ufl = nullptr;
                  goto end_l;
                default:
                end_l:
                  FNUMEXPR_ fnumexpr(ExpressionType::ModelEquation, getBlockEquationID(block, i));
                  fnumexpr.write(code_file, instruction_number);
                  eq_node = getBlockEquationExpr(block, i);
                  lhs = eq_node->arg1;
                  rhs = eq_node->arg2;
                  lhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
                  rhs->compile(code_file, instruction_number, false, temporary_terms_union, blocks_temporary_terms_idxs, false, false);
    
                  FBINARY_ fbinary{static_cast<int>(BinaryOpcode::minus)};
                  fbinary.write(code_file, instruction_number);
    
                  FSTPR_ fstpr(i - block_recursive);
                  fstpr.write(code_file, instruction_number);
                }
            }
          FENDEQU_ fendequ_l;
          fendequ_l.write(code_file, instruction_number);
    
          // The Jacobian if we have to solve the block determinsitic bloc
    
          // Write temporary terms for derivatives
          write_eq_tt(blocks[block].size);
    
          switch (simulation_type)
            {
            case BlockSimulationType::solveBackwardSimple:
            case BlockSimulationType::solveForwardSimple:
              {
                FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, 0, 0);
                fnumexpr.write(code_file, instruction_number);
              }
              compileDerivative(code_file, instruction_number, getBlockEquationID(block, 0), getBlockVariableID(block, 0), temporary_terms_union, blocks_temporary_terms_idxs);
              {
                FSTPG2_ fstpg2(0, 0);
                fstpg2.write(code_file, instruction_number);
              }
              break;
            case BlockSimulationType::evaluateBackward:
            case BlockSimulationType::evaluateForward:
            case BlockSimulationType::solveBackwardComplete:
            case BlockSimulationType::solveForwardComplete:
              count_u = feedback_variables.size();
              for (const auto &[indices, ignore2] : blocks_derivatives[block])
                {
                  auto &[eq, var, ignore] = indices;
                  int eqr = getBlockEquationID(block, eq);
                  int varr = getBlockVariableID(block, var);
                  FNUMEXPR_ fnumexpr(ExpressionType::FirstEndoDerivative, eqr, varr, 0);
                  fnumexpr.write(code_file, instruction_number);
    
                  compileChainRuleDerivative(code_file, instruction_number, block, eq, var, 0, temporary_terms_union, blocks_temporary_terms_idxs);
    
                  FSTPG2_ fstpg2(eq, var);
                  fstpg2.write(code_file, instruction_number);
                }
              break;
            default:
              break;
            }
          // Set codefile position to previous JMP_ and set the number of instructions to jump
          pos1 = code_file.tellp();
          code_file.seekp(pos2);
          FJMP_ fjmp1(instruction_number - prev_instruction_number);
          fjmp1.write(code_file, instruction_number);
          code_file.seekp(pos1);
        }
      FENDBLOCK_ fendblock;
      fendblock.write(code_file, instruction_number);
      FEND_ fend;
      fend.write(code_file, instruction_number);
      code_file.close();
    }
    
    void
    StaticModel::writeBlockBytecodeBinFile(const string &basename, int num,
                                           int &u_count_int, bool &file_open) const
    {
      int j;
      std::ofstream SaveCode;
      string filename = basename + "/model/bytecode/static.bin";
      if (file_open)
        SaveCode.open(filename, ios::out | ios::in | ios::binary | ios::ate);
      else
        SaveCode.open(filename, ios::out | ios::binary);
      if (!SaveCode.is_open())
        {
          cerr << "Error : Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      u_count_int = 0;
      int block_size = blocks[num].size;
      int block_mfs = blocks[num].mfs_size;
      int block_recursive = blocks[num].getRecursiveSize();
      for (const auto &[indices, ignore2] : blocks_derivatives[num])
        {
          auto [eq, var, ignore] = indices;
          int lag = 0;
          if (eq >= block_recursive && var >= block_recursive)
            {
              int v = eq - block_recursive;
              SaveCode.write(reinterpret_cast<char *>(&v), sizeof(v));
              int varr = var - block_recursive;
              SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
              SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
              int u = u_count_int + block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
              u_count_int++;
            }
        }
    
      for (j = block_recursive; j < block_size; j++)
        {
          int varr = getBlockVariableID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
        }
      for (j = block_recursive; j < block_size; j++)
        {
          int eqr = getBlockEquationID(num, j);
          SaveCode.write(reinterpret_cast<char *>(&eqr), sizeof(eqr));
        }
      SaveCode.close();
    }
    
    void
    StaticModel::computingPass(int derivsOrder, int paramsDerivsOrder, const eval_context_t &eval_context, bool no_tmp_terms, bool block, bool bytecode)
    {
      initializeVariablesAndEquations();
    
      vector<BinaryOpNode *> neweqs;
      for (int eq = 0; eq < static_cast<int>(equations.size() - aux_equations.size()); eq++)
        {
          expr_t eq_tmp = equations[eq]->substituteStaticAuxiliaryVariable();
          neweqs.push_back(dynamic_cast<BinaryOpNode *>(eq_tmp->toStatic(*this)));
        }
    
      for (auto &aux_equation : aux_equations)
        {
          expr_t eq_tmp = aux_equation->substituteStaticAuxiliaryDefinition();
          neweqs.push_back(dynamic_cast<BinaryOpNode *>(eq_tmp->toStatic(*this)));
        }
    
      equations.clear();
      copy(neweqs.begin(), neweqs.end(), back_inserter(equations));
    
      // Compute derivatives w.r. to all endogenous
      set<int> vars;
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          int id = symbol_table.getID(SymbolType::endogenous, i);
          //      if (!symbol_table.isAuxiliaryVariableButNotMultiplier(id))
          vars.insert(getDerivID(id, 0));
        }
    
      // Launch computations
      cout << "Computing static model derivatives (order " << derivsOrder << ")." << endl;
    
      computeDerivatives(derivsOrder, vars);
    
      if (paramsDerivsOrder > 0)
        {
          cout << "Computing static model derivatives w.r.t. parameters (order " << paramsDerivsOrder << ")." << endl;
          computeParamsDerivatives(paramsDerivsOrder);
        }
    
      if (block)
        {
          auto contemporaneous_jacobian = evaluateAndReduceJacobian(eval_context);
    
          computeNonSingularNormalization(contemporaneous_jacobian);
    
          auto [prologue, epilogue] = computePrologueAndEpilogue();
    
          auto first_order_endo_derivatives = collectFirstOrderDerivativesEndogenous();
    
          equationTypeDetermination(first_order_endo_derivatives, mfs);
    
          cout << "Finding the optimal block decomposition of the model ..." << endl;
    
          computeBlockDecomposition(prologue, epilogue);
    
          reduceBlockDecomposition();
    
          printBlockDecomposition();
    
          computeChainRuleJacobian();
    
          determineLinearBlocks();
    
          if (!no_tmp_terms)
            computeBlockTemporaryTerms();
        }
      else
        {
          computeTemporaryTerms(true, no_tmp_terms);
    
          /* Must be called after computeTemporaryTerms(), because it depends on
             temporary_terms_mlv to be filled */
          if (paramsDerivsOrder > 0 && !no_tmp_terms)
            computeParamsDerivativesTemporaryTerms();
        }
    }
    
    void
    StaticModel::writeStaticMFile(const string &basename) const
    {
      writeStaticModel(basename, false, false);
    }
    
    void
    StaticModel::writeWrapperFunctions(const string &basename, const string &ending) const
    {
      string name;
      if (ending == "g1")
        name = "static_resid_g1";
      else if (ending == "g2")
        name = "static_resid_g1_g2";
      else if (ending == "g3")
        name = "static_resid_g1_g2_g3";
    
      string filename = packageDir(basename) + "/" + name + ".m";
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      if (ending == "g1")
        output << "function [residual, g1] = " << name << "(T, y, x, params, T_flag)" << endl
               << "% function [residual, g1] = " << name << "(T, y, x, params, T_flag)" << endl;
      else if (ending == "g2")
        output << "function [residual, g1, g2] = " << name << "(T, y, x, params, T_flag)" << endl
               << "% function [residual, g1, g2] = " << name << "(T, y, x, params, T_flag)" << endl;
      else if (ending == "g3")
        output << "function [residual, g1, g2, g3] = " << name << "(T, y, x, params, T_flag)" << endl
               << "% function [residual, g1, g2, g3] = " << name << "(T, y, x, params, T_flag)" << endl;
    
      output << "%" << endl
             << "% Wrapper function automatically created by Dynare" << endl
             << "%" << endl
             << endl
             << "    if T_flag" << endl
             << "        T = " << basename << ".static_" << ending << "_tt(T, y, x, params);" << endl
             << "    end" << endl;
    
      if (ending == "g1")
        output << "    residual = " << basename << ".static_resid(T, y, x, params, false);" << endl
               << "    g1       = " << basename << ".static_g1(T, y, x, params, false);" << endl;
      else if (ending == "g2")
        output << "    [residual, g1] = " << basename << ".static_resid_g1(T, y, x, params, false);" << endl
               << "    g2       = " << basename << ".static_g2(T, y, x, params, false);" << endl;
      else if (ending == "g3")
        output << "    [residual, g1, g2] = " << basename << ".static_resid_g1_g2(T, y, x, params, false);" << endl
               << "    g3       = " << basename << ".static_g3(T, y, x, params, false);" << endl;
    
      output << endl << "end" << endl;
      output.close();
    }
    
    void
    StaticModel::writeStaticModelHelper(const string &basename,
                                        const string &name, const string &retvalname,
                                        const string &name_tt, size_t ttlen,
                                        const string &previous_tt_name,
                                        const ostringstream &init_s, const ostringstream &end_s,
                                        const ostringstream &s, const ostringstream &s_tt) const
    {
      string filename = packageDir(basename) + "/" + name_tt + ".m";
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function T = " << name_tt << "(T, y, x, params)" << endl
             << "% function T = " << name_tt << "(T, y, x, params)" << endl
             << "%" << endl
             << "% File created by Dynare Preprocessor from .mod file" << endl
             << "%" << endl
             << "% Inputs:" << endl
             << "%   T         [#temp variables by 1]  double   vector of temporary terms to be filled by function" << endl
             << "%   y         [M_.endo_nbr by 1]      double   vector of endogenous variables in declaration order" << endl
             << "%   x         [M_.exo_nbr by 1]       double   vector of exogenous variables in declaration order" << endl
             << "%   params    [M_.param_nbr by 1]     double   vector of parameter values in declaration order" << endl
             << "%" << endl
             << "% Output:" << endl
             << "%   T         [#temp variables by 1]  double   vector of temporary terms" << endl
             << "%" << endl << endl
             << "assert(length(T) >= " << ttlen << ");" << endl
             << endl;
    
      if (!previous_tt_name.empty())
        output << "T = " << basename << "." << previous_tt_name << "(T, y, x, params);" << endl << endl;
    
      output << s_tt.str() << endl
             << "end" << endl;
      output.close();
    
      filename = packageDir(basename) + "/" + name + ".m";
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function " << retvalname << " = " << name << "(T, y, x, params, T_flag)" << endl
             << "% function " << retvalname << " = " << name << "(T, y, x, params, T_flag)" << endl
             << "%" << endl
             << "% File created by Dynare Preprocessor from .mod file" << endl
             << "%" << endl
             << "% Inputs:" << endl
             << "%   T         [#temp variables by 1]  double   vector of temporary terms to be filled by function" << endl
             << "%   y         [M_.endo_nbr by 1]      double   vector of endogenous variables in declaration order" << endl
             << "%   x         [M_.exo_nbr by 1]       double   vector of exogenous variables in declaration order" << endl
             << "%   params    [M_.param_nbr by 1]     double   vector of parameter values in declaration order" << endl
             << "%                                              to evaluate the model" << endl
             << "%   T_flag    boolean                 boolean  flag saying whether or not to calculate temporary terms" << endl
             << "%" << endl
             << "% Output:" << endl
             << "%   " << retvalname << endl
             << "%" << endl << endl;
    
      if (!name_tt.empty())
        output << "if T_flag" << endl
               << "    T = " << basename << "."  << name_tt << "(T, y, x, params);" << endl
               << "end" << endl;
    
      output << init_s.str() << endl
             << s.str()
             << end_s.str() << endl
             << "end" << endl;
      output.close();
    }
    
    void
    StaticModel::writeStaticMatlabCompatLayer(const string &basename) const
    {
      string filename = packageDir(basename) + "/static.m";
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "Error: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
      int ntt = temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size() + temporary_terms_derivatives[2].size() + temporary_terms_derivatives[3].size();
    
      output << "function [residual, g1, g2, g3] = static(y, x, params)" << endl
             << "    T = NaN(" << ntt << ", 1);" << endl
             << "    if nargout <= 1" << endl
             << "        residual = " << basename << ".static_resid(T, y, x, params, true);" << endl
             << "    elseif nargout == 2" << endl
             << "        [residual, g1] = " << basename << ".static_resid_g1(T, y, x, params, true);" << endl
             << "    elseif nargout == 3" << endl
             << "        [residual, g1, g2] = " << basename << ".static_resid_g1_g2(T, y, x, params, true);" << endl
             << "    else" << endl
             << "        [residual, g1, g2, g3] = " << basename << ".static_resid_g1_g2_g3(T, y, x, params, true);" << endl
             << "    end" << endl
             << "end" << endl;
    
      output.close();
    }
    
    void
    StaticModel::writeStaticModel(ostream &StaticOutput, bool use_dll, bool julia) const
    {
      writeStaticModel("", StaticOutput, use_dll, julia);
    }
    
    void
    StaticModel::writeStaticModel(const string &basename, bool use_dll, bool julia) const
    {
      ofstream StaticOutput;
      writeStaticModel(basename, StaticOutput, use_dll, julia);
    }
    
    void
    StaticModel::writeStaticModel(const string &basename,
                                  ostream &StaticOutput, bool use_dll, bool julia) const
    {
      vector<ostringstream> d_output(derivatives.size()); // Derivatives output (at all orders, including 0=residual)
      vector<ostringstream> tt_output(derivatives.size()); // Temp terms output (at all orders)
    
      ExprNodeOutputType output_type = (use_dll ? ExprNodeOutputType::CStaticModel :
                                        julia ? ExprNodeOutputType::juliaStaticModel : ExprNodeOutputType::matlabStaticModel);
    
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temp_term_union;
    
      writeModelLocalVariableTemporaryTerms(temp_term_union, temporary_terms_idxs,
                                            tt_output[0], output_type, tef_terms);
    
      writeTemporaryTerms(temporary_terms_derivatives[0],
                          temp_term_union,
                          temporary_terms_idxs,
                          tt_output[0], output_type, tef_terms);
    
      writeModelEquations(d_output[0], output_type, temp_term_union);
    
      int nrows = equations.size();
      int JacobianColsNbr = symbol_table.endo_nbr();
      int hessianColsNbr = JacobianColsNbr*JacobianColsNbr;
    
      auto getJacobCol = [this](int var) { return symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)); };
    
      // Write Jacobian w.r. to endogenous only
      if (!derivatives[1].empty())
        {
          writeTemporaryTerms(temporary_terms_derivatives[1],
                              temp_term_union,
                              temporary_terms_idxs,
                              tt_output[1], output_type, tef_terms);
    
          for (const auto & [indices, d1] : derivatives[1])
            {
              auto [eq, var] = vectorToTuple<2>(indices);
    
              jacobianHelper(d_output[1], eq, getJacobCol(var), output_type);
              d_output[1] << "=";
              d1->writeOutput(d_output[1], output_type,
                              temp_term_union, temporary_terms_idxs, tef_terms);
              d_output[1] << ";" << endl;
            }
        }
    
      // Write derivatives for order ≥ 2
      for (size_t i = 2; i < derivatives.size(); i++)
        if (!derivatives[i].empty())
          {
            writeTemporaryTerms(temporary_terms_derivatives[i],
                                temp_term_union,
                                temporary_terms_idxs,
                                tt_output[i], output_type, tef_terms);
    
            /* When creating the sparse matrix (in MATLAB or C mode), since storage
               is in column-major order, output the first column, then the second,
               then the third. This gives a significant performance boost in use_dll
               mode (at both compilation and runtime), because it facilitates memory
               accesses and expression reusage. */
            ostringstream i_output, j_output, v_output;
    
            int k = 0; // Current line index in the 3-column matrix
            for (const auto &[vidx, d] : derivatives[i])
              {
                int eq = vidx[0];
    
                int col_idx = 0;
                for (size_t j = 1; j < vidx.size(); j++)
                  {
                    col_idx *= JacobianColsNbr;
                    col_idx += getJacobCol(vidx[j]);
                  }
    
                if (output_type == ExprNodeOutputType::juliaStaticModel)
                  {
                    d_output[i] << "    @inbounds " << "g" << i << "[" << eq + 1 << "," << col_idx + 1 << "] = ";
                    d->writeOutput(d_output[i], output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                    d_output[i] << endl;
                  }
                else
                  {
                    i_output << "g" << i << "_i" << LEFT_ARRAY_SUBSCRIPT(output_type)
                             << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                             << RIGHT_ARRAY_SUBSCRIPT(output_type)
                             << "=" << eq + 1 << ";" << endl;
                    j_output << "g" << i << "_j" << LEFT_ARRAY_SUBSCRIPT(output_type)
                             << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                             << RIGHT_ARRAY_SUBSCRIPT(output_type)
                             << "=" << col_idx + 1 << ";" << endl;
                    v_output << "g" << i << "_v" << LEFT_ARRAY_SUBSCRIPT(output_type)
                             << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                             << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
                    d->writeOutput(v_output, output_type, temp_term_union, temporary_terms_idxs, tef_terms);
                    v_output << ";" << endl;
    
                    k++;
                  }
    
                // Output symetric elements at order 2
                if (i == 2 && vidx[1] != vidx[2])
                  {
                    int col_idx_sym = getJacobCol(vidx[2]) * JacobianColsNbr + getJacobCol(vidx[1]);
    
                    if (output_type == ExprNodeOutputType::juliaStaticModel)
                      d_output[2] << "    @inbounds g2[" << eq + 1 << "," << col_idx_sym + 1 << "] = "
                                  << "g2[" << eq + 1 << "," << col_idx + 1 << "]" << endl;
                    else
                      {
                        i_output << "g" << i << "_i" << LEFT_ARRAY_SUBSCRIPT(output_type)
                                 << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                                 << RIGHT_ARRAY_SUBSCRIPT(output_type)
                                 << "=" << eq + 1 << ";" << endl;
                        j_output << "g" << i << "_j" << LEFT_ARRAY_SUBSCRIPT(output_type)
                                 << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                                 << RIGHT_ARRAY_SUBSCRIPT(output_type)
                                 << "=" << col_idx_sym + 1 << ";" << endl;
                        v_output << "g" << i << "_v" << LEFT_ARRAY_SUBSCRIPT(output_type)
                                 << k + ARRAY_SUBSCRIPT_OFFSET(output_type)
                                 << RIGHT_ARRAY_SUBSCRIPT(output_type) << "="
                                 << "g" << i << "_v" << LEFT_ARRAY_SUBSCRIPT(output_type)
                                 << k-1 + ARRAY_SUBSCRIPT_OFFSET(output_type)
                                 << RIGHT_ARRAY_SUBSCRIPT(output_type) << ";" << endl;
    
                        k++;
                      }
                  }
              }
            if (output_type != ExprNodeOutputType::juliaStaticModel)
              d_output[i] << i_output.str() << j_output.str() << v_output.str();
          }
    
      if (output_type == ExprNodeOutputType::matlabStaticModel)
        {
          // Check that we don't have more than 32 nested parenthesis because Matlab does not suppor this. See Issue #1201
          map<string, string> tmp_paren_vars;
          bool message_printed = false;
          for (auto &it : tt_output)
            fixNestedParenthesis(it, tmp_paren_vars, message_printed);
          for (auto &it : d_output)
            fixNestedParenthesis(it, tmp_paren_vars, message_printed);
    
          ostringstream init_output, end_output;
          init_output << "residual = zeros(" << equations.size() << ", 1);";
          end_output << "if ~isreal(residual)" << endl
                     << "  residual = real(residual)+imag(residual).^2;" << endl
                     << "end";
          writeStaticModelHelper(basename, "static_resid", "residual", "static_resid_tt",
                                 temporary_terms_mlv.size() + temporary_terms_derivatives[0].size(),
                                 "", init_output, end_output,
                                 d_output[0], tt_output[0]);
    
          init_output.str("");
          end_output.str("");
          init_output << "g1 = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ");";
          end_output << "if ~isreal(g1)" << endl
                     << "    g1 = real(g1)+2*imag(g1);" << endl
                     << "end";
          writeStaticModelHelper(basename, "static_g1", "g1", "static_g1_tt",
                                 temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size(),
                                 "static_resid_tt",
                                 init_output, end_output,
                                 d_output[1], tt_output[1]);
          writeWrapperFunctions(basename, "g1");
    
          // For order ≥ 2
          int ncols = JacobianColsNbr;
          int ntt = temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size();
          for (size_t i = 2; i < derivatives.size(); i++)
            {
              ncols *= JacobianColsNbr;
              ntt += temporary_terms_derivatives[i].size();
              string gname = "g" + to_string(i);
              string gprevname = "g" + to_string(i-1);
    
              init_output.str("");
              end_output.str("");
              if (derivatives[i].size())
                {
                  init_output << gname << "_i = zeros(" << NNZDerivatives[i] << ",1);" << endl
                              << gname << "_j = zeros(" << NNZDerivatives[i] << ",1);" << endl
                              << gname << "_v = zeros(" << NNZDerivatives[i] << ",1);" << endl;
                  end_output << gname << " = sparse("
                             << gname << "_i," << gname << "_j," << gname << "_v,"
                             << nrows << "," << ncols << ");";
                }
              else
                init_output << gname << " = sparse([],[],[]," << nrows << "," << ncols << ");";
              writeStaticModelHelper(basename, "static_" + gname, gname,
                                     "static_" + gname + "_tt",
                                     ntt,
                                     "static_" + gprevname + "_tt",
                                     init_output, end_output,
                                     d_output[i], tt_output[i]);
              if (i <= 3)
                writeWrapperFunctions(basename, gname);
            }
    
          writeStaticMatlabCompatLayer(basename);
        }
      else if (output_type == ExprNodeOutputType::CStaticModel)
        {
          for (size_t i = 0; i < d_output.size(); i++)
            {
              string funcname = i == 0 ? "resid" : "g" + to_string(i);
              StaticOutput << "void static_" << funcname << "_tt(const double *restrict y, const double *restrict x, const double *restrict params, double *restrict T)" << endl
                           << "{" << endl
                           << tt_output[i].str()
                           << "}" << endl
                           << endl
                           << "void static_" << funcname << "(const double *restrict y, const double *restrict x, const double *restrict params, const double *restrict T, ";
              if (i == 0)
                StaticOutput << "double *restrict residual";
              else if (i == 1)
                StaticOutput << "double *restrict g1";
              else
                StaticOutput << "double *restrict " << funcname << "_i, double *restrict " << funcname << "_j, double *restrict " << funcname << "_v";
              StaticOutput << ")" << endl
                           << "{" << endl;
              if (i == 0)
                StaticOutput << "  double lhs, rhs;" << endl;
              StaticOutput << d_output[i].str()
                           << "}" << endl
                           << endl;
            }
        }
      else
        {
          stringstream output;
          output << "module " << basename << "Static" << endl
                 << "#" << endl
                 << "# NB: this file was automatically generated by Dynare" << endl
                 << "#     from " << basename << ".mod" << endl
                 << "#" << endl
                 << "using StatsFuns" << endl << endl
                 << "export tmp_nbr, static!, staticResid!, staticG1!, staticG2!, staticG3!" << endl << endl
                 << "#=" << endl
                 << "# The comments below apply to all functions contained in this module #" << endl
                 << "  NB: The arguments contained on the first line of the function" << endl
                 << "      definition are those that are modified in place" << endl << endl
                 << "## Exported Functions ##" << endl
                 << "  static!      : Wrapper function; computes residuals, Jacobian, Hessian," << endl
                 << "                 and third order derivatives matroces depending on the arguments provided" << endl
                 << "  staticResid! : Computes the static model residuals" << endl
                 << "  staticG1!    : Computes the static model Jacobian" << endl
                 << "  staticG2!    : Computes the static model Hessian" << endl
                 << "  staticG3!    : Computes the static model third derivatives" << endl << endl
                 << "## Exported Variables ##" << endl
                 << "  tmp_nbr      : Vector{Int}(4) respectively the number of temporary variables" << endl
                 << "                 for the residuals, g1, g2 and g3." << endl << endl
                 << "## Local Functions ##" << endl
                 << "  staticResidTT! : Computes the static model temporary terms for the residuals" << endl
                 << "  staticG1TT!    : Computes the static model temporary terms for the Jacobian" << endl
                 << "  staticG2TT!    : Computes the static model temporary terms for the Hessian" << endl
                 << "  staticG3TT!    : Computes the static model temporary terms for the third derivatives" << endl << endl
                 << "## Function Arguments ##" << endl
                 << "  T        : Vector{Float64}(num_temp_terms) temporary terms" << endl
                 << "  y        : Vector{Float64}(model_.endo_nbr) endogenous variables in declaration order" << endl
                 << "  x        : Vector{Float64}(model_.exo_nbr) exogenous variables in declaration order" << endl
                 << "  params   : Vector{Float64}(model_.param) parameter values in declaration order" << endl
                 << "  residual : Vector{Float64}(model_.eq_nbr) residuals of the static model equations" << endl
                 << "             in order of declaration of the equations. Dynare may prepend auxiliary equations," << endl
                 << "             see model.aux_vars" << endl
                 << "  g1       : Matrix{Float64}(model.eq_nbr,model_.endo_nbr) Jacobian matrix of the static model equations" << endl
                 << "             The columns and rows respectively correspond to the variables in declaration order and the" << endl
                 << "             equations in order of declaration" << endl
                 << "  g2       : spzeros(model.eq_nbr, model_.endo^2) Hessian matrix of the static model equations" << endl
                 << "             The columns and rows respectively correspond to the variables in declaration order and the" << endl
                 << "             equations in order of declaration" << endl
                 << "  g3       : spzeros(model.eq_nbr, model_.endo^3) Third order derivatives matrix of the static model equations" << endl
                 << "             The columns and rows respectively correspond to the variables in declaration order and the" << endl
                 << "             equations in order of declaration" << endl << endl
                 << "## Remarks ##" << endl
                 << "  [1] The size of `T`, ie the value of `num_temp_terms`, depends on the version of the static model called. The number of temporary variables" << endl
                 << "      used for the different returned objects (residuals, jacobian, hessian or third order derivatives) is given by the elements in `tmp_nbr`" << endl
                 << "      exported vector. The first element is the number of temporaries used for the computation of the residuals, the second element is the" << endl
                 << "      number of temporaries used for the evaluation of the jacobian matrix, etc. If one calls the version of the static model computing the" << endl
                 << "      residuals, and the jacobian and hessian matrices, then `T` must have at least `sum(tmp_nbr[1:3])` elements." << endl
                 << "=#" << endl << endl;
    
          // Write the number of temporary terms
          output << "tmp_nbr = zeros(Int,4)" << endl
                 << "tmp_nbr[1] = " << temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() << "# Number of temporary terms for the residuals" << endl
                 << "tmp_nbr[2] = " << temporary_terms_derivatives[1].size() << "# Number of temporary terms for g1 (jacobian)" << endl
                 << "tmp_nbr[3] = " << temporary_terms_derivatives[2].size() << "# Number of temporary terms for g2 (hessian)" << endl
                 << "tmp_nbr[4] = " << temporary_terms_derivatives[3].size() << "# Number of temporary terms for g3 (third order derivates)" << endl << endl;
    
          // staticResidTT!
          output << "function staticResidTT!(T::Vector{Float64}," << endl
                 << "                        y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64})" << endl
                 << "    @assert length(T) >= " << temporary_terms_mlv.size() + temporary_terms_derivatives[0].size()  << endl
                 << tt_output[0].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // static!
          output << "function staticResid!(T::Vector{Float64}, residual::Vector{Float64}," << endl
                 << "                      y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T0_flag::Bool)" << endl
                 << "    @assert length(y) == " << symbol_table.endo_nbr() << endl
                 << "    @assert length(x) == " << symbol_table.exo_nbr() << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    @assert length(residual) == " << equations.size() << endl
                 << "    if T0_flag" << endl
                 << "        staticResidTT!(T, y, x, params)" << endl
                 << "    end" << endl
                 << d_output[0].str()
                 << "    if ~isreal(residual)" << endl
                 << "        residual = real(residual)+imag(residual).^2;" << endl
                 << "    end" << endl
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG1TT!
          output << "function staticG1TT!(T::Vector{Float64}," << endl
                 << "                     y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T0_flag::Bool)" << endl
                 << "    if T0_flag" << endl
                 << "        staticResidTT!(T, y, x, params)" << endl
                 << "    end" << endl
                 << tt_output[1].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG1!
          output << "function staticG1!(T::Vector{Float64}, g1::Matrix{Float64}," << endl
                 << "                   y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T1_flag::Bool, T0_flag::Bool)" << endl
                 << "    @assert length(T) >= "
                 << temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size() << endl
                 << "    @assert size(g1) == (" << equations.size() << ", " << symbol_table.endo_nbr() << ")" << endl
                 << "    @assert length(y) == " << symbol_table.endo_nbr() << endl
                 << "    @assert length(x) == " << symbol_table.exo_nbr() << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T1_flag" << endl
                 << "        staticG1TT!(T, y, x, params, T0_flag)" << endl
                 << "    end" << endl
                 << "    fill!(g1, 0.0)" << endl
                 << d_output[1].str()
                 << "    if ~isreal(g1)" << endl
                 << "        g1 = real(g1)+2*imag(g1);" << endl
                 << "    end" << endl
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG2TT!
          output << "function staticG2TT!(T::Vector{Float64}," << endl
                 << "                     y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T1_flag::Bool, T0_flag::Bool)" << endl
                 << "    if T1_flag" << endl
                 << "        staticG1TT!(T, y, x, params, TO_flag)" << endl
                 << "    end" << endl
                 << tt_output[2].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG2!
          output << "function staticG2!(T::Vector{Float64}, g2::Matrix{Float64}," << endl
                 << "                   y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T2_flag::Bool, T1_flag::Bool, T0_flag::Bool)" << endl
                 << "    @assert length(T) >= "
                 << temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size() + temporary_terms_derivatives[2].size() << endl
                 << "    @assert size(g2) == (" << equations.size() << ", " << hessianColsNbr << ")" << endl
                 << "    @assert length(y) == " << symbol_table.endo_nbr() << endl
                 << "    @assert length(x) == " << symbol_table.exo_nbr() << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T2_flag" << endl
                 << "        staticG2TT!(T, y, x, params, T1_flag, T0_flag)" << endl
                 << "    end" << endl
                 << "    fill!(g2, 0.0)" << endl
                 << d_output[2].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG3TT!
          output << "function staticG3TT!(T::Vector{Float64}," << endl
                 << "                     y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T2_flag::Bool, T1_flag::Bool, T0_flag::Bool)" << endl
                 << "    if T2_flag" << endl
                 << "        staticG2TT!(T, y, x, params, T1_flag, T0_flag)" << endl
                 << "    end" << endl
                 << tt_output[3].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // staticG3!
          int ncols = hessianColsNbr * JacobianColsNbr;
          output << "function staticG3!(T::Vector{Float64}, g3::Matrix{Float64}," << endl
                 << "                   y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64}, T3_flag::Bool, T2_flag::Bool, T1_flag::Bool, T0_flag::Bool)" << endl
                 << "    @assert length(T) >= "
                 << temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size() + temporary_terms_derivatives[2].size() + temporary_terms_derivatives[3].size() << endl
                 << "    @assert size(g3) == (" << nrows << ", " << ncols << ")" << endl
                 << "    @assert length(y) == " << symbol_table.endo_nbr() << endl
                 << "    @assert length(x) == " << symbol_table.exo_nbr() << endl
                 << "    @assert length(params) == " << symbol_table.param_nbr() << endl
                 << "    if T3_flag" << endl
                 << "        staticG3TT!(T, y, x, params, T2_flag, T1_flag, T0_flag)" << endl
                 << "    end" << endl
                 << "    fill!(g3, 0.0)" << endl
                 << d_output[3].str()
                 << "    return nothing" << endl
                 << "end" << endl << endl;
    
          // static!
          output << "function static!(T::Vector{Float64}, residual::Vector{Float64}," << endl
                 << "                  y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64})" << endl
                 << "    staticResid!(T, residual, y, x, params, true)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function static!(T::Vector{Float64}, residual::Vector{Float64}, g1::Matrix{Float64}," << endl
                 << "                 y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64})" << endl
                 << "    staticG1!(T, g1, y, x, params, true, true)" << endl
                 << "    staticResid!(T, residual, y, x, params, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function static!(T::Vector{Float64}, g1::Matrix{Float64}," << endl
                 << "                 y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64})" << endl
                 << "    staticG1!(T, g1, y, x, params, true, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
                 << endl
                 << "function static!(T::Vector{Float64}, residual::Vector{Float64}, g1::Matrix{Float64}, g2::Matrix{Float64}," << endl
                 << "                 y::Vector{Float64}, x::Vector{Float64}, params::Vector{Float64})" << endl
                 << "    staticG2!(T, g2, y, x, params, true, true, true)" << endl
                 << "    staticG1!(T, g1, y, x, params, false, false)" << endl
                 << "    staticResid!(T, residual, y, x, params, false)" << endl
                 << "    return nothing" << endl
                 << "end" << endl
    	     << endl;
    
          // Write function definition if BinaryOpcode::powerDeriv is used
          writePowerDerivJulia(output);
    
          output << "end" << endl;
    
          writeToFileIfModified(output, basename + "Static.jl");
        }
    }
    
    void
    StaticModel::writeStaticCFile(const string &basename) const
    {
      // Writing comments and function definition command
      string filename = basename + "/model/src/static.c";
    
      int ntt = temporary_terms_mlv.size() + temporary_terms_derivatives[0].size() + temporary_terms_derivatives[1].size() + temporary_terms_derivatives[2].size() + temporary_terms_derivatives[3].size();
    
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "/*" << endl
             << " * " << filename << " : Computes static model for Dynare" << endl
             << " *" << endl
             << " * Warning : this file is generated automatically by Dynare" << endl
             << " *           from model file (.mod)" << endl << endl
             << " */" << endl
             << endl
             << "#include <math.h>" << endl
             << "#include <stdlib.h>" << endl
             << R"(#include "mex.h")" << endl
             << endl;
    
      // Write function definition if BinaryOpcode::powerDeriv is used
      writePowerDeriv(output);
    
      output << endl;
    
      writeStaticModel(output, true, false);
    
      output << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
             << "{" << endl
             << "  if (nrhs > 3)" << endl
             << R"(    mexErrMsgTxt("Accepts at most 3 output arguments");)" << endl
             << "  if (nrhs != 3)" << endl
             << R"(    mexErrMsgTxt("Requires exactly 3 input arguments");)" << endl
             << "  double *y = mxGetPr(prhs[0]);" << endl
             << "  double *x = mxGetPr(prhs[1]);" << endl
             << "  double *params = mxGetPr(prhs[2]);" << endl
             << endl
             << "  double *T = (double *) malloc(sizeof(double)*" << ntt << ");" << endl
             << endl
             << "  if (nlhs >= 1)" << endl
             << "    {" << endl
             << "      plhs[0] = mxCreateDoubleMatrix(" << equations.size() << ",1, mxREAL);" << endl
             << "      double *residual = mxGetPr(plhs[0]);" << endl
             << "      static_resid_tt(y, x, params, T);" << endl
             << "      static_resid(y, x, params, T, residual);" << endl
             << "    }" << endl
             << endl
             << "  if (nlhs >= 2)" << endl
             << "    {" << endl
             << "      plhs[1] = mxCreateDoubleMatrix(" << equations.size() << ", " << symbol_table.endo_nbr() << ", mxREAL);" << endl
             << "      double *g1 = mxGetPr(plhs[1]);" << endl
             << "      static_g1_tt(y, x, params, T);" << endl
             << "      static_g1(y, x, params, T, g1);" << endl
             << "    }" << endl
             << endl
             << "  if (nlhs >= 3)" << endl
             << "    {" << endl
             << "      mxArray *g2_i = mxCreateDoubleMatrix(" << NNZDerivatives[2] << ", " << 1 << ", mxREAL);" << endl
             << "      mxArray *g2_j = mxCreateDoubleMatrix(" << NNZDerivatives[2] << ", " << 1 << ", mxREAL);" << endl
             << "      mxArray *g2_v = mxCreateDoubleMatrix(" << NNZDerivatives[2] << ", " << 1 << ", mxREAL);" << endl
             << "      static_g2_tt(y, x, params, T);" << endl
             << "      static_g2(y, x, params, T, mxGetPr(g2_i), mxGetPr(g2_j), mxGetPr(g2_v));" << endl
             << "      mxArray *m = mxCreateDoubleScalar(" << equations.size() << ");" << endl
             << "      mxArray *n = mxCreateDoubleScalar(" << symbol_table.endo_nbr()*symbol_table.endo_nbr() << ");" << endl
             << "      mxArray *plhs_sparse[1], *prhs_sparse[5] = { g2_i, g2_j, g2_v, m, n };" << endl
             << R"(      mexCallMATLAB(1, plhs_sparse, 5, prhs_sparse, "sparse");)" << endl
             << "      plhs[2] = plhs_sparse[0];" << endl
             << "      mxDestroyArray(g2_i);" << endl
             << "      mxDestroyArray(g2_j);" << endl
             << "      mxDestroyArray(g2_v);" << endl
             << "      mxDestroyArray(m);" << endl
             << "      mxDestroyArray(n);" << endl
             << "    }" << endl
             << endl
             << "  free(T);" << endl
             << "}" << endl;
    
      output.close();
    }
    
    void
    StaticModel::writeStaticJuliaFile(const string &basename) const
    {
      writeStaticModel(basename, false, true);
    }
    
    void
    StaticModel::writeStaticFile(const string &basename, bool block, bool bytecode, bool use_dll, const string &mexext, const filesystem::path &matlabroot, const filesystem::path &dynareroot, bool julia) const
    {
      filesystem::path model_dir{basename};
      model_dir /= "model";
      if (use_dll)
        filesystem::create_directories(model_dir / "src");
      if (bytecode)
        filesystem::create_directories(model_dir / "bytecode");
    
      if (block)
        {
          if (bytecode)
            writeStaticBlockBytecode(basename);
          else if (use_dll)
            {
              writeStaticPerBlockCFiles(basename);
              writeStaticBlockCFile(basename);
              vector<filesystem::path> src_files{blocks.size() + 1};
              for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
                src_files[blk] = model_dir / "src" / ("static_" + to_string(blk+1) + ".c");
              src_files[blocks.size()] = model_dir / "src" / "static.c";
              compileMEX(basename, "static", mexext, src_files, matlabroot, dynareroot);
            }
          else if (julia)
            {
              cerr << "'block' option is not available with Julia" << endl;
              exit(EXIT_FAILURE);
            }
          else // M-files
            {
              writeStaticPerBlockMFiles(basename);
              writeStaticBlockMFile(basename);
            }
        }
      else
        {
          if (bytecode)
            writeStaticBytecode(basename);
          else if (use_dll)
            {
              writeStaticCFile(basename);
              compileMEX(basename, "static", mexext, { model_dir / "src" / "static.c" },
                         matlabroot, dynareroot);
            }
          else if (julia)
            writeStaticJuliaFile(basename);
          else // M-files
            writeStaticMFile(basename);
        }
    
      writeSetAuxiliaryVariables(basename, julia);
    }
    
    bool
    StaticModel::exoPresentInEqs() const
    {
      for (auto equation : equations)
        {
          set<int> result;
          equation->collectVariables(SymbolType::exogenous, result);
          equation->collectVariables(SymbolType::exogenousDet, result);
          if (!result.empty())
            return true;
        }
      return false;
    }
    
    void
    StaticModel::writeStaticBlockMFile(const string &basename) const
    {
      string filename = packageDir(basename) + "/static.m";
    
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "function [residual, y, T, g1] = static(nblock, y, x, params, T)" << endl
             << "  switch nblock" << endl;
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        {
          output << "    case " << blk+1 << endl;
    
          BlockSimulationType simulation_type = blocks[blk].simulation_type;
    
          if (simulation_type == BlockSimulationType::evaluateBackward
              || simulation_type == BlockSimulationType::evaluateForward)
            output << "      [y, T] = " << basename << ".block.static_" << blk+1 << "(y, x, params, T);" << endl
                   << "      residual = [];" << endl
                   << "      g1 = [];" << endl;
          else
            output << "      [residual, y, T, g1] = " << basename << ".block.static_" << blk+1 << "(y, x, params, T);" << endl;
    
        }
      output << "  end" << endl
             << "end" << endl;
      output.close();
    }
    
    void
    StaticModel::writeStaticBlockCFile(const string &basename) const
    {
      string filename = basename + "/model/src/static.c";
    
      ofstream output;
      output.open(filename, ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "#include <math.h>" << endl
             << R"(#include "mex.h")" << endl;
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        output << R"(#include "static_)" << blk+1 << R"(.h")" << endl;
    
      output << endl;
      writePowerDeriv(output);
    
      output << endl
             << "void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])" << endl
             << "{" << endl
             << "  if (nrhs != 5)" << endl
             << R"(    mexErrMsgTxt("Requires exactly 5 input arguments");)" << endl
             << "  if (nlhs > 4)" << endl
             << R"(    mexErrMsgTxt("Accepts at most 4 output arguments");)" << endl
             << "  int nblock = (int) mxGetScalar(prhs[0]);" << endl
             << "  const mxArray *y = prhs[1], *x = prhs[2], *params = prhs[3], *T = prhs[4];" << endl
             << "  mxArray *T_new = mxDuplicateArray(T);" << endl
             << "  mxArray *y_new = mxDuplicateArray(y);" << endl
             << "  mxArray *residual, *g1;" << endl
             << "  switch (nblock)" << endl
             << "    {" << endl;
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        {
          output << "    case " << blk+1 << ':' << endl;
    
          BlockSimulationType simulation_type = blocks[blk].simulation_type;
    
          if (simulation_type == BlockSimulationType::evaluateBackward
              || simulation_type == BlockSimulationType::evaluateForward)
            output << "      static_" << blk+1 << "_mx(y_new, x, params, T_new);" << endl
                   << "      residual = mxCreateDoubleMatrix(0,0,mxREAL);" << endl
                   << "      g1 = mxCreateDoubleMatrix(0,0,mxREAL);" << endl;
          else
            output << "      static_" << blk+1 << "_mx(y_new, x, params, T_new, &residual, &g1);" << endl;
          output << "      break;" << endl;
        }
      output << "    }" << endl
             << endl
             << "  if (nlhs >= 1)" << endl
             << "    plhs[0] = residual;" << endl
             << "  else" << endl
             << "    mxDestroyArray(residual);" << endl
             << "  if (nlhs >= 2)" << endl
             << "    plhs[1] = y_new;" << endl
             << "  else" << endl
             << "    mxDestroyArray(y_new);" << endl
             << "  if (nlhs >= 3)" << endl
             << "    plhs[2] = T_new;" << endl
             << "  else" << endl
             << "    mxDestroyArray(T_new);" << endl
             << "  if (nlhs >= 4)" << endl
             << "    plhs[3] = g1;" << endl
             << "  else" << endl
             << "    mxDestroyArray(g1);" << endl
             << "}" << endl;
      output.close();
    }
    
    void
    StaticModel::writeDriverOutput(ostream &output, bool block) const
    {
      output << "M_.static_tmp_nbr = [";
      for (const auto &temporary_terms_derivative : temporary_terms_derivatives)
        output << temporary_terms_derivative.size() << "; ";
      output << "];" << endl;
    
      /* Write mapping between model local variables and indices in the temporary
         terms vector (dynare#1722) */
      output << "M_.model_local_variables_static_tt_idxs = {" << endl;
      for (auto [mlv, value] : temporary_terms_mlv)
        output << "  '" << symbol_table.getName(mlv->symb_id) << "', "
               << temporary_terms_idxs.at(mlv)+1 << ';' << endl;
      output << "};" << endl;
    
      if (!block)
        return;
    
      for (int blk = 0; blk < static_cast<int>(blocks.size()); blk++)
        {
          output << "block_structure_stat.block(" << blk+1 << ").Simulation_Type = " << static_cast<int>(blocks[blk].simulation_type) << ";" << endl
                 << "block_structure_stat.block(" << blk+1 << ").endo_nbr = " << blocks[blk].size << ";" << endl
                 << "block_structure_stat.block(" << blk+1 << ").mfs = " << blocks[blk].mfs_size << ";" << endl
                 << "block_structure_stat.block(" << blk+1 << ").equation = [";
          for (int eq = 0; eq < blocks[blk].size; eq++)
            output << " " << getBlockEquationID(blk, eq)+1;
          output << "];" << endl
                 << "block_structure_stat.block(" << blk+1 << ").variable = [";
          for (int var = 0; var < blocks[blk].size; var++)
            output << " " << getBlockVariableID(blk, var)+1;
          output << "];" << endl;
        }
      output << "M_.block_structure_stat.block = block_structure_stat.block;" << endl
             << "M_.block_structure_stat.variable_reordered = [";
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        output << " " << endo_idx_block2orig[i]+1;
      output << "];" << endl
             << "M_.block_structure_stat.equation_reordered = [";
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        output << " " << eq_idx_block2orig[i]+1;
      output << "];" << endl;
    
      set<pair<int, int>> row_incidence;
      for (const auto &[indices, d1] : derivatives[1])
        if (int deriv_id = indices[1];
            getTypeByDerivID(deriv_id) == SymbolType::endogenous)
          {
            int eq = indices[0];
            int var = symbol_table.getTypeSpecificID(getSymbIDByDerivID(deriv_id));
            row_incidence.emplace(eq, var);
          }
      output << "M_.block_structure_stat.incidence.sparse_IM = [" << endl;
      for (auto [eq, var] : row_incidence)
        output << " " << eq+1 << " " << var+1 << ";" << endl;
      output << "];" << endl
             << "M_.block_structure_stat.tmp_nbr = " << blocks_temporary_terms_idxs.size()
             << ";" << endl;
    }
    
    SymbolType
    StaticModel::getTypeByDerivID(int deriv_id) const noexcept(false)
    {
      if (deriv_id < symbol_table.endo_nbr())
        return SymbolType::endogenous;
      else if (deriv_id < symbol_table.endo_nbr() + symbol_table.param_nbr())
        return SymbolType::parameter;
      else
        throw UnknownDerivIDException();
    }
    
    int
    StaticModel::getLagByDerivID(int deriv_id) const noexcept(false)
    {
      return 0;
    }
    
    int
    StaticModel::getSymbIDByDerivID(int deriv_id) const noexcept(false)
    {
      if (deriv_id < symbol_table.endo_nbr())
        return symbol_table.getID(SymbolType::endogenous, deriv_id);
      else if (deriv_id < symbol_table.endo_nbr() + symbol_table.param_nbr())
        return symbol_table.getID(SymbolType::parameter, deriv_id - symbol_table.endo_nbr());
      else
        throw UnknownDerivIDException();
    }
    
    int
    StaticModel::getDerivID(int symb_id, int lag) const noexcept(false)
    {
      if (symbol_table.getType(symb_id) == SymbolType::endogenous)
        return symbol_table.getTypeSpecificID(symb_id);
      else if (symbol_table.getType(symb_id) == SymbolType::parameter)
        return symbol_table.getTypeSpecificID(symb_id) + symbol_table.endo_nbr();
      else
        return -1;
    }
    
    void
    StaticModel::addAllParamDerivId(set<int> &deriv_id_set)
    {
      for (int i = 0; i < symbol_table.param_nbr(); i++)
        deriv_id_set.insert(i + symbol_table.endo_nbr());
    }
    
    void
    StaticModel::computeChainRuleJacobian()
    {
      int nb_blocks = blocks.size();
      blocks_derivatives.resize(nb_blocks);
      for (int blk = 0; blk < nb_blocks; blk++)
        {
          int nb_recursives = blocks[blk].getRecursiveSize();
    
          map<int, BinaryOpNode *> recursive_vars;
          for (int i = 0; i < nb_recursives; i++)
            {
              int deriv_id = getDerivID(symbol_table.getID(SymbolType::endogenous, getBlockVariableID(blk, i)), 0);
              if (getBlockEquationType(blk, i) == EquationType::evaluateRenormalized)
                recursive_vars[deriv_id] = getBlockEquationRenormalizedExpr(blk, i);
              else
                recursive_vars[deriv_id] = getBlockEquationExpr(blk, i);
            }
    
          assert(blocks[blk].simulation_type != BlockSimulationType::solveTwoBoundariesSimple
                 && blocks[blk].simulation_type != BlockSimulationType::solveTwoBoundariesComplete);
    
          int size = blocks[blk].size;
    
          for (int eq = nb_recursives; eq < size; eq++)
            {
              int eq_orig = getBlockEquationID(blk, eq);
              for (int var = nb_recursives; var < size; var++)
                {
                  int var_orig = getBlockVariableID(blk, var);
                  expr_t d1 = equations[eq_orig]->getChainRuleDerivative(getDerivID(symbol_table.getID(SymbolType::endogenous, var_orig), 0), recursive_vars);
                  if (d1 != Zero)
                    blocks_derivatives[blk][{ eq, var, 0 }] = d1;
                }
            }
        }
    }
    
    void
    StaticModel::writeLatexFile(const string &basename, bool write_equation_tags) const
    {
      writeLatexModelFile(basename, "static", ExprNodeOutputType::latexStaticModel, write_equation_tags);
    }
    
    void
    StaticModel::writeAuxVarInitval(ostream &output, ExprNodeOutputType output_type) const
    {
      for (auto aux_equation : aux_equations)
        {
          dynamic_cast<ExprNode *>(aux_equation)->writeOutput(output, output_type);
          output << ";" << endl;
        }
    }
    
    void
    StaticModel::writeSetAuxiliaryVariables(const string &basename, bool julia) const
    {
      ostringstream output_func_body;
      ExprNodeOutputType output_type = julia ? ExprNodeOutputType::juliaStaticModel : ExprNodeOutputType::matlabStaticModel;
      writeAuxVarRecursiveDefinitions(output_func_body, output_type);
    
      if (output_func_body.str().empty())
        return;
    
      string func_name = julia ? basename + "_set_auxiliary_variables!" : "set_auxiliary_variables";
      string comment = julia ? "#" : "%";
    
      stringstream output;
      if (julia)
        output << "module " << basename << "SetAuxiliaryVariables" << endl
               << "export " << func_name << endl;
      output << "function ";
      if (!julia)
        output << "y = ";
      output << func_name << "(y, x, params)" << endl
             << comment << endl
             << comment << " Status : Computes static model for Dynare" << endl
             << comment << endl
             << comment << " Warning : this file is generated automatically by Dynare" << endl
             << comment << "           from model file (.mod)" << endl << endl
             << output_func_body.str()
             << "end" << endl;
      if (julia)
        output << "end" << endl;
    
      writeToFileIfModified(output, julia ? basename + "SetAuxiliaryVariables.jl" : packageDir(basename) + "/" + func_name + ".m");
    }
    
    void
    StaticModel::writeAuxVarRecursiveDefinitions(ostream &output, ExprNodeOutputType output_type) const
    {
      deriv_node_temp_terms_t tef_terms;
      for (auto aux_equation : aux_equations)
        if (dynamic_cast<ExprNode *>(aux_equation)->containsExternalFunction())
          dynamic_cast<ExprNode *>(aux_equation)->writeExternalFunctionOutput(output, ExprNodeOutputType::matlabStaticModel, {}, {}, tef_terms);
      for (auto aux_equation : aux_equations)
        {
          dynamic_cast<ExprNode *>(aux_equation->substituteStaticAuxiliaryDefinition())->writeOutput(output, output_type);
          output << ";" << endl;
        }
    }
    
    void
    StaticModel::writeLatexAuxVarRecursiveDefinitions(ostream &output) const
    {
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temporary_terms;
      temporary_terms_idxs_t temporary_terms_idxs;
      for (auto aux_equation : aux_equations)
        if (dynamic_cast<ExprNode *>(aux_equation)->containsExternalFunction())
          dynamic_cast<ExprNode *>(aux_equation)->writeExternalFunctionOutput(output, ExprNodeOutputType::latexStaticModel,
                                                                              temporary_terms, temporary_terms_idxs, tef_terms);
      for (auto aux_equation : aux_equations)
        {
          output << R"(\begin{dmath})" << endl;
          dynamic_cast<ExprNode *>(aux_equation->substituteStaticAuxiliaryDefinition())->writeOutput(output, ExprNodeOutputType::latexStaticModel);
          output << endl << R"(\end{dmath})" << endl;
        }
    }
    
    void
    StaticModel::writeJsonAuxVarRecursiveDefinitions(ostream &output) const
    {
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temporary_terms;
    
      for (auto aux_equation : aux_equations)
        if (dynamic_cast<ExprNode *>(aux_equation)->containsExternalFunction())
          {
            vector<string> efout;
            dynamic_cast<ExprNode *>(aux_equation)->writeJsonExternalFunctionOutput(efout,
                                                                                    temporary_terms,
                                                                                    tef_terms,
                                                                                    false);
            for (auto it = efout.begin(); it != efout.end(); ++it)
              {
                if (it != efout.begin())
                  output << ", ";
                output << *it;
              }
          }
    
      for (auto aux_equation : aux_equations)
        {
          output << R"(, {"lhs": ")";
          aux_equation->arg1->writeJsonOutput(output, temporary_terms, tef_terms, false);
          output << R"(", "rhs": ")";
          dynamic_cast<BinaryOpNode *>(aux_equation->substituteStaticAuxiliaryDefinition())->arg2->writeJsonOutput(output, temporary_terms, tef_terms, false);
          output << R"("})";
        }
    }
    
    void
    StaticModel::writeParamsDerivativesFile(const string &basename, bool julia) const
    {
      if (!params_derivatives.size())
        return;
    
      ExprNodeOutputType output_type = (julia ? ExprNodeOutputType::juliaStaticModel : ExprNodeOutputType::matlabStaticModel);
    
      ostringstream tt_output; // Used for storing temporary terms
      ostringstream jacobian_output; // Used for storing jacobian equations
      ostringstream hessian_output; // Used for storing Hessian equations
      ostringstream hessian1_output; // Used for storing Hessian equations
      ostringstream third_derivs_output; // Used for storing third order derivatives equations
      ostringstream third_derivs1_output; // Used for storing third order derivatives equations
    
      temporary_terms_t temp_term_union;
      deriv_node_temp_terms_t tef_terms;
    
      writeModelLocalVariableTemporaryTerms(temp_term_union, params_derivs_temporary_terms_idxs, tt_output, output_type, tef_terms);
      for (const auto &it : params_derivs_temporary_terms)
        writeTemporaryTerms(it.second, temp_term_union, params_derivs_temporary_terms_idxs, tt_output, output_type, tef_terms);
    
      for (const auto & [indices, d1] : params_derivatives.find({ 0, 1 })->second)
        {
          auto [eq, param] = vectorToTuple<2>(indices);
    
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          jacobian_output << "rp" << LEFT_ARRAY_SUBSCRIPT(output_type)
                          <<  eq+1 << ", " << param_col
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << " = ";
          d1->writeOutput(jacobian_output, output_type, temp_term_union, params_derivs_temporary_terms_idxs, tef_terms);
          jacobian_output << ";" << endl;
        }
    
      for (const auto & [indices, d2] : params_derivatives.find({ 1, 1 })->second)
        {
          auto [eq, var, param] = vectorToTuple<3>(indices);
    
          int var_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          hessian_output << "gp" << LEFT_ARRAY_SUBSCRIPT(output_type)
                         << eq+1 << ", " << var_col << ", " << param_col
                         << RIGHT_ARRAY_SUBSCRIPT(output_type) << " = ";
          d2->writeOutput(hessian_output, output_type, temp_term_union, params_derivs_temporary_terms_idxs, tef_terms);
          hessian_output << ";" << endl;
        }
    
      int i = 1;
      for (const auto &[indices, d2] : params_derivatives.find({ 0, 2 })->second)
        {
          auto [eq, param1, param2] = vectorToTuple<3>(indices);
    
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          hessian1_output << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                          << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                          << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(hessian1_output, output_type, temp_term_union, params_derivs_temporary_terms_idxs, tef_terms);
          hessian1_output << ";" << endl;
    
          i++;
    
          if (param1 != param2)
            {
              // Treat symmetric elements
              hessian1_output << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                              << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                              << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                              << "rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type)
                              << "=rpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i-1 << ",4"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << ";" << endl;
              i++;
            }
        }
    
      i = 1;
      for (const auto &[indices, d2] : params_derivatives.find({ 1, 2 })->second)
        {
          auto [eq, var, param1, param2] = vectorToTuple<4>(indices);
    
          int var_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)) + 1;
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          third_derivs_output << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                              << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                              << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(third_derivs_output, output_type, temp_term_union, params_derivs_temporary_terms_idxs, tef_terms);
          third_derivs_output << ";" << endl;
    
          i++;
    
          if (param1 != param2)
            {
              // Treat symmetric elements
              third_derivs_output << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                                  << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var_col << ";" << endl
                                  << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param2_col << ";" << endl
                                  << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param1_col << ";" << endl
                                  << "gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type)
                                  << "=gpp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i-1 << ",5"
                                  << RIGHT_ARRAY_SUBSCRIPT(output_type) << ";" << endl;
              i++;
            }
        }
    
      i = 1;
      for (const auto &[indices, d2] : params_derivatives.find({ 2, 1 })->second)
        {
          auto [eq, var1, var2, param] = vectorToTuple<4>(indices);
    
          int var1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var1)) + 1;
          int var2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var2)) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          third_derivs1_output << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var1_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var2_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param_col << ";" << endl
                               << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                               << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=";
          d2->writeOutput(third_derivs1_output, output_type, temp_term_union, params_derivs_temporary_terms_idxs, tef_terms);
          third_derivs1_output << ";" << endl;
    
          i++;
    
          if (var1 != var2)
            {
              // Treat symmetric elements
              third_derivs1_output << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",1"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << eq+1 << ";" << endl
                                   << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",2"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var2_col << ";" << endl
                                   << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",3"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << var1_col << ";" << endl
                                   << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",4"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type) << "=" << param_col << ";" << endl
                                   << "hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i << ",5"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type)
                                   << "=hp" << LEFT_ARRAY_SUBSCRIPT(output_type) << i-1 << ",5"
                                   << RIGHT_ARRAY_SUBSCRIPT(output_type) << ";" << endl;
              i++;
            }
        }
    
      ofstream paramsDerivsFile;
      string filename = julia ? basename + "StaticParamsDerivs.jl" : packageDir(basename) + "/static_params_derivs.m";
      paramsDerivsFile.open(filename, ios::out | ios::binary);
      if (!paramsDerivsFile.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      if (!julia)
        {
          // Check that we don't have more than 32 nested parenthesis because Matlab does not suppor this. See Issue #1201
          map<string, string> tmp_paren_vars;
          bool message_printed = false;
          fixNestedParenthesis(tt_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(jacobian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(hessian1_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivs_output, tmp_paren_vars, message_printed);
          fixNestedParenthesis(third_derivs1_output, tmp_paren_vars, message_printed);
    
          paramsDerivsFile << "function [rp, gp, rpp, gpp, hp] = static_params_derivs(y, x, params)" << endl
                           << "%" << endl
                           << "% Status : Computes derivatives of the static model with respect to the parameters" << endl
                           << "%" << endl
                           << "% Inputs : " << endl
                           << "%   y         [M_.endo_nbr by 1] double    vector of endogenous variables in declaration order" << endl
                           << "%   x         [M_.exo_nbr by 1] double     vector of exogenous variables in declaration order" << endl
                           << "%   params    [M_.param_nbr by 1] double   vector of parameter values in declaration order" << endl
                           << "%" << endl
                           << "% Outputs:" << endl
                           << "%   rp        [M_.eq_nbr by #params] double    Jacobian matrix of static model equations with respect to parameters " << endl
                           << "%                                              Dynare may prepend or append auxiliary equations, see M_.aux_vars" << endl
                           << "%   gp        [M_.endo_nbr by M_.endo_nbr by #params] double    Derivative of the Jacobian matrix of the static model equations with respect to the parameters" << endl
                           << "%                                                           rows: variables in declaration order" << endl
                           << "%                                                           rows: equations in order of declaration" << endl
                           << "%   rpp       [#second_order_residual_terms by 4] double   Hessian matrix of second derivatives of residuals with respect to parameters;" << endl
                           << "%                                                              rows: respective derivative term" << endl
                           << "%                                                              1st column: equation number of the term appearing" << endl
                           << "%                                                              2nd column: number of the first parameter in derivative" << endl
                           << "%                                                              3rd column: number of the second parameter in derivative" << endl
                           << "%                                                              4th column: value of the Hessian term" << endl
                           << "%   gpp      [#second_order_Jacobian_terms by 5] double   Hessian matrix of second derivatives of the Jacobian with respect to the parameters;" << endl
                           << "%                                                              rows: respective derivative term" << endl
                           << "%                                                              1st column: equation number of the term appearing" << endl
                           << "%                                                              2nd column: column number of variable in Jacobian of the static model" << endl
                           << "%                                                              3rd column: number of the first parameter in derivative" << endl
                           << "%                                                              4th column: number of the second parameter in derivative" << endl
                           << "%                                                              5th column: value of the Hessian term" << endl
                           << "%" << endl
                           << "%" << endl
                           << "% Warning : this file is generated automatically by Dynare" << endl
                           << "%           from model file (.mod)" << endl << endl
                           << "T = NaN(" << params_derivs_temporary_terms_idxs.size() << ",1);" << endl
                           << tt_output.str()
                           << "rp = zeros(" << equations.size() << ", "
                           << symbol_table.param_nbr() << ");" << endl
                           << jacobian_output.str()
                           << "gp = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ", "
                           << symbol_table.param_nbr() << ");" << endl
                           << hessian_output.str()
                           << "if nargout >= 3" << endl
                           << "rpp = zeros(" << params_derivatives.find({ 0, 2 })->second.size() << ",4);" << endl
                           << hessian1_output.str()
                           << "gpp = zeros(" << params_derivatives.find({ 1, 2 })->second.size() << ",5);" << endl
                           << third_derivs_output.str()
                           << "end" << endl
                           << "if nargout >= 5" << endl
                           << "hp = zeros(" << params_derivatives.find({ 2, 1 })->second.size() << ",5);" << endl
                           << third_derivs1_output.str()
                           << "end" << endl
                           << "end" << endl;
        }
      else
        paramsDerivsFile << "module " << basename << "StaticParamsDerivs" << endl
                         << "#" << endl
                         << "# NB: this file was automatically generated by Dynare" << endl
                         << "#     from " << basename << ".mod" << endl
                         << "#" << endl
                         << "export params_derivs" << endl << endl
                         << "function params_derivs(y, x, params)" << endl
                         << tt_output.str()
                         << "rp = zeros(" << equations.size() << ", "
                         << symbol_table.param_nbr() << ");" << endl
                         << jacobian_output.str()
                         << "gp = zeros(" << equations.size() << ", " << symbol_table.endo_nbr() << ", "
                         << symbol_table.param_nbr() << ");" << endl
                         << hessian_output.str()
                         << "rpp = zeros(" << params_derivatives.find({ 0, 2 })->second.size() << ",4);" << endl
                         << hessian1_output.str()
                         << "gpp = zeros(" << params_derivatives.find({ 1, 2 })->second.size() << ",5);" << endl
                         << third_derivs_output.str()
                         << "hp = zeros(" << params_derivatives.find({ 2, 1 })->second.size() << ",5);" << endl
                         << third_derivs1_output.str()
                         << "(rp, gp, rpp, gpp, hp)" << endl
                         << "end" << endl
                         << "end" << endl;
    
      paramsDerivsFile.close();
    }
    
    void
    StaticModel::writeJsonOutput(ostream &output) const
    {
      deriv_node_temp_terms_t tef_terms;
      writeJsonModelLocalVariables(output, false, tef_terms);
      output << ", ";
      writeJsonModelEquations(output, false);
    }
    
    void
    StaticModel::writeJsonComputingPassOutput(ostream &output, bool writeDetails) const
    {
      ostringstream model_local_vars_output; // Used for storing model local vars
      vector<ostringstream> d_output(derivatives.size()); // Derivatives output (at all orders, including 0=residual)
    
      deriv_node_temp_terms_t tef_terms;
      temporary_terms_t temp_term_union;
    
      writeJsonModelLocalVariables(model_local_vars_output, true, tef_terms);
    
      writeJsonTemporaryTerms(temporary_terms_derivatives[0], temp_term_union, d_output[0], tef_terms, "");
      d_output[0] << ", ";
      writeJsonModelEquations(d_output[0], true);
    
      auto getJacobCol = [this](int var) { return symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)); };
      int ncols = symbol_table.endo_nbr();
      for (size_t i = 1; i < derivatives.size(); i++)
        {
          string matrix_name = i == 1 ? "jacobian" : i == 2 ? "hessian" : i == 3 ? "third_derivative" : to_string(i) + "th_derivative";
          writeJsonTemporaryTerms(temporary_terms_derivatives[i], temp_term_union, d_output[i], tef_terms, matrix_name);
          temp_term_union.insert(temporary_terms_derivatives[i].begin(), temporary_terms_derivatives[i].end());
          d_output[i] << R"(, ")" << matrix_name  << R"(": {)"
                      << R"(  "nrows": )" << equations.size()
                      << R"(, "ncols": )" << ncols
                      << R"(, "entries": [)";
    
          for (auto it = derivatives[i].begin(); it != derivatives[i].end(); ++it)
            {
              if (it != derivatives[i].begin())
                d_output[i] << ", ";
    
              const vector<int> &vidx = it->first;
              expr_t d = it->second;
              int eq = vidx[0];
    
              int col_idx = 0;
              for (size_t j = 1; j < vidx.size(); j++)
                {
                  col_idx *= symbol_table.endo_nbr();
                  col_idx += getJacobCol(vidx[j]);
                }
    
              if (writeDetails)
                d_output[i] << R"({"eq": )" << eq + 1;
              else
                d_output[i] << R"({"row": )" << eq + 1;
    
              d_output[i] << R"(, "col": )" << (i > 1 ? "[" : "") << col_idx + 1;
    
              if (i == 2 && vidx[1] != vidx[2]) // Symmetric elements in hessian
                {
                  int col_idx_sym = getJacobCol(vidx[2]) * symbol_table.endo_nbr() + getJacobCol(vidx[1]);
                  d_output[i] << ", " << col_idx_sym + 1;
                }
              if (i > 1)
                d_output[i] << "]";
    
              if (writeDetails)
                for (size_t j = 1; j < vidx.size(); j++)
                  d_output[i] << R"(, "var)" << (i > 1 ? to_string(j) : "") << R"(": ")" << symbol_table.getName(getSymbIDByDerivID(vidx[j])) << R"(")";
    
              d_output[i] << R"(, "val": ")";
              d->writeJsonOutput(d_output[i], temp_term_union, tef_terms);
              d_output[i] << R"("})" << endl;
            }
          d_output[i] << "]}";
    
          ncols *= symbol_table.endo_nbr();
        }
    
      if (writeDetails)
        output << R"("static_model": {)";
      else
        output << R"("static_model_simple": {)";
      output << model_local_vars_output.str();
      for (const auto &it : d_output)
        output << ", " << it.str();
      output << "}";
    }
    
    void
    StaticModel::writeJsonParamsDerivativesFile(ostream &output, bool writeDetails) const
    {
      if (!params_derivatives.size())
        return;
    
      ostringstream model_local_vars_output; // Used for storing model local vars
      ostringstream model_output; // Used for storing model temp vars and equations
      ostringstream jacobian_output; // Used for storing jacobian equations
      ostringstream hessian_output; // Used for storing Hessian equations
      ostringstream hessian1_output; // Used for storing Hessian equations
      ostringstream third_derivs_output; // Used for storing third order derivatives equations
      ostringstream third_derivs1_output; // Used for storing third order derivatives equations
    
      deriv_node_temp_terms_t tef_terms;
      writeJsonModelLocalVariables(model_local_vars_output, true, tef_terms);
    
      temporary_terms_t temp_term_union;
      for (const auto &it : params_derivs_temporary_terms)
        writeJsonTemporaryTerms(it.second, temp_term_union, model_output, tef_terms, "all");
    
      jacobian_output << R"("deriv_wrt_params": {)"
                      << R"(  "neqs": )" << equations.size()
                      << R"(, "nparamcols": )" << symbol_table.param_nbr()
                      << R"(, "entries": [)";
      auto &rp = params_derivatives.find({ 0, 1 })->second;
      for (auto it = rp.begin(); it != rp.end(); ++it)
        {
          if (it != rp.begin())
            jacobian_output << ", ";
    
          auto [eq, param] = vectorToTuple<2>(it->first);
          expr_t d1 = it->second;
    
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            jacobian_output << R"({"eq": )" << eq + 1;
          else
            jacobian_output << R"({"row": )" << eq + 1;
    
          if (writeDetails)
            jacobian_output << R"(, "param_col": )" << param_col;
    
          jacobian_output << R"(, "param": ")" << symbol_table.getName(getSymbIDByDerivID(param)) << R"(")";
    
          jacobian_output << R"(, "val": ")";
          d1->writeJsonOutput(jacobian_output, temp_term_union, tef_terms);
          jacobian_output << R"("})" << endl;
        }
      jacobian_output << "]}";
    
      hessian_output << R"("deriv_jacobian_wrt_params": {)"
                     << R"(  "neqs": )" << equations.size()
                     << R"(, "nvarcols": )" << symbol_table.endo_nbr()
                     << R"(, "nparamcols": )" << symbol_table.param_nbr()
                     << R"(, "entries": [)";
      auto &gp = params_derivatives.find({ 1, 1 })->second;
      for (auto it = gp.begin(); it != gp.end(); ++it)
        {
          if (it != gp.begin())
            hessian_output << ", ";
    
          auto [eq, var, param] = vectorToTuple<3>(it->first);
          expr_t d2 = it->second;
    
          int var_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            hessian_output << R"({"eq": )" << eq + 1;
          else
            hessian_output << R"({"row": )" << eq + 1;
    
          if (writeDetails)
            hessian_output << R"(, "var": ")" << symbol_table.getName(getSymbIDByDerivID(var)) << R"(")"
                           << R"(, "param": ")" << symbol_table.getName(getSymbIDByDerivID(param)) << R"(")";
    
          hessian_output << R"(, "var_col": )" << var_col
                         << R"(, "param_col": )" << param_col
                         << R"(, "val": ")";
          d2->writeJsonOutput(hessian_output, temp_term_union, tef_terms);
          hessian_output << R"("})" << endl;
        }
      hessian_output << "]}";
    
      hessian1_output << R"("second_deriv_residuals_wrt_params": {)"
                      << R"(  "nrows": )" << equations.size()
                      << R"(, "nparam1cols": )" << symbol_table.param_nbr()
                      << R"(, "nparam2cols": )" << symbol_table.param_nbr()
                      << R"(, "entries": [)";
      auto &rpp = params_derivatives.find({ 0, 2 })->second;
      for (auto it = rpp.begin(); it != rpp.end(); ++it)
        {
          if (it != rpp.begin())
            hessian1_output << ", ";
    
          auto [eq, param1, param2] = vectorToTuple<3>(it->first);
          expr_t d2 = it->second;
    
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          if (writeDetails)
            hessian1_output << R"({"eq": )" << eq + 1;
          else
            hessian1_output << R"({"row": )" << eq + 1;
    
          hessian1_output << R"(, "param1_col": )" << param1_col
                          << R"(, "param2_col": )" << param2_col;
    
          if (writeDetails)
            hessian1_output << R"(, "param1": ")" << symbol_table.getName(getSymbIDByDerivID(param1)) << R"(")"
                            << R"(, "param2": ")" << symbol_table.getName(getSymbIDByDerivID(param2)) << R"(")";
    
          hessian1_output << R"(, "val": ")";
          d2->writeJsonOutput(hessian1_output, temp_term_union, tef_terms);
          hessian1_output << R"("})" << endl;
        }
      hessian1_output << "]}";
    
      third_derivs_output << R"("second_deriv_jacobian_wrt_params": {)"
                          << R"(  "neqs": )" << equations.size()
                          << R"(, "nvarcols": )" << symbol_table.endo_nbr()
                          << R"(, "nparam1cols": )" << symbol_table.param_nbr()
                          << R"(, "nparam2cols": )" << symbol_table.param_nbr()
                          << R"(, "entries": [)";
      auto &gpp = params_derivatives.find({ 1, 2 })->second;
      for (auto it = gpp.begin(); it != gpp.end(); ++it)
        {
          if (it != gpp.begin())
            third_derivs_output << ", ";
    
          auto [eq, var, param1, param2] = vectorToTuple<4>(it->first);
          expr_t d2 = it->second;
    
          int var_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var)) + 1;
          int param1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param1)) + 1;
          int param2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param2)) + 1;
    
          if (writeDetails)
            third_derivs_output << R"({"eq": )" << eq + 1;
          else
            third_derivs_output << R"({"row": )" << eq + 1;
          third_derivs_output << R"(, "var_col": )" << var_col
                              << R"(, "param1_col": )" << param1_col
                              << R"(, "param2_col": )" << param2_col;
    
          if (writeDetails)
            third_derivs_output << R"(, "var": ")" << symbol_table.getName(var) << R"(")"
                                << R"(, "param1": ")" << symbol_table.getName(getSymbIDByDerivID(param1)) << R"(")"
                                << R"(, "param2": ")" << symbol_table.getName(getSymbIDByDerivID(param2)) << R"(")";
    
          third_derivs_output << R"(, "val": ")";
          d2->writeJsonOutput(third_derivs_output, temp_term_union, tef_terms);
          third_derivs_output << R"("})" << endl;
        }
      third_derivs_output << "]}" << endl;
    
      third_derivs1_output << R"("derivative_hessian_wrt_params": {)"
                           << R"(  "neqs": )" << equations.size()
                           << R"(, "nvar1cols": )" << symbol_table.endo_nbr()
                           << R"(, "nvar2cols": )" << symbol_table.endo_nbr()
                           << R"(, "nparamcols": )" << symbol_table.param_nbr()
                           << R"(, "entries": [)";
      auto &hp = params_derivatives.find({ 2, 1 })->second;
      for (auto it = hp.begin(); it != hp.end(); ++it)
        {
          if (it != hp.begin())
            third_derivs1_output << ", ";
    
          auto [eq, var1, var2, param] = vectorToTuple<4>(it->first);
          expr_t d2 = it->second;
    
          int var1_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var1)) + 1;
          int var2_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(var2)) + 1;
          int param_col = symbol_table.getTypeSpecificID(getSymbIDByDerivID(param)) + 1;
    
          if (writeDetails)
            third_derivs1_output << R"({"eq": )" << eq + 1;
          else
            third_derivs1_output << R"({"row": )" << eq + 1;
    
          third_derivs1_output << R"(, "var1_col": )" << var1_col
                               << R"(, "var2_col": )" << var2_col
                               << R"(, "param_col": )" << param_col;
    
          if (writeDetails)
            third_derivs1_output << R"(, "var1": ")" << symbol_table.getName(getSymbIDByDerivID(var1)) << R"(")"
                                 << R"(, "var2": ")" << symbol_table.getName(getSymbIDByDerivID(var2)) << R"(")"
                                 << R"(, "param1": ")" << symbol_table.getName(getSymbIDByDerivID(param)) << R"(")";
    
          third_derivs1_output << R"(, "val": ")";
          d2->writeJsonOutput(third_derivs1_output, temp_term_union, tef_terms);
          third_derivs1_output << R"("})" << endl;
        }
      third_derivs1_output << "]}" << endl;
    
      if (writeDetails)
        output << R"("static_model_params_derivative": {)";
      else
        output << R"("static_model_params_derivatives_simple": {)";
      output << model_local_vars_output.str()
             << ", " << model_output.str()
             << ", " << jacobian_output.str()
             << ", " << hessian_output.str()
             << ", " << hessian1_output.str()
             << ", " << third_derivs_output.str()
             << ", " << third_derivs1_output.str()
             << "}";
    }