Skip to content
Snippets Groups Projects
Select Git revision
  • ha_mcp
  • master default protected
  • pac_composite_target_mce
  • ramsey_k_order
  • 4.6
  • occbin
  • uop
  • rework_pac
  • aux_vars_fix
  • created_preprocessor_repo
10 results

ConfigFile.hh

Blame
  • Forked from Dynare / preprocessor
    Source project has a limited visibility.
    ModelTree.cc NaN GiB
    /*
     * Copyright (C) 2003-2013 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <cstdlib>
    #include <cassert>
    #include <cmath>
    #include <iostream>
    #include <fstream>
    
    #include "ModelTree.hh"
    #include "MinimumFeedbackSet.hh"
    #include <boost/graph/adjacency_list.hpp>
    #include <boost/graph/max_cardinality_matching.hpp>
    #include <boost/graph/strong_components.hpp>
    #include <boost/graph/topological_sort.hpp>
    
    using namespace boost;
    using namespace MFS;
    
    bool
    ModelTree::computeNormalization(const jacob_map_t &contemporaneous_jacobian, bool verbose)
    {
      const int n = equation_number();
    
      assert(n == symbol_table.endo_nbr());
    
      typedef adjacency_list<vecS, vecS, undirectedS> BipartiteGraph;
    
      /*
        Vertices 0 to n-1 are for endogenous (using type specific ID)
        Vertices n to 2*n-1 are for equations (using equation no.)
      */
      BipartiteGraph g(2 * n);
    
      // Fill in the graph
      set<pair<int, int> > endo;
    
      for (jacob_map_t::const_iterator it = contemporaneous_jacobian.begin(); it != contemporaneous_jacobian.end(); it++)
        add_edge(it->first.first + n, it->first.second, g);
    
      // Compute maximum cardinality matching
      vector<int> mate_map(2*n);
    
    #if 1
      bool check = checked_edmonds_maximum_cardinality_matching(g, &mate_map[0]);
    #else // Alternative way to compute normalization, by giving an initial matching using natural normalizations
      fill(mate_map.begin(), mate_map.end(), graph_traits<BipartiteGraph>::null_vertex());
    
      multimap<int, int> natural_endo2eqs;
      computeNormalizedEquations(natural_endo2eqs);
    
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          if (natural_endo2eqs.count(i) == 0)
            continue;
    
          int j = natural_endo2eqs.find(i)->second;
    
          put(&mate_map[0], i, n+j);
          put(&mate_map[0], n+j, i);
        }
    
      edmonds_augmenting_path_finder<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type> augmentor(g, &mate_map[0], get(vertex_index, g));
      bool not_maximum_yet = true;
      while (not_maximum_yet)
        {
          not_maximum_yet = augmentor.augment_matching();
        }
      augmentor.get_current_matching(&mate_map[0]);
    
      bool check = maximum_cardinality_matching_verifier<BipartiteGraph, size_t *, property_map<BipartiteGraph, vertex_index_t>::type>::verify_matching(g, &mate_map[0], get(vertex_index, g));
    #endif
    
      assert(check);
    
    #ifdef DEBUG
      for (int i = 0; i < n; i++)
        cout << "Endogenous " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
             << " matched with equation " << (mate_map[i]-n+1) << endl;
    #endif
    
      // Create the resulting map, by copying the n first elements of mate_map, and substracting n to them
      endo2eq.resize(equation_number());
      transform(mate_map.begin(), mate_map.begin() + n, endo2eq.begin(), bind2nd(minus<int>(), n));
    
    #ifdef DEBUG
      multimap<int, int> natural_endo2eqs;
      computeNormalizedEquations(natural_endo2eqs);
    
      int n1 = 0, n2 = 0;
    
      for (int i = 0; i < symbol_table.endo_nbr(); i++)
        {
          if (natural_endo2eqs.count(i) == 0)
            continue;
    
          n1++;
    
          pair<multimap<int, int>::const_iterator, multimap<int, int>::const_iterator> x = natural_endo2eqs.equal_range(i);
          if (find_if(x.first, x.second, compose1(bind2nd(equal_to<int>(), endo2eq[i]), select2nd<multimap<int, int>::value_type>())) == x.second)
            cout << "Natural normalization of variable " << symbol_table.getName(symbol_table.getID(eEndogenous, i))
                 << " not used." << endl;
          else
            n2++;
        }
    
      cout << "Used " << n2 << " natural normalizations out of " << n1 << ", for a total of " << n << " equations." << endl;
    #endif
    
      // Check if all variables are normalized
      vector<int>::const_iterator it = find(mate_map.begin(), mate_map.begin() + n, graph_traits<BipartiteGraph>::null_vertex());
      if (it != mate_map.begin() + n)
        {
          if (verbose)
            cerr << "ERROR: Could not normalize the model. Variable "
                 << symbol_table.getName(symbol_table.getID(eEndogenous, it - mate_map.begin()))
                 << " is not in the maximum cardinality matching." << endl;
          check = false;
        }
      return check;
    }
    
    void
    ModelTree::computeNonSingularNormalization(jacob_map_t &contemporaneous_jacobian, double cutoff, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian)
    {
      bool check = false;
    
      cout << "Normalizing the model..." << endl;
    
      int n = equation_number();
    
      // compute the maximum value of each row of the contemporaneous Jacobian matrix
      //jacob_map normalized_contemporaneous_jacobian;
      jacob_map_t normalized_contemporaneous_jacobian(contemporaneous_jacobian);
      vector<double> max_val(n, 0.0);
      for (jacob_map_t::const_iterator iter = contemporaneous_jacobian.begin(); iter != contemporaneous_jacobian.end(); iter++)
        if (fabs(iter->second) > max_val[iter->first.first])
          max_val[iter->first.first] = fabs(iter->second);
    
      for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
        iter->second /= max_val[iter->first.first];
    
      //We start with the highest value of the cutoff and try to normalize the model
      double current_cutoff = 0.99999999;
    
      int suppressed = 0;
      while (!check && current_cutoff > 1e-19)
        {
          jacob_map_t tmp_normalized_contemporaneous_jacobian;
          int suppress = 0;
          for (jacob_map_t::iterator iter = normalized_contemporaneous_jacobian.begin(); iter != normalized_contemporaneous_jacobian.end(); iter++)
            if (fabs(iter->second) > max(current_cutoff, cutoff))
              tmp_normalized_contemporaneous_jacobian[make_pair(iter->first.first, iter->first.second)] = iter->second;
            else
              suppress++;
    
          if (suppress != suppressed)
            check = computeNormalization(tmp_normalized_contemporaneous_jacobian, false);
          suppressed = suppress;
          if (!check)
            {
              current_cutoff /= 2;
              // In this last case try to normalize with the complete jacobian
              if (current_cutoff <= 1e-19)
                check = computeNormalization(normalized_contemporaneous_jacobian, false);
            }
        }
    
      if (!check)
        {
          cout << "Normalization failed with cutoff, trying symbolic normalization..." << endl;
          //if no non-singular normalization can be found, try to find a normalization even with a potential singularity
          jacob_map_t tmp_normalized_contemporaneous_jacobian;
          set<pair<int, int> > endo;
          for (int i = 0; i < n; i++)
            {
              endo.clear();
              equations[i]->collectEndogenous(endo);
              for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
                tmp_normalized_contemporaneous_jacobian[make_pair(i, it->first)] = 1;
            }
          check = computeNormalization(tmp_normalized_contemporaneous_jacobian, true);
          if (check)
            {
              // Update the jacobian matrix
              for (jacob_map_t::const_iterator it = tmp_normalized_contemporaneous_jacobian.begin(); it != tmp_normalized_contemporaneous_jacobian.end(); it++)
                {
                  if (static_jacobian.find(make_pair(it->first.first, it->first.second)) == static_jacobian.end())
                    static_jacobian[make_pair(it->first.first, it->first.second)] = 0;
                  if (dynamic_jacobian.find(make_pair(0, make_pair(it->first.first, it->first.second))) == dynamic_jacobian.end())
                    dynamic_jacobian[make_pair(0, make_pair(it->first.first, it->first.second))] = 0;
                  if (contemporaneous_jacobian.find(make_pair(it->first.first, it->first.second)) == contemporaneous_jacobian.end())
                    contemporaneous_jacobian[make_pair(it->first.first, it->first.second)] = 0;
                  if (first_derivatives.find(make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))) == first_derivatives.end())
                    first_derivatives[make_pair(it->first.first, getDerivID(symbol_table.getID(eEndogenous, it->first.second), 0))] = Zero;
                }
            }
        }
    
      if (!check)
        {
          cerr << "No normalization could be computed. Aborting." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ModelTree::computeNormalizedEquations(multimap<int, int> &endo2eqs) const
    {
      for (int i = 0; i < equation_number(); i++)
        {
          VariableNode *lhs = dynamic_cast<VariableNode *>(equations[i]->get_arg1());
          if (lhs == NULL)
            continue;
    
          int symb_id = lhs->get_symb_id();
          if (symbol_table.getType(symb_id) != eEndogenous)
            continue;
    
          set<pair<int, int> > endo;
          equations[i]->get_arg2()->collectEndogenous(endo);
          if (endo.find(make_pair(symbol_table.getTypeSpecificID(symb_id), 0)) != endo.end())
            continue;
    
          endo2eqs.insert(make_pair(symbol_table.getTypeSpecificID(symb_id), i));
          cout << "Endogenous " << symbol_table.getName(symb_id) << " normalized in equation " << (i+1) << endl;
        }
    }
    
    void
    ModelTree::evaluateAndReduceJacobian(const eval_context_t &eval_context, jacob_map_t &contemporaneous_jacobian, jacob_map_t &static_jacobian, dynamic_jacob_map_t &dynamic_jacobian, double cutoff, bool verbose)
    {
      int nb_elements_contemparenous_Jacobian = 0;
      set<pair<int, int> > jacobian_elements_to_delete;
      for (first_derivatives_t::const_iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          int deriv_id = it->first.second;
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            {
              expr_t Id = it->second;
              int eq = it->first.first;
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              double val = 0;
              try
                {
                  val = Id->eval(eval_context);
                }
              catch (ExprNode::EvalExternalFunctionException &e)
                {
                  val = 1;
                }
              catch (ExprNode::EvalException &e)
                {
                  cerr << "ERROR: evaluation of Jacobian failed for equation " << eq+1 << " and variable " << symbol_table.getName(symb) << "(" << lag << ") [" << symb << "] !" << endl;
                  Id->writeOutput(cerr, oMatlabDynamicModelSparse, temporary_terms);
                  cerr << endl;
                  exit(EXIT_FAILURE);
                }
              if (fabs(val) < cutoff)
                {
                  if (verbose)
                    cout << "the coefficient related to variable " << var << " with lag " << lag << " in equation " << eq << " is equal to " << val << " and is set to 0 in the incidence matrix (size=" << symbol_table.endo_nbr() << ")" << endl;
                  jacobian_elements_to_delete.insert(make_pair(eq, deriv_id));
                }
              else
                {
                  if (lag == 0)
                    {
                      nb_elements_contemparenous_Jacobian++;
                      contemporaneous_jacobian[make_pair(eq, var)] = val;
                    }
                  if (static_jacobian.find(make_pair(eq, var)) != static_jacobian.end())
                    static_jacobian[make_pair(eq, var)] += val;
                  else
                    static_jacobian[make_pair(eq, var)] = val;
                  dynamic_jacobian[make_pair(lag, make_pair(eq, var))] = Id;
                }
            }
        }
    
      // Get rid of the elements of the Jacobian matrix below the cutoff
      for (set<pair<int, int> >::const_iterator it = jacobian_elements_to_delete.begin(); it != jacobian_elements_to_delete.end(); it++)
        first_derivatives.erase(*it);
    
      if (jacobian_elements_to_delete.size() > 0)
        {
          cout << jacobian_elements_to_delete.size() << " elements among " << first_derivatives.size() << " in the incidence matrices are below the cutoff (" << cutoff << ") and are discarded" << endl
               << "The contemporaneous incidence matrix has " << nb_elements_contemparenous_Jacobian << " elements" << endl;
        }
    }
    
    void
    ModelTree::computePrologueAndEpilogue(const jacob_map_t &static_jacobian_arg, vector<int> &equation_reordered, vector<int> &variable_reordered)
    {
      vector<int> eq2endo(equation_number(), 0);
      equation_reordered.resize(equation_number());
      variable_reordered.resize(equation_number());
      bool *IM;
      int n = equation_number();
      IM = (bool *) calloc(n*n, sizeof(bool));
      int i = 0;
      for (vector<int>::const_iterator it = endo2eq.begin(); it != endo2eq.end(); it++, i++)
        {
          eq2endo[*it] = i;
          equation_reordered[i] = i;
          variable_reordered[*it] = i;
        }
      for (jacob_map_t::const_iterator it = static_jacobian_arg.begin(); it != static_jacobian_arg.end(); it++)
        IM[it->first.first * n + endo2eq[it->first.second]] = true;
      bool something_has_been_done = true;
      prologue = 0;
      int k = 0;
      // Find the prologue equations and place first the AR(1) shock equations first
      while (something_has_been_done)
        {
          int tmp_prologue = prologue;
          something_has_been_done = false;
          for (int i = prologue; i < n; i++)
            {
              int nze = 0;
              for (int j = tmp_prologue; j < n; j++)
                if (IM[i * n + j])
                  {
                    nze++;
                    k = j;
                  }
              if (nze == 1)
                {
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[tmp_prologue * n + j];
                      IM[tmp_prologue * n + j] = IM[i * n + j];
                      IM[i * n + j] = tmp_bool;
                    }
                  int tmp = equation_reordered[tmp_prologue];
                  equation_reordered[tmp_prologue] = equation_reordered[i];
                  equation_reordered[i] = tmp;
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[j * n + tmp_prologue];
                      IM[j * n + tmp_prologue] = IM[j * n + k];
                      IM[j * n + k] = tmp_bool;
                    }
                  tmp = variable_reordered[tmp_prologue];
                  variable_reordered[tmp_prologue] = variable_reordered[k];
                  variable_reordered[k] = tmp;
                  tmp_prologue++;
                  something_has_been_done = true;
                }
            }
          prologue = tmp_prologue;
        }
    
      something_has_been_done = true;
      epilogue = 0;
      // Find the epilogue equations
      while (something_has_been_done)
        {
          int tmp_epilogue = epilogue;
          something_has_been_done = false;
          for (int i = prologue; i < n - (int) epilogue; i++)
            {
              int nze = 0;
              for (int j = prologue; j < n - tmp_epilogue; j++)
                if (IM[j * n + i])
                  {
                    nze++;
                    k = j;
                  }
              if (nze == 1)
                {
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[(n - 1 - tmp_epilogue) * n + j];
                      IM[(n - 1 - tmp_epilogue) * n + j] = IM[k * n + j];
                      IM[k * n + j] = tmp_bool;
                    }
                  int tmp = equation_reordered[n - 1 - tmp_epilogue];
                  equation_reordered[n - 1 - tmp_epilogue] = equation_reordered[k];
                  equation_reordered[k] = tmp;
                  for (int j = 0; j < n; j++)
                    {
                      bool tmp_bool = IM[j * n + n - 1 - tmp_epilogue];
                      IM[j * n + n - 1 - tmp_epilogue] = IM[j * n + i];
                      IM[j * n + i] = tmp_bool;
                    }
                  tmp = variable_reordered[n - 1 - tmp_epilogue];
                  variable_reordered[n - 1 - tmp_epilogue] = variable_reordered[i];
                  variable_reordered[i] = tmp;
                  tmp_epilogue++;
                  something_has_been_done = true;
                }
            }
          epilogue = tmp_epilogue;
        }
      free(IM);
    }
    
    equation_type_and_normalized_equation_t
    ModelTree::equationTypeDetermination(const map<pair<int, pair<int, int> >, expr_t> &first_order_endo_derivatives, const vector<int> &Index_Var_IM, const vector<int> &Index_Equ_IM, int mfs) const
    {
      expr_t lhs;
      BinaryOpNode *eq_node;
      EquationType Equation_Simulation_Type;
      equation_type_and_normalized_equation_t V_Equation_Simulation_Type(equations.size());
      for (unsigned int i = 0; i < equations.size(); i++)
        {
          int eq = Index_Equ_IM[i];
          int var = Index_Var_IM[i];
          eq_node = equations[eq];
          lhs = eq_node->get_arg1();
          Equation_Simulation_Type = E_SOLVE;
          map<pair<int, pair<int, int> >, expr_t>::const_iterator derivative = first_order_endo_derivatives.find(make_pair(eq, make_pair(var, 0)));
          pair<bool, expr_t> res;
          if (derivative != first_order_endo_derivatives.end())
            {
              set<pair<int, int> > result;
              derivative->second->collectEndogenous(result);
              set<pair<int, int> >::const_iterator d_endo_variable = result.find(make_pair(var, 0));
              //Determine whether the equation could be evaluated rather than to be solved
              if (lhs->isVariableNodeEqualTo(eEndogenous, Index_Var_IM[i], 0) && derivative->second->isNumConstNodeEqualTo(1))
                {
                  Equation_Simulation_Type = E_EVALUATE;
                }
              else
                {
                  vector<pair<int, pair<expr_t, expr_t> > > List_of_Op_RHS;
                  res =  equations[eq]->normalizeEquation(var, List_of_Op_RHS);
                  if (mfs == 2)
                    {
                      if (d_endo_variable == result.end() && res.second)
                        Equation_Simulation_Type = E_EVALUATE_S;
                    }
                  else if (mfs == 3)
                    {
                      if (res.second) // The equation could be solved analytically
                        Equation_Simulation_Type = E_EVALUATE_S;
                    }
                }
            }
          V_Equation_Simulation_Type[eq] = make_pair(Equation_Simulation_Type, dynamic_cast<BinaryOpNode *>(res.second));
        }
      return (V_Equation_Simulation_Type);
    }
    
    void
    ModelTree::getVariableLeadLagByBlock(const dynamic_jacob_map_t &dynamic_jacobian, const vector<int> &components_set, int nb_blck_sim, lag_lead_vector_t &equation_lead_lag, lag_lead_vector_t &variable_lead_lag, const vector<int> &equation_reordered, const vector<int> &variable_reordered) const
    {
      int nb_endo = symbol_table.endo_nbr();
      variable_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
      equation_lead_lag = lag_lead_vector_t(nb_endo, make_pair(0, 0));
      vector<int> variable_blck(nb_endo), equation_blck(nb_endo);
      for (int i = 0; i < nb_endo; i++)
        {
          if (i < (int) prologue)
            {
              variable_blck[variable_reordered[i]] = i;
              equation_blck[equation_reordered[i]] = i;
            }
          else if (i < (int) (components_set.size() + prologue))
            {
              variable_blck[variable_reordered[i]] = components_set[i-prologue] + prologue;
              equation_blck[equation_reordered[i]] = components_set[i-prologue] + prologue;
            }
          else
            {
              variable_blck[variable_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
              equation_blck[equation_reordered[i]] = i- (nb_endo - nb_blck_sim - prologue - epilogue);
            }
        }
      for (dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.begin(); it != dynamic_jacobian.end(); it++)
        {
          int lag = it->first.first;
          int j_1 = it->first.second.first;
          int i_1 = it->first.second.second;
          if (variable_blck[i_1] == equation_blck[j_1])
            {
              if (lag > variable_lead_lag[i_1].second)
                variable_lead_lag[i_1] = make_pair(variable_lead_lag[i_1].first, lag);
              if (lag < -variable_lead_lag[i_1].first)
                variable_lead_lag[i_1] = make_pair(-lag, variable_lead_lag[i_1].second);
              if (lag > equation_lead_lag[j_1].second)
                equation_lead_lag[j_1] = make_pair(equation_lead_lag[j_1].first, lag);
              if (lag < -equation_lead_lag[j_1].first)
                equation_lead_lag[j_1] = make_pair(-lag, equation_lead_lag[j_1].second);
            }
        }
    }
    
    void
    ModelTree::computeBlockDecompositionAndFeedbackVariablesForEachBlock(const jacob_map_t &static_jacobian, const dynamic_jacob_map_t &dynamic_jacobian, vector<int> &equation_reordered, vector<int> &variable_reordered, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, bool verbose_, bool select_feedback_variable, int mfs, vector<int> &inv_equation_reordered, vector<int> &inv_variable_reordered, lag_lead_vector_t &equation_lag_lead, lag_lead_vector_t &variable_lag_lead, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed) const
    {
      int nb_var = variable_reordered.size();
      int n = nb_var - prologue - epilogue;
    
      AdjacencyList_t G2(n);
    
      // It is necessary to manually initialize vertex_index property since this graph uses listS and not vecS as underlying vertex container
      property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G2);
      for (int i = 0; i < n; i++)
        put(v_index, vertex(i, G2), i);
    
      vector<int> reverse_equation_reordered(nb_var), reverse_variable_reordered(nb_var);
    
      for (int i = 0; i < nb_var; i++)
        {
          reverse_equation_reordered[equation_reordered[i]] = i;
          reverse_variable_reordered[variable_reordered[i]] = i;
        }
    
      for (jacob_map_t::const_iterator it = static_jacobian.begin(); it != static_jacobian.end(); it++)
        if (reverse_equation_reordered[it->first.first] >= (int) prologue && reverse_equation_reordered[it->first.first] < (int) (nb_var - epilogue)
            && reverse_variable_reordered[it->first.second] >= (int) prologue && reverse_variable_reordered[it->first.second] < (int) (nb_var - epilogue)
            && it->first.first != endo2eq[it->first.second])
          add_edge(vertex(reverse_equation_reordered[endo2eq[it->first.second]]-prologue, G2),
                   vertex(reverse_equation_reordered[it->first.first]-prologue, G2),
                   G2);
    
      vector<int> endo2block(num_vertices(G2)), discover_time(num_vertices(G2));
      iterator_property_map<int *, property_map<AdjacencyList_t, vertex_index_t>::type, int, int &> endo2block_map(&endo2block[0], get(vertex_index, G2));
    
      // Compute strongly connected components
      int num = strong_components(G2, endo2block_map);
    
      blocks = vector<pair<int, int> >(num, make_pair(0, 0));
    
      // Create directed acyclic graph associated to the strongly connected components
      typedef adjacency_list<vecS, vecS, directedS> DirectedGraph;
      DirectedGraph dag(num);
    
      for (unsigned int i = 0; i < num_vertices(G2); i++)
        {
          AdjacencyList_t::out_edge_iterator it_out, out_end;
          AdjacencyList_t::vertex_descriptor vi = vertex(i, G2);
          for (tie(it_out, out_end) = out_edges(vi, G2); it_out != out_end; ++it_out)
            {
              int t_b = endo2block_map[target(*it_out, G2)];
              int s_b = endo2block_map[source(*it_out, G2)];
              if (s_b != t_b)
                add_edge(s_b, t_b, dag);
            }
        }
    
      // Compute topological sort of DAG (ordered list of unordered SCC)
      deque<int> ordered2unordered;
      topological_sort(dag, front_inserter(ordered2unordered)); // We use a front inserter because topological_sort returns the inverse order
    
      // Construct mapping from unordered SCC to ordered SCC
      vector<int> unordered2ordered(num);
      for (int i = 0; i < num; i++)
        unordered2ordered[ordered2unordered[i]] = i;
    
      //This vector contains for each block:
      //   - first set = equations belonging to the block,
      //   - second set = the feeback variables,
      //   - third vector = the reordered non-feedback variables.
      vector<pair<set<int>, pair<set<int>, vector<int> > > > components_set(num);
      for (unsigned int i = 0; i < endo2block.size(); i++)
        {
          endo2block[i] = unordered2ordered[endo2block[i]];
          blocks[endo2block[i]].first++;
          components_set[endo2block[i]].first.insert(i);
        }
    
      getVariableLeadLagByBlock(dynamic_jacobian, endo2block, num, equation_lag_lead, variable_lag_lead, equation_reordered, variable_reordered);
    
      vector<int> tmp_equation_reordered(equation_reordered), tmp_variable_reordered(variable_reordered);
      int order = prologue;
      //Add a loop on vertices which could not be normalized or vertices related to lead variables => force those vertices to belong to the feedback set
      if (select_feedback_variable)
        {
          for (int i = 0; i < n; i++)
            if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE
                || variable_lag_lead[variable_reordered[i+prologue]].second > 0
                || variable_lag_lead[variable_reordered[i+prologue]].first > 0
                || equation_lag_lead[equation_reordered[i+prologue]].second > 0
                || equation_lag_lead[equation_reordered[i+prologue]].first > 0
                || mfs == 0)
              add_edge(vertex(i, G2), vertex(i, G2), G2);
        }
      else
        {
          for (int i = 0; i < n; i++)
            if (Equation_Type[equation_reordered[i+prologue]].first == E_SOLVE || mfs == 0)
              add_edge(vertex(i, G2), vertex(i, G2), G2);
        }
      //Determines the dynamic structure of each equation
      n_static = vector<unsigned int>(prologue+num+epilogue, 0);
      n_forward = vector<unsigned int>(prologue+num+epilogue, 0);
      n_backward = vector<unsigned int>(prologue+num+epilogue, 0);
      n_mixed = vector<unsigned int>(prologue+num+epilogue, 0);
    
      for (int i = 0; i < (int) prologue; i++)
        {
          if      (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
            n_mixed[i]++;
          else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second != 0)
            n_forward[i]++;
          else if (variable_lag_lead[tmp_variable_reordered[i]].first != 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
            n_backward[i]++;
          else if (variable_lag_lead[tmp_variable_reordered[i]].first == 0 && variable_lag_lead[tmp_variable_reordered[i]].second == 0)
            n_static[i]++;
        }
      //For each block, the minimum set of feedback variable is computed
      // and the non-feedback variables are reordered to get
      // a sub-recursive block without feedback variables
    
      for (int i = 0; i < num; i++)
        {
          AdjacencyList_t G = extract_subgraph(G2, components_set[i].first);
          set<int> feed_back_vertices;
          //Print(G);
          AdjacencyList_t G1 = Minimal_set_of_feedback_vertex(feed_back_vertices, G);
          property_map<AdjacencyList_t, vertex_index_t>::type v_index = get(vertex_index, G);
          components_set[i].second.first = feed_back_vertices;
          blocks[i].second = feed_back_vertices.size();
          vector<int> Reordered_Vertice;
          Reorder_the_recursive_variables(G, feed_back_vertices, Reordered_Vertice);
    
          //First we have the recursive equations conditional on feedback variables
          for (int j = 0; j < 4; j++)
            {
              for (vector<int>::iterator its = Reordered_Vertice.begin(); its != Reordered_Vertice.end(); its++)
                {
                  bool something_done = false;
                  if      (j == 2 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
                    {
                      n_mixed[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 3 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second != 0)
                    {
                      n_forward[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 1 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
                    {
                      n_backward[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[*its +prologue]].second == 0)
                    {
                      n_static[prologue+i]++;
                      something_done = true;
                    }
                  if (something_done)
                    {
                      equation_reordered[order] = tmp_equation_reordered[*its+prologue];
                      variable_reordered[order] = tmp_variable_reordered[*its+prologue];
                      order++;
                    }
                }
            }
          components_set[i].second.second = Reordered_Vertice;
          //Second we have the equations related to the feedback variables
          for (int j = 0; j < 4; j++)
            {
              for (set<int>::iterator its = feed_back_vertices.begin(); its != feed_back_vertices.end(); its++)
                {
                  bool something_done = false;
                  if      (j == 2 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
                    {
                      n_mixed[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 3 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second != 0)
                    {
                      n_forward[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 1 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first != 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
                    {
                      n_backward[prologue+i]++;
                      something_done = true;
                    }
                  else if (j == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].first == 0 && variable_lag_lead[tmp_variable_reordered[v_index[vertex(*its, G)]+prologue]].second == 0)
                    {
                      n_static[prologue+i]++;
                      something_done = true;
                    }
                  if (something_done)
                    {
                      equation_reordered[order] = tmp_equation_reordered[v_index[vertex(*its, G)]+prologue];
                      variable_reordered[order] = tmp_variable_reordered[v_index[vertex(*its, G)]+prologue];
                      order++;
                    }
                }
            }
        }
    
      for (int i = 0; i < (int) epilogue; i++)
        {
          if      (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
            n_mixed[prologue+num+i]++;
          else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second != 0)
            n_forward[prologue+num+i]++;
          else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first != 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
            n_backward[prologue+num+i]++;
          else if (variable_lag_lead[tmp_variable_reordered[prologue+n+i]].first == 0 && variable_lag_lead[tmp_variable_reordered[prologue+n+i]].second == 0)
            n_static[prologue+num+i]++;
        }
    
      inv_equation_reordered = vector<int>(nb_var);
      inv_variable_reordered = vector<int>(nb_var);
      for (int i = 0; i < nb_var; i++)
        {
          inv_variable_reordered[variable_reordered[i]] = i;
          inv_equation_reordered[equation_reordered[i]] = i;
        }
    }
    
    void
    ModelTree::printBlockDecomposition(const vector<pair<int, int> > &blocks) const
    {
      int largest_block = 0;
      int Nb_SimulBlocks = 0;
      int Nb_feedback_variable = 0;
      unsigned int Nb_TotalBlocks = getNbBlocks();
      for (unsigned int block = 0; block < Nb_TotalBlocks; block++)
        {
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          if (simulation_type == SOLVE_FORWARD_COMPLETE || simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE)
            {
              Nb_SimulBlocks++;
              int size = getBlockSize(block);
              if (size > largest_block)
                {
                  largest_block = size;
                  Nb_feedback_variable = getBlockMfs(block);
                }
            }
        }
    
      int Nb_RecursBlocks = Nb_TotalBlocks - Nb_SimulBlocks;
      cout << Nb_TotalBlocks << " block(s) found:" << endl
           << "  " << Nb_RecursBlocks << " recursive block(s) and " << Nb_SimulBlocks << " simultaneous block(s)." << endl
           << "  the largest simultaneous block has " << largest_block << " equation(s)" << endl
           << "                                 and " << Nb_feedback_variable << " feedback variable(s)." << endl;
    }
    
    block_type_firstequation_size_mfs_t
    ModelTree::reduceBlocksAndTypeDetermination(const dynamic_jacob_map_t &dynamic_jacobian, vector<pair<int, int> > &blocks, const equation_type_and_normalized_equation_t &Equation_Type, const vector<int> &variable_reordered, const vector<int> &equation_reordered, vector<unsigned int> &n_static, vector<unsigned int> &n_forward, vector<unsigned int> &n_backward, vector<unsigned int> &n_mixed, vector<pair< pair<int, int>, pair<int, int> > > &block_col_type)
    {
      int i = 0;
      int count_equ = 0, blck_count_simult = 0;
      int Blck_Size, MFS_Size;
      int Lead, Lag;
      block_type_firstequation_size_mfs_t block_type_size_mfs;
      BlockSimulationType Simulation_Type, prev_Type = UNKNOWN;
      int eq = 0;
      unsigned int l_n_static = 0;
      unsigned int l_n_forward = 0;
      unsigned int l_n_backward = 0;
      unsigned int l_n_mixed = 0;
      for (i = 0; i < (int) (prologue+blocks.size()+epilogue); i++)
        {
          int first_count_equ = count_equ;
          if (i < (int) prologue)
            {
              Blck_Size = 1;
              MFS_Size = 1;
            }
          else if (i < (int) (prologue+blocks.size()))
            {
              Blck_Size = blocks[blck_count_simult].first;
              MFS_Size = blocks[blck_count_simult].second;
              blck_count_simult++;
            }
          else if (i < (int) (prologue+blocks.size()+epilogue))
            {
              Blck_Size = 1;
              MFS_Size = 1;
            }
    
          Lag = Lead = 0;
          set<pair<int, int> > endo;
          for (count_equ  = first_count_equ; count_equ  < Blck_Size+first_count_equ; count_equ++)
            {
              endo.clear();
              equations[equation_reordered[count_equ]]->collectEndogenous(endo);
              for (set<pair<int, int> >::const_iterator it = endo.begin(); it != endo.end(); it++)
                {
                  int curr_variable = it->first;
                  int curr_lag = it->second;
                  vector<int>::const_iterator it1 = find(variable_reordered.begin()+first_count_equ, variable_reordered.begin()+(first_count_equ+Blck_Size), curr_variable);
                  if (it1 != variable_reordered.begin()+(first_count_equ+Blck_Size))
                    if (dynamic_jacobian.find(make_pair(curr_lag, make_pair(equation_reordered[count_equ], curr_variable))) != dynamic_jacobian.end())
                      {
                        if (curr_lag > Lead)
                          Lead = curr_lag;
                        else if (-curr_lag > Lag)
                          Lag = -curr_lag;
                      }
                }
            }
          if ((Lag > 0) && (Lead > 0))
            {
              if (Blck_Size == 1)
                Simulation_Type = SOLVE_TWO_BOUNDARIES_SIMPLE;
              else
                Simulation_Type = SOLVE_TWO_BOUNDARIES_COMPLETE;
            }
          else if (Blck_Size > 1)
            {
              if (Lead > 0)
                Simulation_Type = SOLVE_BACKWARD_COMPLETE;
              else
                Simulation_Type = SOLVE_FORWARD_COMPLETE;
            }
          else
            {
              if (Lead > 0)
                Simulation_Type = SOLVE_BACKWARD_SIMPLE;
              else
                Simulation_Type = SOLVE_FORWARD_SIMPLE;
            }
          l_n_static = n_static[i];
          l_n_forward = n_forward[i];
          l_n_backward = n_backward[i];
          l_n_mixed = n_mixed[i];
          if (Blck_Size == 1)
            {
              if (Equation_Type[equation_reordered[eq]].first == E_EVALUATE || Equation_Type[equation_reordered[eq]].first == E_EVALUATE_S)
                {
                  if (Simulation_Type == SOLVE_BACKWARD_SIMPLE)
                    Simulation_Type = EVALUATE_BACKWARD;
                  else if (Simulation_Type == SOLVE_FORWARD_SIMPLE)
                    Simulation_Type = EVALUATE_FORWARD;
                }
              if (i > 0)
                {
                  bool is_lead = false, is_lag = false;
                  int c_Size = (block_type_size_mfs[block_type_size_mfs.size()-1]).second.first;
                  int first_equation = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.second;
                  if (c_Size > 0 && ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                      || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag)))
                    {
                      for (int j = first_equation; j < first_equation+c_Size; j++)
                        {
                          dynamic_jacob_map_t::const_iterator it = dynamic_jacobian.find(make_pair(-1, make_pair(equation_reordered[eq], variable_reordered[j])));
                          if (it != dynamic_jacobian.end())
                            is_lag = true;
                          it = dynamic_jacobian.find(make_pair(+1, make_pair(equation_reordered[eq], variable_reordered[j])));
                          if (it != dynamic_jacobian.end())
                            is_lead = true;
                        }
                    }
                  if ((prev_Type ==  EVALUATE_FORWARD && Simulation_Type == EVALUATE_FORWARD && !is_lead)
                      || (prev_Type ==  EVALUATE_BACKWARD && Simulation_Type == EVALUATE_BACKWARD && !is_lag))
                    {
                      //merge the current block with the previous one
                      BlockSimulationType c_Type = (block_type_size_mfs[block_type_size_mfs.size()-1]).first.first;
                      c_Size++;
                      block_type_size_mfs[block_type_size_mfs.size()-1] = make_pair(make_pair(c_Type, first_equation), make_pair(c_Size, c_Size));
                      if (block_lag_lead[block_type_size_mfs.size()-1].first > Lag)
                        Lag = block_lag_lead[block_type_size_mfs.size()-1].first;
                      if (block_lag_lead[block_type_size_mfs.size()-1].second > Lead)
                        Lead = block_lag_lead[block_type_size_mfs.size()-1].second;
                      block_lag_lead[block_type_size_mfs.size()-1] = make_pair(Lag, Lead);
                      pair< pair< unsigned int, unsigned int>, pair<unsigned int, unsigned int> > tmp = block_col_type[block_col_type.size()-1];
                      block_col_type[block_col_type.size()-1] = make_pair(make_pair(tmp.first.first+l_n_static, tmp.first.second+l_n_forward), make_pair(tmp.second.first+l_n_backward, tmp.second.second+l_n_mixed));
                    }
                  else
                    {
                      block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                      block_lag_lead.push_back(make_pair(Lag, Lead));
                      block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
                    }
                }
              else
                {
                  block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
                  block_lag_lead.push_back(make_pair(Lag, Lead));
                  block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
                }
            }
          else
            {
              block_type_size_mfs.push_back(make_pair(make_pair(Simulation_Type, eq), make_pair(Blck_Size, MFS_Size)));
              block_lag_lead.push_back(make_pair(Lag, Lead));
              block_col_type.push_back(make_pair(make_pair(l_n_static, l_n_forward), make_pair(l_n_backward, l_n_mixed)));
            }
          prev_Type = Simulation_Type;
          eq += Blck_Size;
        }
      return (block_type_size_mfs);
    }
    
    vector<bool>
    ModelTree::BlockLinear(const blocks_derivatives_t &blocks_derivatives, const vector<int> &variable_reordered) const
    {
      unsigned int nb_blocks = getNbBlocks();
      vector<bool> blocks_linear(nb_blocks, true);
      for (unsigned int block = 0; block < nb_blocks; block++)
        {
          BlockSimulationType simulation_type = getBlockSimulationType(block);
          int block_size = getBlockSize(block);
          block_derivatives_equation_variable_laglead_nodeid_t derivatives_block = blocks_derivatives[block];
          int first_variable_position = getBlockFirstEquation(block);
          if (simulation_type == SOLVE_BACKWARD_COMPLETE || simulation_type == SOLVE_FORWARD_COMPLETE)
            {
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
                {
                  int lag = it->second.first;
                  if (lag == 0)
                    {
                      expr_t Id = it->second.second;
                      set<pair<int, int> > endogenous;
                      Id->collectEndogenous(endogenous);
                      if (endogenous.size() > 0)
                        {
                          for (int l = 0; l < block_size; l++)
                            {
                              if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], 0)) != endogenous.end())
                                {
                                  blocks_linear[block] = false;
                                  goto the_end;
                                }
                            }
                        }
                    }
                }
            }
          else if (simulation_type == SOLVE_TWO_BOUNDARIES_COMPLETE || simulation_type == SOLVE_TWO_BOUNDARIES_SIMPLE)
            {
              for (block_derivatives_equation_variable_laglead_nodeid_t::const_iterator it = derivatives_block.begin(); it != derivatives_block.end(); it++)
                {
                  int lag = it->second.first;
                  expr_t Id = it->second.second; //
                  set<pair<int, int> > endogenous;
                  Id->collectEndogenous(endogenous);
                  if (endogenous.size() > 0)
                    {
                      for (int l = 0; l < block_size; l++)
                        {
                          if (endogenous.find(make_pair(variable_reordered[first_variable_position+l], lag)) != endogenous.end())
                            {
                              blocks_linear[block] = false;
                              goto the_end;
                            }
                        }
                    }
                }
            }
        the_end:
          ;
        }
      return (blocks_linear);
    }
    
    ModelTree::ModelTree(SymbolTable &symbol_table_arg,
                         NumericalConstants &num_constants_arg,
                         ExternalFunctionsTable &external_functions_table_arg) :
      DataTree(symbol_table_arg, num_constants_arg, external_functions_table_arg),
      cutoff(1e-15),
      mfs(0)
    
    {
      for (int i = 0; i < 3; i++)
        NNZDerivatives[i] = 0;
    }
    
    int
    ModelTree::equation_number() const
    {
      return (equations.size());
    }
    
    void
    ModelTree::writeDerivative(ostream &output, int eq, int symb_id, int lag,
                               ExprNodeOutputType output_type,
                               const temporary_terms_t &temporary_terms) const
    {
      first_derivatives_t::const_iterator it = first_derivatives.find(make_pair(eq, getDerivID(symb_id, lag)));
      if (it != first_derivatives.end())
        (it->second)->writeOutput(output, output_type, temporary_terms);
      else
        output << 0;
    }
    
    void
    ModelTree::computeJacobian(const set<int> &vars)
    {
      for (set<int>::const_iterator it = vars.begin();
           it != vars.end(); it++)
        {
          for (int eq = 0; eq < (int) equations.size(); eq++)
            {
              expr_t d1 = equations[eq]->getDerivative(*it);
              if (d1 == Zero)
                continue;
              first_derivatives[make_pair(eq, *it)] = d1;
              ++NNZDerivatives[0];
            } 
        }
    }
    
    void
    ModelTree::computeHessian(const set<int> &vars)
    {
      for (first_derivatives_t::const_iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        {
          int eq = it->first.first;
          int var1 = it->first.second;
          expr_t d1 = it->second;
    
          // Store only second derivatives with var2 <= var1
          for (set<int>::const_iterator it2 = vars.begin();
               it2 != vars.end(); it2++)
            {
              int var2 = *it2;
              if (var2 > var1)
                continue;
    
              expr_t d2 = d1->getDerivative(var2);
              if (d2 == Zero)
                continue;
              second_derivatives[make_pair(eq, make_pair(var1, var2))] = d2;
              if (var2 == var1)
                ++NNZDerivatives[1];
              else
                NNZDerivatives[1] += 2;
            }
        }
    }
    
    void
    ModelTree::computeThirdDerivatives(const set<int> &vars)
    {
      for (second_derivatives_t::const_iterator it = second_derivatives.begin();
           it != second_derivatives.end(); it++)
        {
          int eq = it->first.first;
    
          int var1 = it->first.second.first;
          int var2 = it->first.second.second;
          // By construction, var2 <= var1
    
          expr_t d2 = it->second;
    
          // Store only third derivatives such that var3 <= var2 <= var1
          for (set<int>::const_iterator it2 = vars.begin();
               it2 != vars.end(); it2++)
            {
              int var3 = *it2;
              if (var3 > var2)
                continue;
    
              expr_t d3 = d2->getDerivative(var3);
              if (d3 == Zero)
                continue;
              third_derivatives[make_pair(eq, make_pair(var1, make_pair(var2, var3)))] = d3;
              if (var3 == var2 && var2 == var1)
                ++NNZDerivatives[2];
              else if (var3 == var2 || var2 == var1)
                NNZDerivatives[2] += 3;
              else
                NNZDerivatives[2] += 6;
            }
        }
    }
    
    void
    ModelTree::computeTemporaryTerms(bool is_matlab)
    {
      map<expr_t, int> reference_count;
      temporary_terms.clear();
    
      for (vector<BinaryOpNode *>::iterator it = equations.begin();
           it != equations.end(); it++)
        (*it)->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    
      for (first_derivatives_t::iterator it = first_derivatives.begin();
           it != first_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    
      for (second_derivatives_t::iterator it = second_derivatives.begin();
           it != second_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    
      for (third_derivatives_t::iterator it = third_derivatives.begin();
           it != third_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, temporary_terms, is_matlab);
    }
    
    void
    ModelTree::writeTemporaryTerms(const temporary_terms_t &tt, ostream &output,
                                   ExprNodeOutputType output_type, deriv_node_temp_terms_t &tef_terms) const
    {
      // Local var used to keep track of temp nodes already written
      temporary_terms_t tt2;
    
      for (temporary_terms_t::const_iterator it = tt.begin();
           it != tt.end(); it++)
        {
          if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
            (*it)->writeExternalFunctionOutput(output, output_type, tt2, tef_terms);
    
          if (IS_C(output_type))
            output << "double ";
    
          (*it)->writeOutput(output, output_type, tt, tef_terms);
          output << " = ";
          (*it)->writeOutput(output, output_type, tt2, tef_terms);
    
          if (IS_C(output_type))
            output << ";" << endl;
    
          // Insert current node into tt2
          tt2.insert(*it);
    
          if (IS_MATLAB(output_type))
            output << ";" << endl;
        }
    }
    
    void
    ModelTree::compileTemporaryTerms(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, map_idx_t map_idx, bool dynamic, bool steady_dynamic) const
    {
      // Local var used to keep track of temp nodes already written
      temporary_terms_t tt2;
      // To store the functions that have already been written in the form TEF* = ext_fun();
      deriv_node_temp_terms_t tef_terms;
      for (temporary_terms_t::const_iterator it = tt.begin();
           it != tt.end(); it++)
        {
          if (dynamic_cast<ExternalFunctionNode *>(*it) != NULL)
            {
              (*it)->compileExternalFunctionOutput(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
            }
    
          FNUMEXPR_ fnumexpr(TemporaryTerm, (int) (map_idx.find((*it)->idx)->second));
          fnumexpr.write(code_file, instruction_number);
          (*it)->compile(code_file, instruction_number, false, tt2, map_idx, dynamic, steady_dynamic, tef_terms);
          if (dynamic)
            {
              FSTPT_ fstpt((int) (map_idx.find((*it)->idx)->second));
              fstpt.write(code_file, instruction_number);
            }
          else
            {
              FSTPST_ fstpst((int) (map_idx.find((*it)->idx)->second));
              fstpst.write(code_file, instruction_number);
            }
          // Insert current node into tt2
          tt2.insert(*it);
        }
    }
    
    void
    ModelTree::writeModelLocalVariables(ostream &output, ExprNodeOutputType output_type, deriv_node_temp_terms_t &tef_terms) const
    {
      /* Collect all model local variables appearing in equations, and print only
         them. Printing unused model local variables can lead to a crash (see
         ticket #101). */
      set<int> used_local_vars;
    
      // Use an empty set for the temporary terms
      const temporary_terms_t tt;
    
      for (size_t i = 0; i < equations.size(); i++)
        equations[i]->collectModelLocalVariables(used_local_vars);
    
      for (set<int>::const_iterator it = used_local_vars.begin();
           it != used_local_vars.end(); ++it)
        {
          int id = *it;
          expr_t value = local_variables_table.find(id)->second;
          value->writeExternalFunctionOutput(output, output_type, tt, tef_terms);
    
          if (IS_C(output_type))
            output << "double ";
    
          /* We append underscores to avoid name clashes with "g1" or "oo_" (see
             also VariableNode::writeOutput) */
          output << symbol_table.getName(id) << "__ = ";
          value->writeOutput(output, output_type, tt, tef_terms);
          output << ";" << endl;
        }
    }
    
    void
    ModelTree::writeModelEquations(ostream &output, ExprNodeOutputType output_type) const
    {
      for (int eq = 0; eq < (int) equations.size(); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->get_arg1();
          expr_t rhs = eq_node->get_arg2();
    
          // Test if the right hand side of the equation is empty.
          double vrhs = 1.0;
          try
            {
              vrhs = rhs->eval(eval_context_t());
            }
          catch (ExprNode::EvalException &e)
            {
            }
    
          if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
            {
              output << "lhs =";
              lhs->writeOutput(output, output_type, temporary_terms);
              output << ";" << endl;
    
              output << "rhs =";
              rhs->writeOutput(output, output_type, temporary_terms);
              output << ";" << endl;
    
              output << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                     << eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
                     << RIGHT_ARRAY_SUBSCRIPT(output_type)
                     << "= lhs-rhs;" << endl;
            }
          else // The right hand side of the equation is empty ==> residual=lhs;
            {
              output << "residual" << LEFT_ARRAY_SUBSCRIPT(output_type)
                     << eq + ARRAY_SUBSCRIPT_OFFSET(output_type)
                     << RIGHT_ARRAY_SUBSCRIPT(output_type)
                     << " = ";
              lhs->writeOutput(output, output_type, temporary_terms);
              output << ";" << endl;
            }
        }
    }
    
    void
    ModelTree::compileModelEquations(ostream &code_file, unsigned int &instruction_number, const temporary_terms_t &tt, const map_idx_t &map_idx, bool dynamic, bool steady_dynamic) const
    {
      for (int eq = 0; eq < (int) equations.size(); eq++)
        {
          BinaryOpNode *eq_node = equations[eq];
          expr_t lhs = eq_node->get_arg1();
          expr_t rhs = eq_node->get_arg2();
          FNUMEXPR_ fnumexpr(ModelEquation, eq);
          fnumexpr.write(code_file, instruction_number);
          // Test if the right hand side of the equation is empty.
          double vrhs = 1.0;
          try
            {
              vrhs = rhs->eval(eval_context_t());
            }
          catch (ExprNode::EvalException &e)
            {
            }
    
          if (vrhs != 0) // The right hand side of the equation is not empty ==> residual=lhs-rhs;
            {
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
              rhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
    
              FBINARY_ fbinary(oMinus);
              fbinary.write(code_file, instruction_number);
    
              FSTPR_ fstpr(eq);
              fstpr.write(code_file, instruction_number);
            }
          else // The right hand side of the equation is empty ==> residual=lhs;
            {
              lhs->compile(code_file, instruction_number, false, temporary_terms, map_idx, dynamic, steady_dynamic);
              FSTPR_ fstpr(eq);
              fstpr.write(code_file, instruction_number);
            }
        }
    }
    
    void
    ModelTree::Write_Inf_To_Bin_File(const string &basename,
                                     int &u_count_int, bool &file_open, bool is_two_boundaries, int block_mfs) const
    {
      int j;
      std::ofstream SaveCode;
      const string bin_basename = basename + ".bin";
      if (file_open)
        SaveCode.open(bin_basename.c_str(), ios::out | ios::in | ios::binary | ios::ate);
      else
        SaveCode.open(bin_basename.c_str(), ios::out | ios::binary);
      if (!SaveCode.is_open())
        {
          cout << "Error : Can't open file \"" << bin_basename << "\" for writing\n";
          exit(EXIT_FAILURE);
        }
      u_count_int = 0;
      for (first_derivatives_t::const_iterator it = first_derivatives.begin(); it != first_derivatives.end(); it++)
        {
          int deriv_id = it->first.second;
          if (getTypeByDerivID(deriv_id) == eEndogenous)
            {
              int eq = it->first.first;
              int symb = getSymbIDByDerivID(deriv_id);
              int var = symbol_table.getTypeSpecificID(symb);
              int lag = getLagByDerivID(deriv_id);
              SaveCode.write(reinterpret_cast<char *>(&eq), sizeof(eq));
              int varr = var + lag * block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&varr), sizeof(varr));
              SaveCode.write(reinterpret_cast<char *>(&lag), sizeof(lag));
              int u = u_count_int + block_mfs;
              SaveCode.write(reinterpret_cast<char *>(&u), sizeof(u));
              u_count_int++;
            }
        }
      if (is_two_boundaries)
        u_count_int +=  symbol_table.endo_nbr();
      for (j = 0; j < (int) symbol_table.endo_nbr(); j++)
        SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
      for (j = 0; j < (int) symbol_table.endo_nbr(); j++)
        SaveCode.write(reinterpret_cast<char *>(&j), sizeof(j));
      SaveCode.close();
    }
    
    void
    ModelTree::writeLatexModelFile(const string &filename, ExprNodeOutputType output_type) const
    {
      ofstream output;
      output.open(filename.c_str(), ios::out | ios::binary);
      if (!output.is_open())
        {
          cerr << "ERROR: Can't open file " << filename << " for writing" << endl;
          exit(EXIT_FAILURE);
        }
    
      output << "\\documentclass[10pt,a4paper]{article}" << endl
             << "\\usepackage[landscape]{geometry}" << endl
             << "\\usepackage{fullpage}" << endl
             << "\\usepackage{breqn}" << endl
             << "\\begin{document}" << endl
             << "\\footnotesize" << endl;
    
      // Write model local variables
      for (map<int, expr_t>::const_iterator it = local_variables_table.begin();
           it != local_variables_table.end(); it++)
        {
          int id = it->first;
          expr_t value = it->second;
    
          output << "\\begin{dmath*}" << endl
                 << symbol_table.getName(id) << " = ";
          // Use an empty set for the temporary terms
          value->writeOutput(output, output_type);
          output << endl << "\\end{dmath*}" << endl;
        }
    
      for (int eq = 0; eq < (int) equations.size(); eq++)
        {
          output << "\\begin{dmath}" << endl
                 << "% Equation " << eq+1 << endl;
          // Here it is necessary to cast to superclass ExprNode, otherwise the overloaded writeOutput() method is not found
          dynamic_cast<ExprNode *>(equations[eq])->writeOutput(output, output_type);
          output << endl << "\\end{dmath}" << endl;
        }
    
      output << "\\end{document}" << endl;
    
      output.close();
    }
    
    void
    ModelTree::addEquation(expr_t eq)
    {
      BinaryOpNode *beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq != NULL && beq->get_op_code() == oEqual);
    
      equations.push_back(beq);
    }
    
    void
    ModelTree::addEquation(expr_t eq, vector<pair<string, string> > &eq_tags)
    {
      int n = equation_number();
      for (size_t i = 0; i < eq_tags.size(); i++)
        equation_tags.push_back(make_pair(n, eq_tags[i]));
      addEquation(eq);
    }
    
    void
    ModelTree::addAuxEquation(expr_t eq)
    {
      BinaryOpNode *beq = dynamic_cast<BinaryOpNode *>(eq);
      assert(beq != NULL && beq->get_op_code() == oEqual);
    
      aux_equations.push_back(beq);
    }
    
    void
    ModelTree::addTrendVariables(vector<int> trend_vars, expr_t growth_factor) throw (TrendException)
    {
      while (!trend_vars.empty())
        if (trend_symbols_map.find(trend_vars.back()) != trend_symbols_map.end())
          throw TrendException(symbol_table.getName(trend_vars.back()));
        else
          {
            trend_symbols_map[trend_vars.back()] = growth_factor;
            trend_vars.pop_back();
          }
    }
    
    void
    ModelTree::addNonstationaryVariables(vector<int> nonstationary_vars, bool log_deflator, expr_t deflator) throw (TrendException)
    {
      while (!nonstationary_vars.empty())
        if (nonstationary_symbols_map.find(nonstationary_vars.back()) != nonstationary_symbols_map.end())
          throw TrendException(symbol_table.getName(nonstationary_vars.back()));
        else
          {
            nonstationary_symbols_map[nonstationary_vars.back()] = make_pair(log_deflator, deflator);
            nonstationary_vars.pop_back();
          }
    }
    
    void
    ModelTree::initializeVariablesAndEquations()
    {
      for (int j = 0; j < equation_number(); j++)
        {
          equation_reordered.push_back(j);
          variable_reordered.push_back(j);
        }
    }
    
    void
    ModelTree::set_cutoff_to_zero()
    {
      cutoff = 0;
    }
    
    void
    ModelTree::jacobianHelper(ostream &output, int eq_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      output << "  g1" << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (IS_MATLAB(output_type))
        output << eq_nb + 1 << "," << col_nb + 1;
      else
        output << eq_nb + col_nb *equations.size();
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }
    
    void
    ModelTree::sparseHelper(int order, ostream &output, int row_nb, int col_nb, ExprNodeOutputType output_type) const
    {
      output << "  v" << order << LEFT_ARRAY_SUBSCRIPT(output_type);
      if (IS_MATLAB(output_type))
        output << row_nb + 1 << "," << col_nb + 1;
      else
        output << row_nb + col_nb * NNZDerivatives[order-1];
      output << RIGHT_ARRAY_SUBSCRIPT(output_type);
    }
    
    void
    ModelTree::computeParamsDerivatives()
    {
      set<int> deriv_id_set;
      addAllParamDerivId(deriv_id_set);
      
      for (set<int>::const_iterator it = deriv_id_set.begin();
           it != deriv_id_set.end(); it++)
        {
          const int param = *it;
    
          for (int eq = 0; eq < (int) equations.size(); eq++)
            {
              expr_t d1 = equations[eq]->getDerivative(param);
              if (d1 == Zero)
                continue;
              residuals_params_derivatives[make_pair(eq, param)] = d1;
            }
    
          for (first_derivatives_t::const_iterator it2 = residuals_params_derivatives.begin();
               it2 != residuals_params_derivatives.end(); it2++)
            {
              int eq = it2->first.first;
              int param1 = it2->first.second;
              expr_t d1 = it2->second;
    
              expr_t d2 = d1->getDerivative(param);
              if (d2 == Zero)
                continue;
              residuals_params_second_derivatives[make_pair(eq, make_pair(param1, param))] = d2;
            }
    
          for (first_derivatives_t::const_iterator it2 = first_derivatives.begin();
               it2 != first_derivatives.end(); it2++)
            {
              int eq = it2->first.first;
              int var = it2->first.second;
              expr_t d1 = it2->second;
    
              expr_t d2 = d1->getDerivative(param);
              if (d2 == Zero)
                continue;
              jacobian_params_derivatives[make_pair(eq, make_pair(var, param))] = d2;
            }
    
          for (second_derivatives_t::const_iterator it2 = jacobian_params_derivatives.begin();
               it2 != jacobian_params_derivatives.end(); it2++)
            {
              int eq = it2->first.first;
              int var = it2->first.second.first;
              int param1 = it2->first.second.second;
              expr_t d1 = it2->second;
    
              expr_t d2 = d1->getDerivative(param);
              if (d2 == Zero)
                continue;
              jacobian_params_second_derivatives[make_pair(eq, make_pair(var, make_pair(param1, param)))] = d2;
            }
    
          for (second_derivatives_t::const_iterator it2 = second_derivatives.begin();
               it2 != second_derivatives.end(); it2++)
            {
              int eq = it2->first.first;
              int var1 = it2->first.second.first;
              int var2 = it2->first.second.second;
              expr_t d1 = it2->second;
    
              expr_t d2 = d1->getDerivative(param);
              if (d2 == Zero)
                continue;
              hessian_params_derivatives[make_pair(eq, make_pair(var1, make_pair(var2, param)))] = d2;
            }
        }
    }
    
    void
    ModelTree::computeParamsDerivativesTemporaryTerms()
    {
      map<expr_t, int> reference_count;
      params_derivs_temporary_terms.clear();
    
      for (first_derivatives_t::iterator it = residuals_params_derivatives.begin();
           it != residuals_params_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    
      for (second_derivatives_t::iterator it = jacobian_params_derivatives.begin();
           it != jacobian_params_derivatives.end(); it++)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    
      for (second_derivatives_t::const_iterator it = residuals_params_second_derivatives.begin();
           it != residuals_params_second_derivatives.end(); ++it)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    
      for (third_derivatives_t::const_iterator it = jacobian_params_second_derivatives.begin();
           it != jacobian_params_second_derivatives.end(); ++it)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    
      for (third_derivatives_t::const_iterator it = hessian_params_derivatives.begin();
           it != hessian_params_derivatives.end(); ++it)
        it->second->computeTemporaryTerms(reference_count, params_derivs_temporary_terms, true);
    }