Skip to content
Snippets Groups Projects
Select Git revision
  • b3b07e5d3e9efd92c27fee03a1c65c44eaa3074d
  • master default
  • 6.x.aoa_sdfix
  • occbin_ppf_jae
  • occbin_ppf_featured
  • 6.x.occbin_fixes
  • occbin_fixes
  • 6.x.jae.test
  • 6.x
  • 6.x.jrc
  • plot_initval_decomp
  • bugfixes
  • occbin_enhance
  • occbin_utilities
  • enhance_newrat
  • fixes_6.x
  • master_old
  • master_4.8
  • 5.x
  • occbin_init_smo
  • init_smo
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
  • 4.2.2
41 results

check_model.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    ComputingTasks.cc 170.52 KiB
    /*
     * Copyright © 2003-2021 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
     */
    
    #include <cassert>
    #include <iostream>
    #include <sstream>
    
    using namespace std;
    
    #include "ComputingTasks.hh"
    #include "Statement.hh"
    
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wold-style-cast"
    #include <boost/algorithm/string/trim.hpp>
    #include <boost/algorithm/string/split.hpp>
    #include <boost/tokenizer.hpp>
    #pragma GCC diagnostic pop
    
    #include <utility>
    #include <algorithm>
    
    SteadyStatement::SteadyStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    SteadyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.steady_present = true;
    }
    
    void
    SteadyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "steady;" << endl;
    }
    
    void
    SteadyStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "steady")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    CheckStatement::CheckStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    CheckStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "oo_.dr.eigval = check(M_,options_,oo_);" << endl;
    }
    
    void
    CheckStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.check_present = true;
    }
    
    void
    CheckStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "check")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    ModelInfoStatement::ModelInfoStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    ModelInfoStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      //mod_file_struct.model_info_present = true;
    }
    
    void
    ModelInfoStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "model_info();" << endl;
    }
    
    void
    ModelInfoStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "model_info")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    SimulStatement::SimulStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    SimulStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.perfect_foresight_solver_present = true;
    }
    
    void
    SimulStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Translate the “datafile” option into “initval_file” (see dynare#1663)
      auto options_list_new = options_list; // Need a copy, because of const
      if (auto it = options_list_new.string_options.find("datafile");
          it != options_list_new.string_options.end())
        {
          output << "options_.initval_file = true;" << endl
                 << "options_initvalf = struct();" << endl
                 << "options_initvalf.datafile = '" << it->second << "';" << endl
                 << "oo_.initval_series = histvalf_initvalf('INITVALF', M_, options_initvalf);" << endl;
          options_list_new.string_options.erase(it);
        }
      options_list_new.writeOutput(output);
      output << "perfect_foresight_setup;" << endl
             << "perfect_foresight_solver;" << endl;
    }
    
    void
    SimulStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "simul")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PerfectForesightSetupStatement::PerfectForesightSetupStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    PerfectForesightSetupStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      auto options_list_new = options_list; // Need a copy, because of const
      if (auto it = options_list_new.string_options.find("datafile");
          it != options_list_new.string_options.end())
        {
          output << "options_.initval_file = true;" << endl
                 << "options_initvalf = struct();" << endl
                 << "options_initvalf.datafile = '" << it->second << "';" << endl
                 << "oo_.initval_series = histvalf_initvalf('INITVALF', M_, options_initvalf);" << endl;
          options_list_new.string_options.erase(it);
        }
      options_list_new.writeOutput(output);
      output << "perfect_foresight_setup;" << endl;
    }
    
    void
    PerfectForesightSetupStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "perfect_foresight_setup")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PerfectForesightSolverStatement::PerfectForesightSolverStatement(OptionsList options_list_arg) :
      options_list(move(options_list_arg))
    {
    }
    
    void
    PerfectForesightSolverStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.perfect_foresight_solver_present = true;
    }
    
    void
    PerfectForesightSolverStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "perfect_foresight_solver;" << endl;
    }
    
    void
    PerfectForesightSolverStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "perfect_foresight_solver")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PriorPosteriorFunctionStatement::PriorPosteriorFunctionStatement(const bool prior_func_arg,
                                                                     OptionsList options_list_arg) :
      prior_func{prior_func_arg},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    PriorPosteriorFunctionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (auto it2 = options_list.string_options.find("function");
          it2 == options_list.string_options.end() || it2->second.empty())
        {
          cerr << "ERROR: both the prior_function and posterior_function commands require the 'function' argument"
               << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    PriorPosteriorFunctionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      string type = prior_func ? "prior" : "posterior";
    
      output << "oo_ = execute_prior_posterior_function("
             << "'" << options_list.string_options.find("function")->second << "', "
             << "M_, options_, oo_, estim_params_, bayestopt_, dataset_, dataset_info, "
             << "'" << type << "');" << endl;
    }
    
    void
    PriorPosteriorFunctionStatement::writeJsonOutput(ostream &output) const
    {
      string type = prior_func ? "prior" : "posterior";
      output << R"({"statementName": "prior_posterior_function", "type": ")" << type << R"(")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PacModelStatement::PacModelStatement(string name_arg,
                                         string aux_model_name_arg,
                                         string discount_arg,
                                         expr_t growth_arg,
                                         double steady_state_growth_rate_number_arg,
                                         int steady_state_growth_rate_symb_id_arg,
                                         const SymbolTable &symbol_table_arg) :
      name{move(name_arg)},
      aux_model_name{move(aux_model_name_arg)},
      discount{move(discount_arg)},
      growth{growth_arg},
      original_growth{growth_arg},
      steady_state_growth_rate_number{steady_state_growth_rate_number_arg},
      steady_state_growth_rate_symb_id{steady_state_growth_rate_symb_id_arg},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    PacModelStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (growth)
        growth->collectVariables(SymbolType::exogenous, mod_file_struct.pac_params);
    }
    
    void
    PacModelStatement::overwriteGrowth(expr_t new_growth)
    {
      if (!new_growth || !growth)
        return;
    
      growth = new_growth;
    
      try
        {
          growth_info = growth->matchLinearCombinationOfVariables(false);
        }
      catch (ExprNode::MatchFailureException &e)
        {
          auto gv = dynamic_cast<const VariableNode *>(growth);
          if (gv)
            growth_info.emplace_back(gv->symb_id, gv->lag, -1, 1);
          else
            {
              cerr << "Pac growth must be a linear combination of variables" << endl;
              exit(EXIT_FAILURE);
            }
        }
    }
    
    void
    PacModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "M_.pac." << name << ".auxiliary_model_name = '" << aux_model_name << "';" << endl
             << "M_.pac." << name << ".discount_index = " << symbol_table.getTypeSpecificID(discount) + 1 << ";" << endl;
      if (steady_state_growth_rate_symb_id < 0 && steady_state_growth_rate_number > 0)
        output << "M_.pac." << name << ".steady_state_growth_rate = "
               << steady_state_growth_rate_number << ";" << endl;
      else if (steady_state_growth_rate_symb_id >= 0)
        output << "M_.pac." << name << ".steady_state_growth_rate = "
               << symbol_table.getTypeSpecificID(steady_state_growth_rate_symb_id) + 1 << ";" << endl;
    
      if (growth)
        {
          output << "M_.pac." << name << ".growth_str = '";
          original_growth->writeJsonOutput(output, {}, {}, true);
          output << "';" << endl;
          int i = 0;
          for (auto [growth_symb_id, growth_lag, param_id, constant] : growth_info)
            {
              string structname = "M_.pac." + name + ".growth_linear_comb(" + to_string(++i) + ").";
              if (growth_symb_id >= 0)
                {
                  string var_field = "endo_id";
                  if (symbol_table.getType(growth_symb_id) == SymbolType::exogenous)
                    {
                      var_field = "exo_id";
                      output << structname << "endo_id = 0;" << endl;
                    }
                  else
                    output << structname << "exo_id = 0;" << endl;
                  try
                    {
                      // case when this is not the highest lag of the growth variable
                      int aux_symb_id = symbol_table.searchAuxiliaryVars(growth_symb_id, growth_lag);
                      output << structname << var_field << " = " << symbol_table.getTypeSpecificID(aux_symb_id) + 1 << ";" << endl
                             << structname << "lag = 0;" << endl;
                    }
                  catch (...)
                    {
                      try
                        {
                          // case when this is the highest lag of the growth variable
                          int tmp_growth_lag = growth_lag + 1;
                          int aux_symb_id = symbol_table.searchAuxiliaryVars(growth_symb_id, tmp_growth_lag);
                          output << structname << var_field << " = " << symbol_table.getTypeSpecificID(aux_symb_id) + 1 << ";" << endl
                                 << structname << "lag = -1;" << endl;
                        }
                      catch (...)
                        {
                          // case when there is no aux var for the variable
                          output << structname << var_field << " = "<< symbol_table.getTypeSpecificID(growth_symb_id) + 1 << ";" << endl
                                 << structname << "lag = " << growth_lag << ";" << endl;
                        }
                    }
                }
              else
                output << structname << "endo_id = 0;" << endl
                       << structname << "exo_id = 0;" << endl
                       << structname << "lag = 0;" << endl;
              output << structname << "param_id = "
                     << (param_id == -1 ? 0 : symbol_table.getTypeSpecificID(param_id) + 1) << ";" << endl
                     << structname << "constant = " << constant << ";" << endl;
            }
        }
    }
    
    void
    PacModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "pac_model",)"
             << R"("model_name": ")" << name << R"(",)"
             << R"("auxiliary_model_name": ")" << aux_model_name << R"(",)"
             << R"("discount_index": )" << symbol_table.getTypeSpecificID(discount) + 1;
      if (growth)
        {
          output << R"(,"growth_str": ")";
          original_growth->writeJsonOutput(output, {}, {}, true);
          output << R"(")";
        }
      output << "}" << endl;
    }
    
    StochSimulStatement::StochSimulStatement(SymbolList symbol_list_arg,
                                             OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    StochSimulStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.stoch_simul_present = true;
    
      // Fill in option_order of mod_file_struct
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        mod_file_struct.order_option = max(mod_file_struct.order_option, stoi(it->second));
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      if (auto it = options_list.num_options.find("k_order_solver");
          (it != options_list.num_options.end() && it->second == "true")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      if (auto it = options_list.num_options.find("hp_filter"),
          it1 = options_list.num_options.find("bandpass.indicator"),
          it2 = options_list.num_options.find("one_sided_hp_filter");
          (it != options_list.num_options.end() && it1 != options_list.num_options.end())
          || (it != options_list.num_options.end() && it2 != options_list.num_options.end())
          || (it1 != options_list.num_options.end() && it2 != options_list.num_options.end()))
        {
          cerr << "ERROR: stoch_simul: can only use one of hp, one-sided hp, and bandpass filters"
               << endl;
          exit(EXIT_FAILURE);
        }
    
      symbol_list.removeDuplicates("stoch_simul", warnings);
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: stoch_simul: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    StochSimulStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Ensure that order 3 implies k_order (#844)
      if (auto it = options_list.num_options.find("order"),
          it1 = options_list.num_options.find("k_order_solver");
          (it1 != options_list.num_options.end() && it1->second == "true")
          || (it != options_list.num_options.end() && stoi(it->second) >= 3))
        output << "options_.k_order_solver = true;" << endl;
    
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "[info, oo_, options_, M_] = stoch_simul(M_, options_, oo_, var_list_);" << endl;
    }
    
    void
    StochSimulStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "stoch_simul")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    ForecastStatement::ForecastStatement(SymbolList symbol_list_arg,
                                         OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    ForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: forecast: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "[oo_.forecast,info] = dyn_forecast(var_list_,M_,options_,oo_,'simul');" << endl;
    }
    
    void
    ForecastStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "forecast")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    RamseyModelStatement::RamseyModelStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    RamseyModelStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.ramsey_model_present = true;
    
      /* Fill in option_order of mod_file_struct
         Since ramsey model needs one further order of derivation (for example, for 1st order
         approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
          if (order > 2)
            {
              cerr << "ERROR: ramsey_model: order > 2 is not  implemented" << endl;
              exit(EXIT_FAILURE);
            }
          mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
        }
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      if (auto it = options_list.num_options.find("k_order_solver");
          (it != options_list.num_options.end() && it->second == "true")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      // Fill list of instruments
      if (auto it = options_list.symbol_list_options.find("instruments");
          it != options_list.symbol_list_options.end())
        mod_file_struct.instruments = it->second;
    }
    
    void
    RamseyModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // options_.ramsey_policy indicates that a Ramsey model is present in the *.mod file
      // this affects the computation of the steady state that uses a special algorithm
      // It should probably rather be a M_ field, but we leave it in options_ for historical reason
    
      // Ensure that order 3 implies k_order (#844)
      if (auto it = options_list.num_options.find("order"),
          it1 = options_list.num_options.find("k_order_solver");
          (it1 != options_list.num_options.end() && it1->second == "true")
          || (it != options_list.num_options.end() && stoi(it->second) >= 3))
        output << "options_.k_order_solver = true;" << endl;
    
      output << "options_.ramsey_policy = true;" << endl;
      options_list.writeOutput(output);
    }
    
    void
    RamseyModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ramsey_model")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    RamseyConstraintsStatement::RamseyConstraintsStatement(const SymbolTable &symbol_table_arg, constraints_t constraints_arg) :
      symbol_table{symbol_table_arg},
      constraints{move(constraints_arg)}
    {
    }
    
    void
    RamseyConstraintsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (!mod_file_struct.ramsey_model_present || !mod_file_struct.ramsey_policy_present)
        cerr << "ramsey_constraints: can only be used with ramsey_model or ramsey_policy" << endl;
    }
    
    void
    RamseyConstraintsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "M_.ramsey_model_constraints = {" << endl;
      for (auto it = constraints.begin(); it != constraints.end(); ++it)
        {
          if (it != constraints.begin())
            output << ", ";
          output << "{" << it->endo + 1 << ", '";
          switch (it->code)
            {
            case BinaryOpcode::less:
              output << '<';
              break;
            case BinaryOpcode::greater:
              output << '>';
              break;
            case BinaryOpcode::lessEqual:
              output << "<=";
              break;
            case BinaryOpcode::greaterEqual:
              output << ">=";
              break;
            default:
              cerr << "Ramsey constraints: this shouldn't happen." << endl;
              exit(EXIT_FAILURE);
            }
          output << "', '";
          it->expression->writeOutput(output);
          output << "'}" << endl;
        }
      output << "};" << endl;
    }
    
    void
    RamseyConstraintsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ramsey_constraints")"
             << R"(, "ramsey_model_constraints": [)" << endl;
      for (auto it = constraints.begin(); it != constraints.end(); ++it)
        {
          if (it != constraints.begin())
            output << ", ";
          output << R"({"constraint": ")" << symbol_table.getName(it->endo) << " ";
          switch (it->code)
            {
            case BinaryOpcode::less:
              output << '<';
              break;
            case BinaryOpcode::greater:
              output << '>';
              break;
            case BinaryOpcode::lessEqual:
              output << "<=";
              break;
            case BinaryOpcode::greaterEqual:
              output << ">=";
              break;
            default:
              cerr << "Ramsey constraints: this shouldn't happen." << endl;
              exit(EXIT_FAILURE);
            }
          output << " ";
          it->expression->writeJsonOutput(output, {}, {});
          output << R"("})" << endl;
        }
      output << "]" << endl;
      output << "}";
    }
    
    RamseyPolicyStatement::RamseyPolicyStatement(const SymbolTable &symbol_table_arg,
                                                 SymbolList symbol_list_arg,
                                                 OptionsList options_list_arg) :
      symbol_table{symbol_table_arg},
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    RamseyPolicyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      // ramsey_model_present indicates that the model is augmented with the FOC of the planner problem
      mod_file_struct.ramsey_model_present = true;
      // ramsey_policy_present indicates that ramsey_policy instruction for computation of first order approximation
      // of  a stochastic Ramsey problem if present in the *.mod file
      mod_file_struct.ramsey_policy_present = true;
    
      /* Fill in option_order of mod_file_struct
         Since ramsey policy needs one further order of derivation (for example, for 1st order
         approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
          if (order > 2)
            {
              cerr << "ERROR: ramsey_policy: order > 2 is not  implemented" << endl;
              exit(EXIT_FAILURE);
            }
          mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
        }
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      if (auto it = options_list.num_options.find("k_order_solver");
          (it != options_list.num_options.end() && it->second == "true")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      // Fill list of instruments
      if (auto it = options_list.symbol_list_options.find("instruments");
          it != options_list.symbol_list_options.end())
        mod_file_struct.instruments = it->second;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: ramsey_policy: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    RamseyPolicyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Ensure that order 3 implies k_order (#844)
      if (auto it = options_list.num_options.find("order"),
          it1 = options_list.num_options.find("k_order_solver");
          (it1 != options_list.num_options.end() && it1->second == "true")
          || (it != options_list.num_options.end() && stoi(it->second) >= 3))
        output << "options_.k_order_solver = true;" << endl;
    
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "ramsey_policy(var_list_);" << endl;
    }
    
    void
    RamseyPolicyStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ramsey_policy")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    void
    EvaluatePlannerObjective::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "oo_.planner_objective_value = evaluate_planner_objective(M_, options_, oo_);" << endl;
    }
    
    void
    EvaluatePlannerObjective::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "evaluate_planner_objective"})";
    }
    
    DiscretionaryPolicyStatement::DiscretionaryPolicyStatement(SymbolList symbol_list_arg,
                                                               OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    DiscretionaryPolicyStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.discretionary_policy_present = true;
    
      if (options_list.symbol_list_options.find("instruments") == options_list.symbol_list_options.end())
        {
          cerr << "ERROR: discretionary_policy: the instruments option is required." << endl;
          exit(EXIT_FAILURE);
        }
    
      /* Fill in option_order of mod_file_struct
         Since discretionary policy needs one further order of derivation (for example, for 1st order
         approximation, it needs 2nd derivatives), we add 1 to the order declared by user */
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
          if (order > 1)
            {
              cerr << "ERROR: discretionary_policy: order > 1 is not yet implemented" << endl;
              exit(EXIT_FAILURE);
            }
          mod_file_struct.order_option = max(mod_file_struct.order_option, order + 1);
        }
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      if (auto it = options_list.num_options.find("k_order_solver");
          (it != options_list.num_options.end() && it->second == "true")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      // Fill list of instruments
      if (auto it = options_list.symbol_list_options.find("instruments");
          it != options_list.symbol_list_options.end())
        mod_file_struct.instruments = it->second;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: discretionary_policy: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    DiscretionaryPolicyStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Ensure that order 3 implies k_order (#844)
      if (auto it = options_list.num_options.find("order"),
          it1 = options_list.num_options.find("k_order_solver");
          (it1 != options_list.num_options.end() && it1->second == "true")
          || (it != options_list.num_options.end() && stoi(it->second) >= 3))
        output << "options_.k_order_solver = true;" << endl;
    
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "[info, oo_, options_, M_] = discretionary_policy(M_, options_, oo_, var_list_);" << endl;
    }
    
    void
    DiscretionaryPolicyStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "discretionary_policy")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    EstimationStatement::EstimationStatement(const SymbolTable &symbol_table_arg,
                                             SymbolList symbol_list_arg,
                                             OptionsList options_list_arg) :
      symbol_table{symbol_table_arg},
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    EstimationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.estimation_present = true;
    
      // Fill in option_order of mod_file_struct
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
    
          if (order > 2)
            mod_file_struct.k_order_solver = true;
    
          mod_file_struct.order_option = max(mod_file_struct.order_option, order);
        }
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Fill in mod_file_struct.estimation_analytic_derivation
      if (auto it = options_list.num_options.find("analytic_derivation");
          it != options_list.num_options.end() && it->second == "1")
        mod_file_struct.estimation_analytic_derivation = true;
    
      if (auto it = options_list.num_options.find("dsge_var");
          it != options_list.num_options.end())
        // Fill in mod_file_struct.dsge_var_calibrated
        mod_file_struct.dsge_var_calibrated = it->second;
    
      // Fill in mod_file_struct.dsge_var_estimated
      if (options_list.string_options.find("dsge_var") != options_list.string_options.end())
        mod_file_struct.dsge_var_estimated = true;
    
      // Fill in mod_file_struct.bayesian_irf_present
      if (auto it = options_list.num_options.find("bayesian_irf");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.bayesian_irf_present = true;
    
      if (options_list.num_options.find("dsge_varlag") != options_list.num_options.end())
        if (mod_file_struct.dsge_var_calibrated.empty()
            && !mod_file_struct.dsge_var_estimated)
          {
            cerr << "ERROR: The estimation statement requires a dsge_var option to be passed "
                 << "if the dsge_varlag option is passed." << endl;
            exit(EXIT_FAILURE);
          }
    
      if (!mod_file_struct.dsge_var_calibrated.empty()
          && mod_file_struct.dsge_var_estimated)
        {
          cerr << "ERROR: An estimation statement cannot take more than one dsge_var option." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (options_list.string_options.find("datafile") == options_list.string_options.end()
          && !mod_file_struct.estimation_data_statement_present)
        {
          cerr << "ERROR: The estimation statement requires a data file to be supplied via the datafile option." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (options_list.string_options.find("mode_file") != options_list.string_options.end()
          && mod_file_struct.estim_params_use_calib)
        {
          cerr << "ERROR: The mode_file option of the estimation statement is incompatible with the use_calibration option of the estimated_params_init block." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (auto it = options_list.num_options.find("mh_tune_jscale.status"); 
          it != options_list.num_options.end() && it->second == "true")
        {
          if (options_list.num_options.find("mh_jscale") != options_list.num_options.end())      
          {
            cerr << "ERROR: The mh_tune_jscale and mh_jscale options of the estimation statement are incompatible." << endl;
            exit(EXIT_FAILURE);
          }
        }
      else if (options_list.num_options.find("mh_tune_jscale.guess") != options_list.num_options.end())
        {
          cerr << "ERROR: The option mh_tune_guess in estimation statement cannot be used without option mh_tune_jscale." << endl;
          exit(EXIT_FAILURE);
        }
        
    
      /* Check that we are not trying to estimate a parameter appearing in the
         planner discount factor (see dynare#1173) */
      vector<int> estimated_params_in_planner_discount;
      set_intersection(mod_file_struct.estimated_parameters.begin(),
                       mod_file_struct.estimated_parameters.end(),
                       mod_file_struct.parameters_in_planner_discount.begin(),
                       mod_file_struct.parameters_in_planner_discount.end(),
                       back_inserter(estimated_params_in_planner_discount));
      if (!estimated_params_in_planner_discount.empty())
        {
          cerr << "ERROR: It is not possible to estimate a parameter ("
               << symbol_table.getName(estimated_params_in_planner_discount[0])
               << ") that appears in the discount factor of the planner (i.e. in the 'planner_discount' option)." << endl;
          exit(EXIT_FAILURE);
        }
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: estimation: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    EstimationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
    
      bool occbin_option_present = false;
      if (auto it = options_list.num_options.find("occbin_likelihood");
          it != options_list.num_options.end() && it->second == "true")
        occbin_option_present = true;
    
      if (auto it = options_list.num_options.find("occbin_smoother");
          it != options_list.num_options.end() && it->second == "true")
        occbin_option_present = true;
    
      if (occbin_option_present)
        output << "options_ = set_default_occbin_options(options_, M_);" << endl
               << "clear mr_runsim_occbin_fn" << endl
               << "M_ = get_wish_list(M_);" << endl;
    
      // Special treatment for order option and particle filter
      if (auto it = options_list.num_options.find("order");
          it == options_list.num_options.end())
        output << "options_.order = 1;" << endl;
      else if (stoi(it->second) >= 2)
        {
          output << "options_.particle.status = true;" << endl;
          if (stoi(it->second) > 2)
            output << "options_.k_order_solver = true;" << endl;
        }
    
      // Do not check for the steady state in diffuse filter mode (#400)
      if (auto it = options_list.num_options.find("diffuse_filter");
          it != options_list.num_options.end() && it->second == "true")
        output << "options_.steadystate.nocheck = true;" << endl;
    
      symbol_list.writeOutput("var_list_", output);
      output << "oo_recursive_=dynare_estimation(var_list_);" << endl;
    }
    
    void
    EstimationStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "estimation")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    DynareSensitivityStatement::DynareSensitivityStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    DynareSensitivityStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (auto it = options_list.num_options.find("identification");
          it != options_list.num_options.end() && it->second == "1")
        {
          mod_file_struct.identification_present = true;
          // The following triggers 3rd order derivatives, see preprocessor#40
          mod_file_struct.identification_order = max(mod_file_struct.identification_order, 2);
        }
      mod_file_struct.sensitivity_present = true;
    }
    
    void
    DynareSensitivityStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output, "options_gsa");
    
      /* Ensure that nograph, nodisplay and graph_format are also set in top-level
         options_.
         \todo factorize this code between identification and dynare_sensitivity,
         and provide a generic mechanism for this situation (maybe using regexps) */
      if (auto it = options_list.num_options.find("nodisplay");
          it != options_list.num_options.end())
        output << "options_.nodisplay = " << it->second << ";" << endl;
      if (auto it = options_list.num_options.find("nograph");
          it != options_list.num_options.end())
        output << "options_.nograph = " << it->second << ";" << endl;
      if (auto it = options_list.string_options.find("graph_format");
          it != options_list.string_options.end())
        output << "options_.graph_format = '" << it->second << "';" << endl;
    
      output << "dynare_sensitivity(options_gsa);" << endl;
    }
    
    void
    DynareSensitivityStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "dynare_sensitivity")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    RplotStatement::RplotStatement(SymbolList symbol_list_arg) :
      symbol_list{move(symbol_list_arg)}
    {
    }
    
    void
    RplotStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous, SymbolType::exogenous});
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: rplot: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    RplotStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("var_list_", output);
      output << "rplot(var_list_);" << endl;
    }
    
    void
    RplotStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "rplot")";
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    void
    UnitRootVarsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_.diffuse_filter = 1;" << endl
             << "options_.steadystate.nocheck = 1;" << endl;
    }
    
    void
    UnitRootVarsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "unit_root_vars", )"
             << R"("diffuse_filter": 1, )"
             << R"("steady_state.nocheck": 1})";
    }
    
    PeriodsStatement::PeriodsStatement(int periods_arg) : periods{periods_arg}
    {
    }
    
    void
    PeriodsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_.periods = " << periods << ";" << endl;
    }
    
    void
    PeriodsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "periods", )"
             << R"("periods": )" << periods << "}";
    }
    
    DsampleStatement::DsampleStatement(int val1_arg) : val1{val1_arg}, val2{-1}
    {
    }
    
    DsampleStatement::DsampleStatement(int val1_arg, int val2_arg) : val1{val1_arg}, val2{val2_arg}
    {
    }
    
    void
    DsampleStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      if (val2 < 0)
        output << "dsample(" << val1 << ");" << endl;
      else
        output << "dsample(" << val1 << ", " << val2 << ");" << endl;
    }
    
    void
    DsampleStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "dsample", )"
             << R"("value1": )" << val1 << ", "
             << R"("value2": )" << val2 << "}";
    }
    
    EstimatedParamsStatement::EstimatedParamsStatement(vector<EstimationParams> estim_params_list_arg,
                                                       const SymbolTable &symbol_table_arg) :
      estim_params_list{move(estim_params_list_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    EstimatedParamsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      for (const auto &it : estim_params_list)
        {
          if (it.name == "dsge_prior_weight")
            mod_file_struct.dsge_prior_weight_in_estimated_params = true;
    
          // Handle case of degenerate beta prior
          if (it.prior == PriorDistributions::beta)
            try
              {
                if (it.mean->eval(eval_context_t()) == 0.5
                    && it.std->eval(eval_context_t()) == 0.5)
                  {
                    cerr << "ERROR: The prior density is not defined for the beta distribution when the mean = standard deviation = 0.5." << endl;
                    exit(EXIT_FAILURE);
                  }
              }
            catch (ExprNode::EvalException &e)
              {
                // We don't have enough information to compute the numerical value, skip the test
              }
        }
    
      // Check that no parameter/endogenous is declared twice in the block
      set<string> already_declared;
      set<pair<string, string>> already_declared_corr;
      for (const auto &it : estim_params_list)
        {
          if (it.type == 3) // Correlation
            {
              // Use lexical ordering for the pair of symbols
              auto x = it.name < it.name2 ? pair(it.name, it.name2) : pair(it.name2, it.name);
    
              if (already_declared_corr.find(x) == already_declared_corr.end())
                already_declared_corr.insert(x);
              else
                {
                  cerr << "ERROR: in `estimated_params' block, the correlation between " << it.name << " and " << it.name2 << " is declared twice." << endl;
                  exit(EXIT_FAILURE);
                }
            }
          else
            {
              if (already_declared.find(it.name) == already_declared.end())
                already_declared.insert(it.name);
              else
                {
                  cerr << "ERROR: in `estimated_params' block, the symbol " << it.name << " is declared twice." << endl;
                  exit(EXIT_FAILURE);
                }
            }
        }
    
      // Fill in mod_file_struct.estimated_parameters (related to #469)
      for (const auto &it : estim_params_list)
        if (it.type == 2 && it.name != "dsge_prior_weight")
          mod_file_struct.estimated_parameters.insert(symbol_table.getID(it.name));
    }
    
    void
    EstimatedParamsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "estim_params_.var_exo = zeros(0, 10);" << endl
             << "estim_params_.var_endo = zeros(0, 10);" << endl
             << "estim_params_.corrx = zeros(0, 11);" << endl
             << "estim_params_.corrn = zeros(0, 11);" << endl
             << "estim_params_.param_vals = zeros(0, 10);" << endl;
    
      for (const auto &it : estim_params_list)
        {
          int symb_id = symbol_table.getTypeSpecificID(it.name) + 1;
          SymbolType symb_type = symbol_table.getType(it.name);
    
          switch (it.type)
            {
            case 1:
              if (symb_type == SymbolType::exogenous)
                output << "estim_params_.var_exo = [estim_params_.var_exo; ";
              else if (symb_type == SymbolType::endogenous)
                output << "estim_params_.var_endo = [estim_params_.var_endo; ";
              output << symb_id;
              break;
            case 2:
              output << "estim_params_.param_vals = [estim_params_.param_vals; "
                     << symb_id;
              break;
            case 3:
              if (symb_type == SymbolType::exogenous)
                output << "estim_params_.corrx = [estim_params_.corrx; ";
              else if (symb_type == SymbolType::endogenous)
                output << "estim_params_.corrn = [estim_params_.corrn; ";
              output << symb_id << ", " << symbol_table.getTypeSpecificID(it.name2)+1;
              break;
            }
          output << ", ";
          it.init_val->writeOutput(output);
          output << ", ";
          it.low_bound->writeOutput(output);
          output << ", ";
          it.up_bound->writeOutput(output);
          output << ", "
                 << static_cast<int>(it.prior) << ", ";
          it.mean->writeOutput(output);
          output << ", ";
          it.std->writeOutput(output);
          output << ", ";
          it.p3->writeOutput(output);
          output << ", ";
          it.p4->writeOutput(output);
          output << ", ";
          it.jscale->writeOutput(output);
          output << " ];" << endl;
        }
    }
    
    void
    EstimatedParamsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "estimated_params", )"
             << R"("params": [)";
      for (auto it = estim_params_list.begin(); it != estim_params_list.end(); ++it)
        {
          if (it != estim_params_list.begin())
            output << ", ";
          output << "{";
          switch (it->type)
            {
            case 1:
              output << R"("var": ")" << it->name << R"(")";
              break;
            case 2:
              output << R"("param": ")" << it->name << R"(")";
              break;
            case 3:
              output << R"("var1": ")" << it->name << R"(",)"
                     << R"("var2": ")" << it->name2 << R"(")";
              break;
            }
    
          output << R"(, "init_val": ")";
          it->init_val->writeJsonOutput(output, {}, {});
          output << R"(", "lower_bound": ")";
          it->low_bound->writeJsonOutput(output, {}, {});
          output << R"(", "upper_bound": ")";
          it->up_bound->writeJsonOutput(output, {}, {});
          output << R"(", "prior_distribution": )"
                 << static_cast<int>(it->prior)
                 << R"(, "mean": ")";
          it->mean->writeJsonOutput(output, {}, {});
          output << R"(", "std": ")";
          it->std->writeJsonOutput(output, {}, {});
          output << R"(", "p3": ")";
          it->p3->writeJsonOutput(output, {}, {});
          output << R"(", "p4": ")";
          it->p4->writeJsonOutput(output, {}, {});
          output << R"(", "jscale": ")";
          it->jscale->writeJsonOutput(output, {}, {});
          output << R"("})" << endl;
        }
      output << "]"
             << "}";
    }
    
    EstimatedParamsInitStatement::EstimatedParamsInitStatement(vector<EstimationParams> estim_params_list_arg,
                                                               const SymbolTable &symbol_table_arg,
                                                               const bool use_calibration_arg) :
      estim_params_list{move(estim_params_list_arg)},
      symbol_table{symbol_table_arg},
      use_calibration{use_calibration_arg}
    {
    }
    
    void
    EstimatedParamsInitStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (use_calibration)
        mod_file_struct.estim_params_use_calib = true;
    }
    
    void
    EstimatedParamsInitStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      if (use_calibration)
        output << "options_.use_calibration_initialization = 1;" << endl;
    
      bool skipline = false;
    
      for (const auto &it : estim_params_list)
        {
          int symb_id = symbol_table.getTypeSpecificID(it.name) + 1;
          SymbolType symb_type = symbol_table.getType(it.name);
    
          if (it.type < 3)
            {
              if (symb_type == SymbolType::exogenous)
                {
                  output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;
                  output << "if isempty(tmp1)" << endl;
                  output << "    disp(sprintf('The standard deviation of %s is not estimated (the value provided in estimated_params_init is not used).', M_.exo_names{" << symb_id << "}))" << endl;
                  skipline = true;
                  output << "else" << endl;
                  output << "    estim_params_.var_exo(tmp1,2) = ";
                  it.init_val->writeOutput(output);
                  output << ";" << endl;
                  output << "end" << endl;
                }
              else if (symb_type == SymbolType::endogenous)
                {
                  output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;
                  output << "if isempty(tmp1)" << endl;
                  output << "    disp(sprintf('The standard deviation of the measurement error on %s is not estimated (the value provided in estimated_params_init is not used).', M_.endo_names{" << symb_id << "}))" << endl;
                  skipline = true;
                  output << "else" << endl;
                  output << "    estim_params_.var_endo(tmp1,2) = ";
                  it.init_val->writeOutput(output);
                  output << ";" << endl;
                  output << "end" << endl;
                }
              else if (symb_type == SymbolType::parameter)
                {
                  output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;
                  output << "if isempty(tmp1)" << endl;
                  output << "    disp(sprintf('Parameter %s is not estimated (the value provided in estimated_params_init is not used).', M_.param_names{" << symb_id << "}))" << endl;
                  skipline = true;
                  output << "else" << endl;
                  output << "    estim_params_.param_vals(tmp1,2) = ";
                  it.init_val->writeOutput(output);
                  output << ";" << endl;
                  output << "end" << endl;
                }
            }
          else
            {
              if (symb_type == SymbolType::exogenous)
                {
                  output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << " & estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it.name2)+1 << ") | "
                         <<             "(estim_params_.corrx(:,2)==" << symb_id << " & estim_params_.corrx(:,1)==" << symbol_table.getTypeSpecificID(it.name2)+1 << "));" << endl;
                  output << "if isempty(tmp1)" << endl;
                  output << "    disp(sprintf('The correlation between %s and %s is not estimated (the value provided in estimated_params_init is not used).', M_.exo_names{"
                         << symb_id << "}, M_.exo_names{" << symbol_table.getTypeSpecificID(it.name2)+1 << "}))" << endl;
                  skipline = true;
                  output << "else" << endl;
                  output << "    estim_params_.corrx(tmp1,3) = ";
                  it.init_val->writeOutput(output);
                  output << ";" << endl;
                  output << "end" << endl;
                }
              else if (symb_type == SymbolType::endogenous)
                {
                  output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << " & estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it.name2)+1 << ") | "
                         <<             "(estim_params_.corrn(:,2)==" << symb_id << " & estim_params_.corrn(:,1)==" << symbol_table.getTypeSpecificID(it.name2)+1 << "));" << endl;
                  output << "if isempty(tmp1)" << endl;
                  output << "    disp(sprintf('The correlation between measurement errors on %s and %s is not estimated (the value provided in estimated_params_init is not used).', M_.endo_names{"
                         << symb_id << "}, M_.endo_names{" << symbol_table.getTypeSpecificID(it.name2)+1 << "}))" << endl;
                  skipline = true;
                  output << "else" << endl;
                  output << "    estim_params_.corrn(tmp1,3) = ";
                  it.init_val->writeOutput(output);
                  output << ";" << endl;
                  output << "end" << endl;
                }
            }
        }
      if (skipline == true)
        output << "skipline()" << endl;
    }
    
    void
    EstimatedParamsInitStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "estimated_params_init")";
    
      if (use_calibration)
        output << R"(, "use_calibration_initialization": 1)";
    
      output << R"(, "params": [)";
      for (auto it = estim_params_list.begin(); it != estim_params_list.end(); ++it)
        {
          if (it != estim_params_list.begin())
            output << ", ";
          output << "{";
          switch (it->type)
            {
            case 1:
              output << R"("var": ")" << it->name << R"(")";
              break;
            case 2:
              output << R"("param": ")" << it->name << R"(")";
              break;
            case 3:
              output << R"("var1": ")" << it->name << R"(",)"
                     << R"("var2": ")" << it->name2 << R"(")";
              break;
            }
          output << R"(, "init_val": ")";
          it->init_val->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << "}";
    }
    
    EstimatedParamsBoundsStatement::EstimatedParamsBoundsStatement(vector<EstimationParams> estim_params_list_arg,
                                                                   const SymbolTable &symbol_table_arg) :
      estim_params_list{move(estim_params_list_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    EstimatedParamsBoundsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      for (const auto &it : estim_params_list)
        {
          int symb_id = symbol_table.getTypeSpecificID(it.name) + 1;
          SymbolType symb_type = symbol_table.getType(it.name);
    
          if (it.type < 3)
            {
              if (symb_type == SymbolType::exogenous)
                {
                  output << "tmp1 = find(estim_params_.var_exo(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.var_exo(tmp1,3) = ";
                  it.low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.var_exo(tmp1,4) = ";
                  it.up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == SymbolType::endogenous)
                {
                  output << "tmp1 = find(estim_params_.var_endo(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.var_endo(tmp1,3) = ";
                  it.low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.var_endo(tmp1,4) = ";
                  it.up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == SymbolType::parameter)
                {
                  output << "tmp1 = find(estim_params_.param_vals(:,1)==" << symb_id << ");" << endl;
    
                  output << "estim_params_.param_vals(tmp1,3) = ";
                  it.low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.param_vals(tmp1,4) = ";
                  it.up_bound->writeOutput(output);
                  output << ";" << endl;
                }
            }
          else
            {
              if (symb_type == SymbolType::exogenous)
                {
                  output << "tmp1 = find((estim_params_.corrx(:,1)==" << symb_id << " & estim_params_.corrx(:,2)==" << symbol_table.getTypeSpecificID(it.name2)+1 << ") | "
                         <<             "(estim_params_.corrx(:,2)==" << symb_id << " & estim_params_.corrx(:,1)==" << symbol_table.getTypeSpecificID(it.name2)+1 << "));" << endl;
    
                  output << "estim_params_.corrx(tmp1,4) = ";
                  it.low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.corrx(tmp1,5) = ";
                  it.up_bound->writeOutput(output);
                  output << ";" << endl;
                }
              else if (symb_type == SymbolType::endogenous)
                {
                  output << "tmp1 = find((estim_params_.corrn(:,1)==" << symb_id << " & estim_params_.corrn(:,2)==" << symbol_table.getTypeSpecificID(it.name2)+1 << ") | "
                         <<             "(estim_params_.corrn(:,2)==" << symb_id << " & estim_params_.corrn(:,1)==" << symbol_table.getTypeSpecificID(it.name2)+1 << "));" << endl;
    
                  output << "estim_params_.corrn(tmp1,4) = ";
                  it.low_bound->writeOutput(output);
                  output << ";" << endl;
    
                  output << "estim_params_.corrn(tmp1,5) = ";
                  it.up_bound->writeOutput(output);
                  output << ";" << endl;
                }
            }
        }
    }
    
    void
    EstimatedParamsBoundsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "estimated_params_bounds", )"
             << R"("params": [)";
    
      for (auto it = estim_params_list.begin(); it != estim_params_list.end(); ++it)
        {
          if (it != estim_params_list.begin())
            output << ", ";
          output << "{";
          switch (it->type)
            {
            case 1:
              output << R"("var": ")" << it->name << R"(")";
            case 2:
              output << R"("param": ")" << it->name << R"(")";
              break;
            case 3:
              output << R"("var1": ")" << it->name << R"(",)"
                     << R"("var2": ")" << it->name2 << R"(")";
              break;
            }
          output << R"(, "lower_bound": )";
          it->low_bound->writeJsonOutput(output, {}, {});
          output << R"(, "upper_bound": )";
          it->up_bound->writeJsonOutput(output, {}, {});
          output << "}";
        }
      output << "]"
             << "}";
    }
    
    DeterministicTrendsStatement::DeterministicTrendsStatement(trend_elements_t trend_elements_arg,
                                                           const SymbolTable &symbol_table_arg) :
      trend_elements{move(trend_elements_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    DeterministicTrendsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_.trend_coeff = {};" << endl;
      for (const auto &trend_element : trend_elements)
        {
          SymbolType type = symbol_table.getType(trend_element.first);
          if (type == SymbolType::endogenous)
            {
              output << "tmp1 = strmatch('" << trend_element.first << "',M_.endogenous_names,'exact');" << endl;
              output << "options_.deterministic_trend_coeffs{tmp1} = '";
              trend_element.second->writeOutput(output);
              output << "';" << endl;
            }
          else
            cerr << "Warning : Non-variable symbol used in deterministic_trends: " << trend_element.first << endl;
        }
    }
    
    void
    DeterministicTrendsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "deterministic_trends", )"
             << R"("trends" : {)";
      bool printed = false;
      for (const auto &trend_element : trend_elements)
        {
          if (symbol_table.getType(trend_element.first) == SymbolType::endogenous)
            {
              if (printed)
                output << ", ";
              output << R"(")" << trend_element.first << R"(": ")";
              trend_element.second->writeJsonOutput(output, {}, {});
              output << R"(")" << endl;
              printed = true;
            }
          else
            cerr << "Warning : Non-variable symbol used in deterministic_trends: " << trend_element.first << endl;
        }
      output << "}"
             << "}";
    }
    
    ObservationTrendsStatement::ObservationTrendsStatement(trend_elements_t trend_elements_arg,
                                                           const SymbolTable &symbol_table_arg) :
      trend_elements{move(trend_elements_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    ObservationTrendsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_.trend_coeff = {};" << endl;
      for (const auto &trend_element : trend_elements)
        {
          SymbolType type = symbol_table.getType(trend_element.first);
          if (type == SymbolType::endogenous)
            {
              output << "tmp1 = strmatch('" << trend_element.first << "',options_.varobs,'exact');" << endl;
              output << "options_.trend_coeffs{tmp1} = '";
              trend_element.second->writeOutput(output);
              output << "';" << endl;
            }
          else
            cerr << "Warning : Non-variable symbol used in observation_trends: " << trend_element.first << endl;
        }
    }
    
    void
    ObservationTrendsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "observation_trends", )"
             << R"("trends" : {)";
      bool printed = false;
      for (const auto &trend_element : trend_elements)
        {
          if (symbol_table.getType(trend_element.first) == SymbolType::endogenous)
            {
              if (printed)
                output << ", ";
              output << R"(")" << trend_element.first << R"(": ")";
              trend_element.second->writeJsonOutput(output, {}, {});
              output << R"(")" << endl;
              printed = true;
            }
          else
            cerr << "Warning : Non-variable symbol used in observation_trends: " << trend_element.first << endl;
        }
      output << "}"
             << "}";
    }
    
    FilterInitialStateStatement::FilterInitialStateStatement(filter_initial_state_elements_t filter_initial_state_elements_arg,
                                                             const SymbolTable &symbol_table_arg) :
      filter_initial_state_elements{move(filter_initial_state_elements_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    FilterInitialStateStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "M_.filter_initial_state = cell(M_.endo_nbr, 2);" << endl;
      for (const auto &[key, val] : filter_initial_state_elements)
        {
          auto [symb_id, lag] = key;
          SymbolType type = symbol_table.getType(symb_id);
    
          if ((type == SymbolType::endogenous && lag < 0) || type == SymbolType::exogenous)
            {
              try
                {
                  // This function call must remain the 1st statement in this block
                  symb_id = symbol_table.searchAuxiliaryVars(symb_id, lag);
                }
              catch (SymbolTable::SearchFailedException &e)
                {
                  if (type == SymbolType::endogenous)
                    {
                      cerr << "filter_initial_state: internal error, please contact the developers";
                      exit(EXIT_FAILURE);
                    }
                  // We don't fail for exogenous, because they are not replaced by
                  // auxiliary variables in deterministic mode.
                }
            }
    
          output << "M_.filter_initial_state("
                 << symbol_table.getTypeSpecificID(symb_id) + 1
                 << ",:) = {'" << symbol_table.getName(symb_id) << "', '";
          val->writeOutput(output);
          output << ";'};" << endl;
        }
    }
    
    void
    FilterInitialStateStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "filter_initial_state", )"
             << R"("states": [)";
    
      for (auto it = filter_initial_state_elements.begin();
           it != filter_initial_state_elements.end(); ++it)
        {
          if (it != filter_initial_state_elements.begin())
            output << ", ";
          auto &[key, val] = *it;
          auto &[symb_id, lag] = key;
          output << R"({ "var": ")" << symbol_table.getName(symb_id)
                 << R"(", "lag": )" << lag
                 << R"(, "value": ")";
          val->writeJsonOutput(output, {}, {});
          output << R"(" })";
        }
      output << "] }";
    }
    
    OsrParamsStatement::OsrParamsStatement(SymbolList symbol_list_arg, const SymbolTable &symbol_table_arg) :
      symbol_list{move(symbol_list_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    OsrParamsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (mod_file_struct.osr_params_present)
        cerr << "WARNING: You have more than one osr_params statement in the .mod file." << endl;
      mod_file_struct.osr_params_present = true;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::parameter });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: osr: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    OsrParamsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("M_.osr.param_names", output);
      output << "M_.osr.param_names = cellstr(M_.osr.param_names);" << endl
             << "M_.osr.param_indices = zeros(length(M_.osr.param_names), 1);" << endl;
      int i = 0;
      vector<string> symbols = symbol_list.get_symbols();
      for (auto &symbol : symbols)
        output << "M_.osr.param_indices(" << ++i <<") = " << symbol_table.getTypeSpecificID(symbol) + 1 << ";" << endl;
    }
    
    void
    OsrParamsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "osr_params")";
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    OsrParamsBoundsStatement::OsrParamsBoundsStatement(vector<OsrParams> osr_params_list_arg) :
      osr_params_list{move(osr_params_list_arg)}
    {
    }
    
    void
    OsrParamsBoundsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (!mod_file_struct.osr_params_present)
        {
          cerr << "ERROR: you must have an osr_params statement before the osr_params_bounds block." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    OsrParamsBoundsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
    
      output << "M_.osr.param_bounds = [-inf(length(M_.osr.param_names), 1), inf(length(M_.osr.param_names), 1)];" << endl;
    
      for (const auto &it : osr_params_list)
        {
          output << "M_.osr.param_bounds(strcmp(M_.osr.param_names, '" << it.name << "'), :) = [";
          it.low_bound->writeOutput(output);
          output << ", ";
          it.up_bound->writeOutput(output);
          output << "];" << endl;
        }
    }
    
    void
    OsrParamsBoundsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "osr_params_bounds")"
             << R"(, "bounds": [)";
      for (auto it = osr_params_list.begin(); it != osr_params_list.end(); ++it)
        {
          if (it != osr_params_list.begin())
            output << ", ";
          output << R"({"parameter": ")" << it->name << R"(",)"
                 << R"("bounds": [")";
          it->low_bound->writeJsonOutput(output, {}, {});
          output << R"(", ")";
          it->up_bound->writeJsonOutput(output, {}, {});
          output << R"("])"
                 << "}";
        }
      output << "]"
             << "}";
    }
    
    OsrStatement::OsrStatement(SymbolList symbol_list_arg,
                               OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    OsrStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.osr_present = true;
    
      // Fill in option_order of mod_file_struct
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        mod_file_struct.order_option = max(mod_file_struct.order_option, stoi(it->second));
    
      // Fill in mod_file_struct.partial_information
      if (auto it = options_list.num_options.find("partial_information");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.partial_information = true;
    
      // Option k_order_solver (implicit when order >= 3)
      if (auto it = options_list.num_options.find("k_order_solver");
          (it != options_list.num_options.end() && it->second == "true")
          || mod_file_struct.order_option >= 3)
        mod_file_struct.k_order_solver = true;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: osr: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    OsrStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Ensure that order 3 implies k_order (#844)
      if (auto it = options_list.num_options.find("order"),
          it1 = options_list.num_options.find("k_order_solver");
          (it1 != options_list.num_options.end() && it1->second == "true")
          || (it != options_list.num_options.end() && stoi(it->second) >= 3))
        output << "options_.k_order_solver = true;" << endl;
    
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_.osr = osr(var_list_,M_.osr.param_names,M_.osr.variable_indices,M_.osr.variable_weights);" << endl;
    }
    
    void
    OsrStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "osr")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    OptimWeightsStatement::OptimWeightsStatement(var_weights_t var_weights_arg,
                                                 covar_weights_t covar_weights_arg,
                                                 const SymbolTable &symbol_table_arg) :
      var_weights{move(var_weights_arg)},
      covar_weights{move(covar_weights_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    OptimWeightsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.optim_weights_present = true;
    }
    
    void
    OptimWeightsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "%" << endl
             << "% OPTIM_WEIGHTS" << endl
             << "%" << endl
             << "M_.osr.variable_weights = sparse(M_.endo_nbr,M_.endo_nbr);" << endl
             << "M_.osr.variable_indices = [];" << endl << endl;
    
      for (const auto & [name, value] : var_weights)
        {
          int id = symbol_table.getTypeSpecificID(name) + 1;
          output << "M_.osr.variable_weights(" << id << "," << id << ") = ";
          value->writeOutput(output);
          output << ";" << endl;
          output << "M_.osr.variable_indices = [M_.osr.variable_indices; " << id << "];" << endl;
        }
    
      for (const auto & [names, value] : covar_weights)
        {
          int id1 = symbol_table.getTypeSpecificID(names.first) + 1;
          int id2 = symbol_table.getTypeSpecificID(names.second) + 1;
          output << "M_.osr.variable_weights(" << id1 << "," << id2 << ") = ";
          value->writeOutput(output);
          output << ";" << endl;
          output << "M_.osr.variable_indices = [M_.osr.variable_indices; " << id1 << "; " << id2 << "];" << endl;
        }
    }
    
    void
    OptimWeightsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "optim_weights", )"
             << R"("weights": [)";
      for (auto it = var_weights.begin(); it != var_weights.end(); ++it)
        {
          if (it != var_weights.begin())
            output << ", ";
          output << R"({"name": ")" << it->first << R"(")"
                 << R"(, "value": ")";
          it->second->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
    
      for (auto it = covar_weights.begin(); it != covar_weights.end(); ++it)
        {
          if (it != covar_weights.begin() || !var_weights.empty())
            output << ", ";
          output << R"({"name1": ")" << it->first.first << R"(")"
                 << R"(, "name2": ")" << it->first.second << R"(")"
                 << R"(, "value": ")";
          it->second->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << "}";
    }
    
    DynaSaveStatement::DynaSaveStatement(SymbolList symbol_list_arg,
                                         string filename_arg) :
      symbol_list{move(symbol_list_arg)},
      filename{move(filename_arg)}
    {
    }
    
    void
    DynaSaveStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous, SymbolType::exogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: dynasave: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    DynaSaveStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("var_list_", output);
      output << "dynasave('" << filename
             << "',var_list_);" << endl;
    }
    
    void
    DynaSaveStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "dynasave", )"
             << R"("filename": ")" << filename << R"(")";
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    DynaTypeStatement::DynaTypeStatement(SymbolList symbol_list_arg,
                                         string filename_arg) :
      symbol_list(move(symbol_list_arg)),
      filename(move(filename_arg))
    {
    }
    
    void
    DynaTypeStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous, SymbolType::exogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: dynatype: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    DynaTypeStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("var_list_", output);
      output << "dynatype('" << filename
             << "',var_list_);" << endl;
    }
    
    void
    DynaTypeStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "dynatype", )"
             << R"("filename": ")" << filename << R"(")";
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    ModelComparisonStatement::ModelComparisonStatement(filename_list_t filename_list_arg,
                                                       OptionsList options_list_arg) :
      filename_list{move(filename_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    ModelComparisonStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
    
      output << "ModelNames_ = {};" << endl;
      output << "ModelPriors_ = [];" << endl;
    
      for (const auto &it : filename_list)
        {
          output << "ModelNames_ = { ModelNames_{:} '" << it.first << "'};" << endl;
          output << "ModelPriors_ = [ ModelPriors_ ; " << it.second << "];" << endl;
        }
      output << "oo_ = model_comparison(ModelNames_,ModelPriors_,oo_,options_,M_.fname);" << endl;
    }
    
    void
    ModelComparisonStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "model_comparison")";
      if (!filename_list.empty())
        output << R"(, "filename_list": {)";
    
      for (auto it = filename_list.begin(); it != filename_list.end(); ++it)
        {
          if (it != filename_list.begin())
            output << ", ";
          output << R"("name": ")" << it->first << R"(")"
                 << R"("prior": ")" << it->second << R"(")";
        }
    
      if (!filename_list.empty())
        output << "}";
    
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    
      output << "}";
    }
    
    PlannerObjectiveStatement::PlannerObjectiveStatement(const StaticModel &model_tree_arg) :
      model_tree{model_tree_arg}
    {
    }
    
    void
    PlannerObjectiveStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      assert(model_tree.equation_number() == 1);
      if (model_tree.exoPresentInEqs())
        {
          cerr << "ERROR: You cannot include exogenous variables in the planner objective. Please "
               << "define an auxiliary endogenous variable like eps_aux=epsilon and use it instead "
               << "of the varexo." << endl;
          exit(EXIT_FAILURE);
        }
      mod_file_struct.planner_objective_present = true;
    }
    
    const StaticModel &
    PlannerObjectiveStatement::getPlannerObjective() const
    {
      return model_tree;
    }
    
    void
    PlannerObjectiveStatement::computingPass()
    {
      model_tree.computingPass(3, 0, {}, false, false, false);
      computing_pass_called = true;
    }
    
    void
    PlannerObjectiveStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "M_.NNZDerivatives_objective = [";
      for (int i=1; i < static_cast<int>(model_tree.getNNZDerivatives().size()); i++)
        output << (i > model_tree.getComputedDerivsOrder() ? -1 : model_tree.getNNZDerivatives()[i]) << ";";
      output << "];";
      model_tree.writeStaticFile(basename + ".objective", false, false, false, "", {}, {}, false);
    }
    
    void
    PlannerObjectiveStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "planner_objective")"
             << ", ";
      if (computing_pass_called)
        model_tree.writeJsonComputingPassOutput(output, false);
      else
        model_tree.writeJsonOutput(output);
    
      output << "}";
    }
    
    BVARDensityStatement::BVARDensityStatement(int maxnlags_arg, OptionsList options_list_arg) :
      maxnlags{maxnlags_arg},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    BVARDensityStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    BVARDensityStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "bvar_density(" << maxnlags << ");" << endl;
    }
    
    void
    BVARDensityStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "bvar_density")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    BVARForecastStatement::BVARForecastStatement(int nlags_arg, OptionsList options_list_arg) :
      nlags{nlags_arg},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    BVARForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    BVARForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "bvar_forecast(" << nlags << ");" << endl;
    }
    
    void
    BVARForecastStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "bvar_forecast")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    SBVARStatement::SBVARStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    SBVARStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    SBVARStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      output << "sbvar(M_,options_);" << endl;
    }
    
    void
    SBVARStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "sbvar")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVAREstimationStatement::MSSBVAREstimationStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVAREstimationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    
      if (options_list.num_options.find("ms.create_init") == options_list.num_options.end())
        if (options_list.string_options.find("datafile") == options_list.string_options.end()
            || options_list.num_options.find("ms.initial_year") == options_list.num_options.end())
          {
            cerr << "ERROR: If you do not pass no_create_init to ms_estimation, "
                 << "you must pass the datafile and initial_year options." << endl;
            exit(EXIT_FAILURE);
          }
    }
    
    void
    MSSBVAREstimationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl
             << "options_.datafile = '';" << endl;
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_estimation(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVAREstimationStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_estimation")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARSimulationStatement::MSSBVARSimulationStatement(OptionsList options_list_arg) :
      options_list(move(options_list_arg))
    {
    }
    
    void
    MSSBVARSimulationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    MSSBVARSimulationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      options_list.writeOutput(output);
    
      // Redeclare drop option if necessary
      if ((options_list.num_options.find("ms.mh_replic") != options_list.num_options.end()
           || options_list.num_options.find("ms.thinning_factor") != options_list.num_options.end())
          && (options_list.num_options.find("ms.drop") == options_list.num_options.end()))
        output << "options_.ms.drop = 0.1*options_.ms.mh_replic*options_.ms.thinning_factor;" << endl;
    
      output << "[options_, oo_] = ms_simulation(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARSimulationStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_simulation")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARComputeMDDStatement::MSSBVARComputeMDDStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVARComputeMDDStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    }
    
    void
    MSSBVARComputeMDDStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_compute_mdd(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARComputeMDDStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_compute_mdd")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARComputeProbabilitiesStatement::MSSBVARComputeProbabilitiesStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVARComputeProbabilitiesStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    
      if (options_list.num_options.find("ms.real_time_smoothed_probabilities") != options_list.num_options.end()
          && options_list.num_options.find("ms.filtered_probabilities") != options_list.num_options.end())
        {
          cerr << "ERROR: You may only pass one of real_time_smoothed "
               << "and filtered_probabilities to ms_compute_probabilities." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    MSSBVARComputeProbabilitiesStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_compute_probabilities(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARComputeProbabilitiesStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_compute_probabilities")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARIrfStatement::MSSBVARIrfStatement(SymbolList symbol_list_arg,
                                             OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVARIrfStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    
      bool regime_present = options_list.num_options.find("ms.regime") != options_list.num_options.end();
      bool regimes_present = options_list.num_options.find("ms.regimes") != options_list.num_options.end();
      bool filtered_probabilities_present = options_list.num_options.find("ms.filtered_probabilities") != options_list.num_options.end();
    
      if ((filtered_probabilities_present && regime_present)
          || (filtered_probabilities_present && regimes_present)
          || (regimes_present && regime_present))
        {
          cerr << "ERROR: You may only pass one of regime, regimes and "
               << "filtered_probabilities to ms_irf" << endl;
          exit(EXIT_FAILURE);
        }
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: ms_irf: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    MSSBVARIrfStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      symbol_list.writeOutput("var_list_", output);
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_irf(var_list_,M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARIrfStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_irf")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARForecastStatement::MSSBVARForecastStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVARForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    
      if (options_list.num_options.find("ms.regimes") != options_list.num_options.end()
          && options_list.num_options.find("ms.regime") != options_list.num_options.end())
        {
          cerr << "ERROR: You may only pass one of regime and regimes to ms_forecast" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    MSSBVARForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_forecast(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARForecastStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_forecast")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MSSBVARVarianceDecompositionStatement::MSSBVARVarianceDecompositionStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MSSBVARVarianceDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.bvar_present = true;
    
      bool regime_present = options_list.num_options.find("ms.regime") != options_list.num_options.end();
      bool regimes_present = options_list.num_options.find("ms.regimes") != options_list.num_options.end();
      bool filtered_probabilities_present = options_list.num_options.find("ms.filtered_probabilities") != options_list.num_options.end();
    
      if ((filtered_probabilities_present && regime_present)
          || (filtered_probabilities_present && regimes_present)
          || (regimes_present && regime_present))
        {
          cerr << "ERROR: You may only pass one of regime, regimes and "
               << "filtered_probabilities to ms_variance_decomposition" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    MSSBVARVarianceDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = initialize_ms_sbvar_options(M_, options_);" << endl;
      options_list.writeOutput(output);
      output << "[options_, oo_] = ms_variance_decomposition(M_, options_, oo_);" << endl;
    }
    
    void
    MSSBVARVarianceDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "ms_sbvar_variance_decomposition")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    IdentificationStatement::IdentificationStatement(OptionsList options_list_arg)
      : options_list{move(options_list_arg)}
    {
      if (auto it = options_list.num_options.find("max_dim_cova_group");
          it != options_list.num_options.end() && stoi(it->second) == 0)
        {
          cerr << "ERROR: The max_dim_cova_group option to identification only accepts integers > 0." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    IdentificationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.identification_present = true;
    
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
          if (order < 1 || order > 3)
            {
              cerr << "ERROR: the order option of identification command must be between 1 and 3" << endl;
    
              exit(EXIT_FAILURE);
            }
          mod_file_struct.identification_order = max(mod_file_struct.identification_order, order);
        }
      else
        // The default value for order is 1 (which triggers 2nd order dynamic derivatives, see preprocessor#40)
        mod_file_struct.identification_order = max(mod_file_struct.identification_order, 1);
    }
    
    void
    IdentificationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output, "options_ident");
    
      /* Ensure that nograph, nodisplay and graph_format are also set in top-level
         options_.
         \todo factorize this code between identification and dynare_sensitivity,
         and provide a generic mechanism for this situation (maybe using regexps) */
      if (auto it = options_list.num_options.find("nodisplay");
          it != options_list.num_options.end())
        output << "options_.nodisplay = " << it->second << ";" << endl;
      if (auto it = options_list.num_options.find("nograph");
          it != options_list.num_options.end())
        output << "options_.nograph = " << it->second << ";" << endl;
      if (auto it = options_list.string_options.find("graph_format");
          it != options_list.string_options.end())
        output << "options_.graph_format = '" << it->second << "';" << endl;
    
      output << "dynare_identification(options_ident);" << endl;
    }
    
    void
    IdentificationStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "identification")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    WriteLatexDynamicModelStatement::WriteLatexDynamicModelStatement(const DynamicModel &dynamic_model_arg, bool write_equation_tags_arg) :
      dynamic_model{dynamic_model_arg},
      write_equation_tags{write_equation_tags_arg}
    {
    }
    
    void
    WriteLatexDynamicModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      dynamic_model.writeLatexFile(basename, write_equation_tags);
    }
    
    void
    WriteLatexDynamicModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "write_latex_dynamic_model"})";
    }
    
    WriteLatexStaticModelStatement::WriteLatexStaticModelStatement(const StaticModel &static_model_arg, bool write_equation_tags_arg) :
      static_model(static_model_arg),
      write_equation_tags(write_equation_tags_arg)
    {
    }
    
    void
    WriteLatexStaticModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      static_model.writeLatexFile(basename, write_equation_tags);
    }
    
    void
    WriteLatexStaticModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "write_latex_static_model"})";
    }
    
    WriteLatexOriginalModelStatement::WriteLatexOriginalModelStatement(const DynamicModel &original_model_arg, bool write_equation_tags_arg) :
      original_model{original_model_arg},
      write_equation_tags{write_equation_tags_arg}
    {
    }
    
    void
    WriteLatexOriginalModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      original_model.writeLatexOriginalFile(basename, write_equation_tags);
    }
    
    void
    WriteLatexOriginalModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "write_latex_original_model"})";
    }
    
    WriteLatexSteadyStateModelStatement::WriteLatexSteadyStateModelStatement(const SteadyStateModel &steady_state_model_arg) :
      steady_state_model{steady_state_model_arg}
    {
    }
    
    void
    WriteLatexSteadyStateModelStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.write_latex_steady_state_model_present = true;
    }
    
    void
    WriteLatexSteadyStateModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      steady_state_model.writeLatexSteadyStateFile(basename);
    }
    
    void
    WriteLatexSteadyStateModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "write_latex_steady_state_model"})";
    }
    
    ShockDecompositionStatement::ShockDecompositionStatement(SymbolList symbol_list_arg,
                                                             OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    ShockDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (auto it = options_list.num_options.find("shock_decomp.with_epilogue");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.with_epilogue_option = true;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: shock_decomposition: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_ = shock_decomposition(M_,oo_,options_,var_list_,bayestopt_,estim_params_);" << endl;
    }
    
    void
    ShockDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "shock_decomposition")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    RealtimeShockDecompositionStatement::RealtimeShockDecompositionStatement(SymbolList symbol_list_arg,
                                                                             OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    RealtimeShockDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (auto it = options_list.num_options.find("shock_decomp.with_epilogue");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.with_epilogue_option = true;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: realtime_shock_decomposition: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    RealtimeShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_ = realtime_shock_decomposition(M_,oo_,options_,var_list_,bayestopt_,estim_params_);" << endl;
    }
    
    void
    RealtimeShockDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "realtime_shock_decomposition")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PlotShockDecompositionStatement::PlotShockDecompositionStatement(SymbolList symbol_list_arg,
                                                                     OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    PlotShockDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous, SymbolType::epilogue });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: plot_shock_decomposition: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    PlotShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = set_default_plot_shock_decomposition_options(options_);" << endl;
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_ = plot_shock_decomposition(M_, oo_, options_, var_list_);" << endl;
    }
    
    void
    PlotShockDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "plot_shock_decomposition")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    InitialConditionDecompositionStatement::InitialConditionDecompositionStatement(SymbolList symbol_list_arg,
                                                                                   OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    InitialConditionDecompositionStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (auto it = options_list.num_options.find("initial_condition_decomp.with_epilogue");
          it != options_list.num_options.end() && it->second == "true")
        mod_file_struct.with_epilogue_option = true;
    
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: initial_condition_decomposition: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    InitialConditionDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "options_ = set_default_initial_condition_decomposition_options(options_);" << endl;
      options_list.writeOutput(output);
      symbol_list.writeOutput("var_list_", output);
      output << "oo_ = initial_condition_decomposition(M_, oo_, options_, var_list_, bayestopt_, estim_params_);" << endl;
    }
    
    void
    InitialConditionDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "initial_condition_decomposition")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    SqueezeShockDecompositionStatement::SqueezeShockDecompositionStatement(SymbolList symbol_list_arg)
      : symbol_list{move(symbol_list_arg)}
    {
    }
    
    void
    SqueezeShockDecompositionStatement::checkPass(ModFileStructure &mod_file_struct,
                                                  WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: squeeze_shock_decomposition: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    SqueezeShockDecompositionStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      if (symbol_list.empty())
        output << "oo_ = squeeze_shock_decomposition(M_, oo_, options_);" << endl;
      else
        {
          symbol_list.writeOutput("var_list_", output);
          output << "oo_ = squeeze_shock_decomposition(M_, oo_, options_, var_list_);" << endl;
        }
    }
    
    void
    SqueezeShockDecompositionStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "squeeze_shock_decomposition")";
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    ConditionalForecastStatement::ConditionalForecastStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    ConditionalForecastStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (options_list.string_options.find("parameter_set") == options_list.string_options.end())
        {
          cerr << "ERROR: You must pass the `parameter_set` option to conditional_forecast" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ConditionalForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output, "options_cond_fcst_");
      output << "imcforecast(constrained_paths_, constrained_vars_, options_cond_fcst_);" << endl;
    }
    
    void
    ConditionalForecastStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "conditional_forecast")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    PlotConditionalForecastStatement::PlotConditionalForecastStatement(int periods_arg, SymbolList symbol_list_arg) :
      periods{periods_arg},
      symbol_list{move(symbol_list_arg)}
    {
    }
    
    void
    PlotConditionalForecastStatement::checkPass(ModFileStructure &mod_file_struct,
                                                WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: plot_conditional_forecast: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    PlotConditionalForecastStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("var_list_", output);
      if (periods == -1)
        output << "plot_icforecast(var_list_,[],options_,oo_);" << endl;
      else
        output << "plot_icforecast(var_list_, " << periods << ",options_,oo_);" << endl;
    }
    
    void
    PlotConditionalForecastStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "plot_conditional_forecast", )"
             << R"("periods": )" << periods;
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    SvarIdentificationStatement::SvarIdentificationStatement(svar_identification_restrictions_t restrictions_arg,
                                                             bool upper_cholesky_present_arg,
                                                             bool lower_cholesky_present_arg,
                                                             bool constants_exclusion_present_arg,
                                                             const SymbolTable &symbol_table_arg) :
      restrictions{move(restrictions_arg)},
      upper_cholesky_present{upper_cholesky_present_arg},
      lower_cholesky_present{lower_cholesky_present_arg},
      constants_exclusion_present{constants_exclusion_present_arg},
      symbol_table{symbol_table_arg}
    {
    }
    
    int
    SvarIdentificationStatement::getMaxLag() const
    {
      int max_lag = 0;
      for (const auto &restriction : restrictions)
        if (restriction.lag > max_lag)
          max_lag = restriction.lag;
    
      return max_lag;
    }
    
    void
    SvarIdentificationStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      // no equations OK with Svar Identification
      mod_file_struct.bvar_present = true;
      if (!mod_file_struct.svar_identification_present)
        mod_file_struct.svar_identification_present = true;
      else
        {
          cerr << "ERROR: You may only have one svar_identification block in your .mod file." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (upper_cholesky_present && lower_cholesky_present)
        {
          cerr << "ERROR: Within the svar_identification statement, you may only have one of "
               << "upper_cholesky and lower_cholesky." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    SvarIdentificationStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      assert(!(upper_cholesky_present && lower_cholesky_present));
      output << "%" << endl
             << "% SVAR IDENTIFICATION" << endl
             << "%" << endl;
    
      if (upper_cholesky_present)
        output << "options_.ms.upper_cholesky=1;" << endl;
    
      if (lower_cholesky_present)
        output << "options_.ms.lower_cholesky=1;" << endl;
    
      if (constants_exclusion_present)
        output << "options_.ms.constants_exclusion=1;" << endl;
    
      if (!upper_cholesky_present && !lower_cholesky_present)
        {
          int n = symbol_table.endo_nbr();
          int m = 1; // this is the constant, not the shocks
          int r = getMaxLag();
          int k = r*n+m;
    
          if (k < 1)
            {
              cerr << "ERROR: lag = " << r
                   << ", number of endogenous variables = " << n
                   << ", number of exogenous variables = " << m
                   << ". If this is not a logical error in the specification"
                   << " of the .mod file, please report it to the Dynare Team." << endl;
              exit(EXIT_FAILURE);
            }
          if (n < 1)
            {
              cerr << "ERROR: Number of endogenous variables = " << n << "< 1. If this is not a logical "
                   << "error in the specification of the .mod file, please report it to the Dynare Team." << endl;
              exit(EXIT_FAILURE);
            }
          output << "options_.ms.Qi = cell(" << n << ",1);" << endl
                 << "options_.ms.Ri = cell(" << n << ",1);" << endl;
    
          for (auto &it : restrictions)
            {
              assert(it.lag >= 0);
              if (it.lag == 0)
                output << "options_.ms.Qi{" << it.equation << "}(" << it.restriction_nbr << ", " << it.variable + 1 << ") = ";
              else
                {
                  int col = (it.lag-1)*n+it.variable+1;
                  if (col > k)
                    {
                      cerr << "ERROR: lag =" << it.lag << ", num endog vars = " << n << "current endog var index = " << it.variable << ". Index "
                           << "out of bounds. If the above does not represent a logical error, please report this to the Dynare Team." << endl;
                      exit(EXIT_FAILURE);
                    }
                  output << "options_.ms.Ri{" << it.equation << "}(" << it.restriction_nbr << ", " << col << ") = ";
                }
              it.value->writeOutput(output);
              output << ";" << endl;
            }
          output << "options_.ms.nlags = " << r << ";" << endl;
        }
    }
    
    void
    SvarIdentificationStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "svar_identification")";
    
      if (upper_cholesky_present)
        output << R"(, "upper_cholesky": 1)";
    
      if (lower_cholesky_present)
        output << R"(, "lower_cholesky": 1)";
    
      if (constants_exclusion_present)
        output << R"(, "constants_exclusion": 1)";
    
      if (!upper_cholesky_present && !lower_cholesky_present)
        {
          output << R"(, "nlags": )" << getMaxLag()
                 << R"(, "restrictions": [)";
    
          for (auto it = restrictions.begin(); it != restrictions.end(); ++it)
            {
              if (it != restrictions.begin())
                output << ", ";
              output << "{"
                     << R"("equation_number": )" << it->equation << ", "
                     << R"("restriction_number": )" << it->restriction_nbr << ", "
                     << R"("variable": ")" << symbol_table.getName(it->variable) << R"(", )"
                     << R"("expression": ")";
              it->value->writeOutput(output);
              output << R"("})";
            }
          output << "]";
        }
      output << "}";
    }
    
    MarkovSwitchingStatement::MarkovSwitchingStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
      if (auto it_num = options_list.num_options.find("ms.restrictions");
          it_num != options_list.num_options.end())
        {
          using namespace boost;
          auto it_num_regimes = options_list.num_options.find("ms.number_of_regimes");
          assert(it_num_regimes != options_list.num_options.end());
          auto num_regimes = stoi(it_num_regimes->second);
    
          vector<string> tokenizedRestrictions;
          split(tokenizedRestrictions, it_num->second, is_any_of("["), token_compress_on);
          for (auto &tokenizedRestriction : tokenizedRestrictions)
            if (tokenizedRestriction.size() > 0)
              {
                vector<string> restriction;
                split(restriction, tokenizedRestriction, is_any_of("], "));
                for (auto it1 = restriction.begin(); it1 != restriction.end();)
                  if (it1->empty())
                    restriction.erase(it1);
                  else
                    ++it1;
    
                if (restriction.size() != 3)
                  {
                    cerr << "ERROR: restrictions in the subsample statement must be specified in the form "
                         << "[current_period_regime, next_period_regime, transition_probability]" << endl;
                    exit(EXIT_FAILURE);
                  }
    
                try
                  {
                    auto from_regime = stoi(restriction[0]);
                    auto to_regime = stoi(restriction[1]);
                    if (from_regime > num_regimes || to_regime > num_regimes)
                      {
                        cerr << "ERROR: the regimes specified in the restrictions option must be "
                             << "<= the number of regimes specified in the number_of_regimes option" << endl;
                        exit(EXIT_FAILURE);
                      }
    
                    if (restriction_map.find({ from_regime, to_regime }) !=
                        restriction_map.end())
                      {
                        cerr << "ERROR: two restrictions were given for: " << from_regime << ", "
                             << to_regime << endl;
                        exit(EXIT_FAILURE);
                      }
    
                    auto transition_probability = stod(restriction[2]);
                    if (transition_probability > 1.0)
                      {
                        cerr << "ERROR: the transition probability, " << transition_probability
                             << " must be less than 1" << endl;
                        exit(EXIT_FAILURE);
                      }
                    restriction_map[{ from_regime, to_regime }] = transition_probability;
                  }
                catch (const invalid_argument &)
                  {
                    cerr << "ERROR: The first two arguments for a restriction must be integers "
                         << "specifying the regime and the last must be a double specifying the "
                         << "transition probability. You wrote [" << tokenizedRestriction << endl;
                    exit(EXIT_FAILURE);
                  }
              }
        }
    }
    
    void
    MarkovSwitchingStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      auto itChain = options_list.num_options.find("ms.chain");
      assert(itChain != options_list.num_options.end());
      int chainNumber = stoi(itChain->second);
      if (++mod_file_struct.last_markov_switching_chain != chainNumber)
        {
          cerr << "ERROR: The markov_switching chain option takes consecutive integers "
               << "beginning at 1." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (auto it_num = options_list.num_options.find("ms.restrictions");
          it_num != options_list.num_options.end())
        {
          using namespace boost;
          auto it_num_regimes = options_list.num_options.find("ms.number_of_regimes");
          assert(it_num_regimes != options_list.num_options.end());
          auto num_regimes = stoi(it_num_regimes->second);
          vector<double> col_trans_prob_sum(num_regimes, 0);
          vector<double> row_trans_prob_sum(num_regimes, 0);
          vector<bool> all_restrictions_in_row(num_regimes, true);
          vector<bool> all_restrictions_in_col(num_regimes, true);
          for (int row = 0; row < num_regimes; row++)
            for (int col = 0; col < num_regimes; col++)
              if (restriction_map.find({ row+1, col+1 }) != restriction_map.end())
                {
                  row_trans_prob_sum[row] += restriction_map[{ row+1, col+1 }];
                  col_trans_prob_sum[col] += restriction_map[{ row+1, col+1 }];
                }
              else
                {
                  all_restrictions_in_row[row] = false;
                  all_restrictions_in_col[col] = false;
                }
    
          for (int i = 0; i < num_regimes; i++)
            {
              if (all_restrictions_in_row[i])
                {
                  if (row_trans_prob_sum[i] != 1.0)
                    {
                      cerr << "ERROR: When all transitions probabilities are specified for a certain "
                           << "regime, they must sum to 1" << endl;
                      exit(EXIT_FAILURE);
                    }
                }
              else
                if (row_trans_prob_sum[i] >= 1.0)
                  {
                    cerr << "ERROR: When transition probabilites are not specified for every regime, "
                         << "their sum must be < 1" << endl;
                    exit(EXIT_FAILURE);
                  }
    
              if (all_restrictions_in_col[i])
                {
                  if (col_trans_prob_sum[i] != 1.0)
                    {
                      cerr << "ERROR: When all transitions probabilities are specified for a certain "
                           << "regime, they must sum to 1" << endl;
                      exit(EXIT_FAILURE);
                    }
                }
              else
                if (col_trans_prob_sum[i] >= 1.0)
                  {
                    cerr << "ERROR: When transition probabilites are not specified for every regime, "
                         << "their sum must be < 1" << endl;
                    exit(EXIT_FAILURE);
                  }
            }
        }
    
      if (options_list.symbol_list_options.find("ms.parameters") != options_list.symbol_list_options.end())
        mod_file_struct.ms_dsge_present = true;
    }
    
    void
    MarkovSwitchingStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      bool isDurationAVec = true;
      string infStr("Inf");
      OptionsList::num_options_t::const_iterator itChain, itNOR, itDuration;
      map<pair<int, int>, double >::const_iterator itR;
    
      itChain = options_list.num_options.find("ms.chain");
      assert(itChain != options_list.num_options.end());
    
      itDuration = options_list.num_options.find("ms.duration");
      assert(itDuration != options_list.num_options.end());
      if (stod(itDuration->second) || infStr.compare(itDuration->second) == 0)
        isDurationAVec = false;
      output << "options_.ms.duration = " << itDuration->second << ";" << endl;
    
      itNOR = options_list.num_options.find("ms.number_of_regimes");
      assert(itNOR != options_list.num_options.end());
      for (int i = 0; i < stoi(itNOR->second); i++)
        {
          output << "options_.ms.ms_chain(" << itChain->second << ").regime("
                 << i+1 << ").duration = options_.ms.duration";
          if (isDurationAVec)
            output << "(" << i+1 << ")";
          output << ";" << endl;
        }
    
      int restrictions_index = 0;
      for (itR = restriction_map.begin(); itR != restriction_map.end(); itR++)
        output << "options_.ms.ms_chain(" << itChain->second << ").restrictions("
               << ++restrictions_index << ") = {[" << itR->first.first << ", "
               << itR->first.second << ", " << itR->second << "]};" << endl;
    }
    
    void
    MarkovSwitchingStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "markov_switching")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    
      if (!restriction_map.empty())
        output << ", {";
      for (auto it = restriction_map.begin(); it != restriction_map.end(); ++it)
        {
          if (it != restriction_map.begin())
            output << ", ";
          output << R"({"current_period_regime": )" << it->first.first
                 << R"(, "next_period_regime": )" << it->first.second
                 << R"(, "transition_probability": )"<< it->second
                 << "}";
        }
      if (!restriction_map.empty())
        output << "}";
      output << "}";
    }
    
    SvarStatement::SvarStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    SvarStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      auto it0 = options_list.string_options.find("ms.coefficients"),
        it1 = options_list.string_options.find("ms.variances"),
        it2 = options_list.string_options.find("ms.constants");
      assert((it0 != options_list.string_options.end()
              && it1 == options_list.string_options.end()
              && it2 == options_list.string_options.end())
             || (it0 == options_list.string_options.end()
                 && it1 != options_list.string_options.end()
                 && it2 == options_list.string_options.end())
             || (it0 == options_list.string_options.end()
                 && it1 == options_list.string_options.end()
                 && it2 != options_list.string_options.end()));
    }
    
    void
    SvarStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      auto it = options_list.num_options.find("ms.chain");
      assert(it != options_list.num_options.end());
      output << "options_.ms.ms_chain(" << it->second << ")";
    
      if (auto it0 = options_list.string_options.find("ms.coefficients");
          it0 != options_list.string_options.end())
        output << "." << it0->second;
      else if (auto it1 = options_list.string_options.find("ms.variances");
               it1 != options_list.string_options.end())
        output << "." << it1->second;
      else
        output << "." << options_list.string_options.find("ms.constants")->second;
    
      output << ".equations = ";
      if (auto itv = options_list.vector_int_options.find("ms.equations");
          itv != options_list.vector_int_options.end())
        {
          assert(itv->second.size() >= 1);
          if (itv->second.size() > 1)
            {
              output << "[";
              for (int viit : itv->second)
                output << viit << ";";
              output << "];" << endl;
            }
          else
            output << itv->second.front() << ";" << endl;
        }
      else
        output << "'ALL';" << endl;
    }
    
    void
    SvarStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "svar")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    void
    SvarGlobalIdentificationCheckStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "svar_global_identification_check(options_);" << std::endl;
    }
    
    void
    SvarGlobalIdentificationCheckStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "svar_global_identification"})";
    }
    
    SetTimeStatement::SetTimeStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    SetTimeStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
    }
    
    void
    SetTimeStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "set_time")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    EstimationDataStatement::EstimationDataStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    EstimationDataStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.estimation_data_statement_present = true;
    
      if (auto it = options_list.num_options.find("nobs");
          it != options_list.num_options.end())
        if (stoi(it->second) <= 0)
          {
            cerr << "ERROR: The nobs option of the data statement only accepts positive integers." << endl;
            exit(EXIT_FAILURE);
          }
    
      if (options_list.string_options.find("file") == options_list.string_options.end()
          && options_list.string_options.find("series") == options_list.string_options.end())
        {
          cerr << "ERROR: The file or series option must be passed to the data statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (options_list.string_options.find("file") != options_list.string_options.end()
          && options_list.string_options.find("series") != options_list.string_options.end())
        {
          cerr << "ERROR: The file and series options cannot be used simultaneously in the data statement." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    EstimationDataStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output, "options_.dataset");
    }
    
    void
    EstimationDataStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "estimation_data")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    SubsamplesStatement::SubsamplesStatement(string name1_arg,
                                             string name2_arg,
                                             subsample_declaration_map_t subsample_declaration_map_arg,
                                             const SymbolTable &symbol_table_arg) :
      name1{move(name1_arg)},
      name2{move(name2_arg)},
      subsample_declaration_map{move(subsample_declaration_map_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    SubsamplesStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
    }
    
    void
    SubsamplesStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "subsamples_indx = get_new_or_existing_ei_index('subsamples_index', '"
             << name1 << "','" << name2 << "');" << endl
             << "estimation_info.subsamples_index(subsamples_indx) = {'" << name1;
      if (!name2.empty())
        output << ":" << name2;
      output << "'};" << endl
             << "estimation_info.subsamples(subsamples_indx).range = {};" << endl
             << "estimation_info.subsamples(subsamples_indx).range_index = {};" << endl;
    
      int map_indx = 1;
      for (auto it = subsample_declaration_map.begin();
           it != subsample_declaration_map.end(); ++it, map_indx++)
        output << "estimation_info.subsamples(subsamples_indx).range_index(" << map_indx << ") = {'"
               << it->first << "'};" << endl
               << "estimation_info.subsamples(subsamples_indx).range(" << map_indx << ").date1 = "
               << it->second.first << ";" << endl
               << "estimation_info.subsamples(subsamples_indx).range(" << map_indx << ").date2 = "
               << it->second.second << ";" << endl;
    
      // Initialize associated subsample substructures in estimation_info
      const SymbolType symb_type = symbol_table.getType(name1);
      string lhs_field;
      if (symb_type == SymbolType::parameter)
        lhs_field = "parameter";
      else if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field;
    
      if (!name2.empty())
        output << "_corr";
      output << "_prior_index', '"
             << name1 << "', '";
      if (!name2.empty())
        output << name2;
      output << "');" << endl;
    
      lhs_field = "estimation_info." + lhs_field;
      if (!name2.empty())
        lhs_field += "_corr";
      output << lhs_field << "_prior_index(eifind) = {'" << name1;
      if (!name2.empty())
        output << ":" << name2;
      output << "'};" << endl;
    
      output << lhs_field << "(eifind).subsample_prior = estimation_info.empty_prior;" << endl
             << lhs_field << "(eifind).subsample_prior(1:" << subsample_declaration_map.size()
             << ") = estimation_info.empty_prior;" << endl
             << lhs_field << "(eifind).range_index = estimation_info.subsamples(subsamples_indx).range_index;"
             << endl;
    }
    
    void
    SubsamplesStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "subsamples")"
             << R"(, "name1": ")" << name1 << R"(")";
      if (!name2.empty())
        output << R"(, "name2": ")" << name2 << R"(")";
    
      output << R"(, "declarations": {)";
      for (auto it = subsample_declaration_map.begin();
           it != subsample_declaration_map.end(); ++it)
        {
          if (it != subsample_declaration_map.begin())
            output << ",";
          output << "{"
                 << R"("range_index": ")" << it->first << R"(")"
                 << R"(, "date1": ")" << it->second.first << R"(")"
                 << R"(, "date2": ")" << it->second.second << R"(")"
                 << "}";
        }
      output << "}"
             << "}";
    }
    
    SubsamplesEqualStatement::SubsamplesEqualStatement(string to_name1_arg,
                                                       string to_name2_arg,
                                                       string from_name1_arg,
                                                       string from_name2_arg,
                                                       const SymbolTable &symbol_table_arg) :
      to_name1{move(to_name1_arg)},
      to_name2{move(to_name2_arg)},
      from_name1{move(from_name1_arg)},
      from_name2{move(from_name2_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    SubsamplesEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "subsamples_to_indx = get_new_or_existing_ei_index('subsamples_index', '"
             << to_name1 << "','" << to_name2 << "');" << endl
             << "estimation_info.subsamples_index(subsamples_to_indx) = {'" << to_name1;
      if (!to_name2.empty())
        output << ":" << to_name2;
      output << "'};" << endl
             << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');"
             << endl
             << "estimation_info.subsamples(subsamples_to_indx) = estimation_info.subsamples(subsamples_from_indx);"
             << endl;
    
      // Initialize associated subsample substructures in estimation_info
      const SymbolType symb_type = symbol_table.getType(to_name1);
      string lhs_field;
      if (symb_type == SymbolType::parameter)
        lhs_field = "parameter";
      else if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field;
    
      if (!to_name2.empty())
        output << "_corr";
      output << "_prior_index', '"
             << to_name1 << "', '";
      if (!to_name2.empty())
        output << to_name2;
      output << "');" << endl;
    
      lhs_field = "estimation_info." + lhs_field;
      if (!to_name2.empty())
        lhs_field += "_corr";
      output << lhs_field << "_prior_index(eifind) = {'" << to_name1;
      if (!to_name2.empty())
        output << ":" << to_name2;
      output << "'};" << endl;
    
      output << lhs_field << "(eifind).subsample_prior = estimation_info.empty_prior;" << endl
             << lhs_field << "(eifind).subsample_prior(1:size(estimation_info.subsamples(subsamples_to_indx).range_index,2)) = estimation_info.empty_prior;"
             << endl
             << lhs_field << "(eifind).range_index = estimation_info.subsamples(subsamples_to_indx).range_index;"
             << endl;
    }
    
    void
    SubsamplesEqualStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "subsamples_equal")"
             << R"(, "to_name1": ")" << to_name1 << R"(")";
      if (!to_name2.empty())
        output << R"(, "to_name2": ")" << to_name2 << R"(")";
      output << R"(, "from_name1": ")" << from_name1 << R"(")";
      if (!from_name2.empty())
        output << R"(, "from_name2": ")" << from_name2 << R"(")";
      output << "}";
    }
    
    JointPriorStatement::JointPriorStatement(vector<string> joint_parameters_arg,
                                             PriorDistributions prior_shape_arg,
                                             OptionsList options_list_arg) :
      joint_parameters{move(joint_parameters_arg)},
      prior_shape{prior_shape_arg},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    JointPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (joint_parameters.size() < 2)
        {
          cerr << "ERROR: you must pass at least two parameters to the joint prior statement" << endl;
          exit(EXIT_FAILURE);
        }
    
      if (prior_shape == PriorDistributions::noShape)
        {
          cerr << "ERROR: You must pass the shape option to the prior statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (options_list.num_options.find("mean") == options_list.num_options.end()
          && options_list.num_options.find("mode") == options_list.num_options.end())
        {
          cerr << "ERROR: You must pass at least one of mean and mode to the prior statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (auto it_num = options_list.num_options.find("domain");
          it_num != options_list.num_options.end())
        {
          using namespace boost;
          vector<string> tokenizedDomain;
          split(tokenizedDomain, it_num->second, is_any_of("[ ]"), token_compress_on);
          if (tokenizedDomain.size() != 4)
            {
              cerr << "ERROR: You must pass exactly two values to the domain option." << endl;
              exit(EXIT_FAILURE);
            }
        }
    }
    
    void
    JointPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      for (const auto &joint_parameter : joint_parameters)
        output << "eifind = get_new_or_existing_ei_index('joint_parameter_prior_index', '"
               << joint_parameter << "', '');" << endl
               << "estimation_info.joint_parameter_prior_index(eifind) = {'" << joint_parameter << "'};" << endl;
    
      output << "key = {[";
      for (const auto &joint_parameter : joint_parameters)
        output << "get_new_or_existing_ei_index('joint_parameter_prior_index', '" << joint_parameter << "', '') ..."
               << endl << "    ";
      output << "]};" << endl;
    
      string lhs_field("estimation_info.joint_parameter_tmp");
    
      writeOutputHelper(output, "domain", lhs_field);
      writeOutputHelper(output, "interval", lhs_field);
      writeOutputHelper(output, "mean", lhs_field);
      writeOutputHelper(output, "median", lhs_field);
      writeOutputHelper(output, "mode", lhs_field);
    
      assert(prior_shape != PriorDistributions::noShape);
      output << lhs_field << ".shape = " << static_cast<int>(prior_shape) << ";" << endl;
    
      writeOutputHelper(output, "shift", lhs_field);
      writeOutputHelper(output, "stdev", lhs_field);
      writeOutputHelper(output, "truncate", lhs_field);
      writeOutputHelper(output, "variance", lhs_field);
    
      output << "estimation_info.joint_parameter_tmp = [key, ..." << endl
             << "    " << lhs_field << ".domain , ..." << endl
             << "    " << lhs_field << ".interval , ..." << endl
             << "    " << lhs_field << ".mean , ..." << endl
             << "    " << lhs_field << ".median , ..." << endl
             << "    " << lhs_field << ".mode , ..." << endl
             << "    " << lhs_field << ".shape , ..." << endl
             << "    " << lhs_field << ".shift , ..." << endl
             << "    " << lhs_field << ".stdev , ..." << endl
             << "    " << lhs_field << ".truncate , ..." << endl
             << "    " << lhs_field << ".variance];" << endl
             << "estimation_info.joint_parameter = [estimation_info.joint_parameter; estimation_info.joint_parameter_tmp];" << endl
             << "estimation_info=rmfield(estimation_info, 'joint_parameter_tmp');" << endl;
    }
    
    void
    JointPriorStatement::writeOutputHelper(ostream &output, const string &field, const string &lhs_field) const
    {
      output << lhs_field << "." << field << " = {";
      if (field == "variance")
        output << "{";
      if (auto itn = options_list.num_options.find(field);
          itn != options_list.num_options.end())
        output << itn->second;
      else
        output << "{}";
      if (field == "variance")
        output << "}";
      output << "};" << endl;
    }
    
    void
    JointPriorStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "joint_prior")"
             << R"(, "key": [)";
      for (auto it = joint_parameters.begin(); it != joint_parameters.end(); ++it)
        {
          if (it != joint_parameters.begin())
            output << ", ";
          output << R"(")" << *it << R"(")";
        }
      output << "]";
    
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    
      output << R"(, "shape": )";
      switch (prior_shape)
        {
        case PriorDistributions::beta:
          output << R"("beta")";
          break;
        case PriorDistributions::gamma:
          output << R"("gamma")";
          break;
        case PriorDistributions::normal:
          output << R"("normal")";
          break;
        case PriorDistributions::invGamma:
          output << R"("inv_gamma")";
          break;
        case PriorDistributions::uniform:
          output << R"("uniform")";
          break;
        case PriorDistributions::invGamma2:
          output << R"("inv_gamma2")";
          break;
        case PriorDistributions::dirichlet:
          output << R"("dirichlet")";
          break;
        case PriorDistributions::weibull:
          output << R"("weibull")";
          break;
        case PriorDistributions::noShape:
          cerr << "Impossible case." << endl;
          exit(EXIT_FAILURE);
        }
      output << "}";
    }
    
    BasicPriorStatement::BasicPriorStatement(string name_arg,
                                             string subsample_name_arg,
                                             PriorDistributions prior_shape_arg,
                                             expr_t variance_arg,
                                             OptionsList options_list_arg) :
      name{move(name_arg)},
      subsample_name{move(subsample_name_arg)},
      prior_shape{prior_shape_arg},
      variance{variance_arg},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    BasicPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (prior_shape == PriorDistributions::noShape)
        {
          cerr << "ERROR: You must pass the shape option to the prior statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (options_list.num_options.find("mean") == options_list.num_options.end()
          && options_list.num_options.find("mode") == options_list.num_options.end())
        {
          cerr << "ERROR: You must pass at least one of mean and mode to the prior statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (auto it_stdev = options_list.num_options.find("stdev");
          (it_stdev == options_list.num_options.end() && !variance)
          || (it_stdev != options_list.num_options.end() && variance))
        {
          cerr << "ERROR: You must pass exactly one of stdev and variance to the prior statement." << endl;
          exit(EXIT_FAILURE);
        }
    
      if (auto it_num = options_list.num_options.find("domain");
          it_num != options_list.num_options.end())
        {
          using namespace boost;
          vector<string> tokenizedDomain;
          split(tokenizedDomain, it_num->second, is_any_of("[ ]"), token_compress_on);
          if (tokenizedDomain.size() != 4)
            {
              cerr << "ERROR: You must pass exactly two values to the domain option." << endl;
              exit(EXIT_FAILURE);
            }
        }
    }
    
    bool
    BasicPriorStatement::is_structural_innovation(const SymbolType symb_type) const
    {
      if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        return true;
      return false;
    }
    
    void
    BasicPriorStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
    {
      if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    }
    
    void
    BasicPriorStatement::writeCommonOutput(ostream &output, const string &lhs_field) const
    {
      output << lhs_field << " = estimation_info.empty_prior;" << endl;
    
      writeCommonOutputHelper(output, "domain", lhs_field);
      writeCommonOutputHelper(output, "interval", lhs_field);
      writeCommonOutputHelper(output, "mean", lhs_field);
      writeCommonOutputHelper(output, "median", lhs_field);
      writeCommonOutputHelper(output, "mode", lhs_field);
    
      assert(prior_shape != PriorDistributions::noShape);
      output << lhs_field << ".shape = " << static_cast<int>(prior_shape) << ";" << endl;
    
      writeCommonOutputHelper(output, "shift", lhs_field);
      writeCommonOutputHelper(output, "stdev", lhs_field);
      writeCommonOutputHelper(output, "truncate", lhs_field);
    
      if (variance)
        {
          output << lhs_field << ".variance = ";
          variance->writeOutput(output);
          output << ";" << endl;
        }
    }
    
    void
    BasicPriorStatement::writeCommonOutputHelper(ostream &output, const string &field, const string &lhs_field) const
    {
      if (auto itn = options_list.num_options.find(field);
          itn != options_list.num_options.end())
        output << lhs_field << "." << field << " = "<< itn->second << ";" << endl;
    }
    
    void
    BasicPriorStatement::writePriorOutput(ostream &output, string &lhs_field, const string &name2) const
    {
      if (subsample_name.empty())
        lhs_field += ".prior(1)";
      else
        {
          output << "subsamples_indx = get_existing_subsamples_indx('" << name << "','" << name2 << "');" << endl
                 << "eisind = get_subsamples_range_indx(subsamples_indx, '" << subsample_name << "');" << endl;
          lhs_field += ".subsample_prior(eisind)";
        }
      writeCommonOutput(output, lhs_field);
    }
    
    void
    BasicPriorStatement::writeJsonPriorOutput(ostream &output) const
    {
      output << R"(, "name": ")" << name << R"(")"
             << R"(, "subsample": ")" << subsample_name << R"(")"
             << ", ";
      writeJsonShape(output);
      if (variance)
        {
          output << R"(, "variance": ")";
          variance->writeJsonOutput(output, {}, {});
          output << R"(")";
        }
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    }
    
    void
    BasicPriorStatement::writeJsonShape(ostream &output) const
    {
      output << R"("shape": )";
      switch (prior_shape)
        {
        case PriorDistributions::beta:
          output << R"("beta")";
          break;
        case PriorDistributions::gamma:
          output << R"("gamma")";
          break;
        case PriorDistributions::normal:
          output << R"("normal")";
          break;
        case PriorDistributions::invGamma:
          output << R"("inv_gamma")";
          break;
        case PriorDistributions::uniform:
          output << R"("uniform")";
          break;
        case PriorDistributions::invGamma2:
          output << R"("inv_gamma2")";
          break;
        case PriorDistributions::dirichlet:
          output << R"("dirichlet")";
          break;
        case PriorDistributions::weibull:
          output << R"("weibull")";
          break;
        case PriorDistributions::noShape:
          assert(prior_shape != PriorDistributions::noShape);
        }
    }
    
    PriorStatement::PriorStatement(string name_arg,
                                   string subsample_name_arg,
                                   PriorDistributions prior_shape_arg,
                                   expr_t variance_arg,
                                   OptionsList options_list_arg) :
      BasicPriorStatement{move(name_arg), move(subsample_name_arg), prior_shape_arg, variance_arg, move(options_list_arg)}
    {
    }
    
    void
    PriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field = "estimation_info.parameter(eifind)";
      output << "eifind = get_new_or_existing_ei_index('parameter_prior_index', '"
             << name << "', '');" << endl
             << "estimation_info.parameter_prior_index(eifind) = {'" << name << "'};" << endl;
      writePriorOutput(output, lhs_field, "");
    }
    
    void
    PriorStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "prior")";
      writeJsonPriorOutput(output);
      output << "}";
    }
    
    StdPriorStatement::StdPriorStatement(string name_arg,
                                         string subsample_name_arg,
                                         PriorDistributions prior_shape_arg,
                                         expr_t variance_arg,
                                         OptionsList options_list_arg,
                                         const SymbolTable &symbol_table_arg) :
      BasicPriorStatement{move(name_arg), move(subsample_name_arg), prior_shape_arg, variance_arg, move(options_list_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    StdPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field;
      get_base_name(symbol_table.getType(name), lhs_field);
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_prior_index', '"
             << name << "', '');" << endl
             << "estimation_info." << lhs_field << "_prior_index(eifind) = {'" << name << "'};" << endl;
    
      lhs_field = "estimation_info." + lhs_field + "(eifind)";
      writePriorOutput(output, lhs_field, "");
    }
    
    void
    StdPriorStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "std_prior")";
      writeJsonPriorOutput(output);
      output << "}";
    }
    
    CorrPriorStatement::CorrPriorStatement(string name_arg1, string name_arg2,
                                           string subsample_name_arg,
                                           PriorDistributions prior_shape_arg,
                                           expr_t variance_arg,
                                           OptionsList options_list_arg,
                                           const SymbolTable &symbol_table_arg) :
      BasicPriorStatement{move(name_arg1), move(subsample_name_arg), prior_shape_arg, variance_arg, move(options_list_arg)},
      name1{move(name_arg2)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    CorrPriorStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      BasicPriorStatement::checkPass(mod_file_struct, warnings);
      if (symbol_table.getType(name) != symbol_table.getType(name1))
        {
          cerr << "ERROR: In the corr(A,B).prior statement, A and B must be of the same type. "
               << "In your case, " << name << " and " << name1 << " are of different "
               << "types." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    CorrPriorStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field;
      get_base_name(symbol_table.getType(name), lhs_field);
    
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_corr_prior_index', '"
             << name << "', '" << name1 << "');" << endl
             << "estimation_info." << lhs_field << "_corr_prior_index(eifind) = {'"
             << name << ":" << name1 << "'};" << endl;
    
      lhs_field = "estimation_info." + lhs_field + "_corr(eifind)";
      writePriorOutput(output, lhs_field, name1);
    }
    
    void
    CorrPriorStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "corr_prior")"
             << R"(, "name2": ")" << name1 << R"(")";
      writeJsonPriorOutput(output);
      output << "}";
    }
    
    PriorEqualStatement::PriorEqualStatement(string to_declaration_type_arg,
                                             string to_name1_arg,
                                             string to_name2_arg,
                                             string to_subsample_name_arg,
                                             string from_declaration_type_arg,
                                             string from_name1_arg,
                                             string from_name2_arg,
                                             string from_subsample_name_arg,
                                             const SymbolTable &symbol_table_arg) :
      to_declaration_type{move(to_declaration_type_arg)},
      to_name1{move(to_name1_arg)},
      to_name2{move(to_name2_arg)},
      to_subsample_name{move(to_subsample_name_arg)},
      from_declaration_type{move(from_declaration_type_arg)},
      from_name1{move(from_name1_arg)},
      from_name2{move(from_name2_arg)},
      from_subsample_name{move(from_subsample_name_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    PriorEqualStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if ((to_declaration_type != "par" && to_declaration_type != "std" && to_declaration_type != "corr")
          || (from_declaration_type != "par" && from_declaration_type != "std" && from_declaration_type != "corr"))
        {
          cerr << "Internal Dynare Error" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    PriorEqualStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
    {
      if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    }
    
    void
    PriorEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field, rhs_field;
    
      if (to_declaration_type == "par")
        lhs_field = "parameter";
      else
        get_base_name(symbol_table.getType(to_name1), lhs_field);
    
      if (from_declaration_type == "par")
        rhs_field = "parameter";
      else
        get_base_name(symbol_table.getType(from_name1), rhs_field);
    
      if (to_declaration_type == "corr")
        lhs_field += "_corr";
    
      if (from_declaration_type == "corr")
        rhs_field += "_corr";
    
      output << "ei_to_ind = get_new_or_existing_ei_index('" << lhs_field << "_prior_index', '"
             << to_name1 << "', '" << to_name2<< "');" << endl
             << "ei_from_ind = get_new_or_existing_ei_index('" << rhs_field << "_prior_index', '"
             << from_name1 << "', '" << from_name2<< "');" << endl
             << "estimation_info." << lhs_field << "_prior_index(ei_to_ind) = {'" << to_name1;
    
      if (to_declaration_type == "corr")
        output << ":" << to_name2;
      output << "'};" << endl;
    
      if (to_declaration_type == "par")
        lhs_field = "parameter";
    
      if (from_declaration_type == "par")
        rhs_field = "parameter";
    
      lhs_field = "estimation_info." + lhs_field + "(ei_to_ind)";
      rhs_field = "estimation_info." + rhs_field + "(ei_from_ind)";
    
      if (to_subsample_name.empty())
        lhs_field += ".prior";
      else
        {
          output << "subsamples_to_indx = get_existing_subsamples_indx('" << to_name1 << "','" << to_name2 << "');" << endl
                 << "ei_to_ss_ind = get_subsamples_range_indx(subsamples_to_indx, '" << to_subsample_name << "');" << endl;
          lhs_field += ".subsample_prior(ei_to_ss_ind)";
        }
    
      if (from_subsample_name.empty())
        rhs_field += ".prior";
      else
        {
          output << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');" << endl
                 << "ei_from_ss_ind = get_subsamples_range_indx(subsamples_from_indx, '" << from_subsample_name << "');" << endl;
          rhs_field += ".subsample_prior(ei_from_ss_ind)";
        }
    
      output << lhs_field << " = " << rhs_field << ";" << endl;
    }
    
    void
    PriorEqualStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "prior_equal")"
             << R"(, "to_name1": ")" << to_name1 << R"(")";
      if (to_declaration_type == "corr")
        output << R"(, "to_name2": ")" << to_name2 << R"(")";
      output << R"(, "to_subsample": ")" << to_subsample_name << R"(")"
             << R"(, "from_name1": ")" << from_name1 << R"(")";
      if (to_declaration_type == "corr")
        output << R"(, "from_name2": ")" << from_name2 << R"(")";
      output << R"(, "from_subsample": ")" << from_subsample_name << R"(")"
             << "}";
    }
    
    BasicOptionsStatement::BasicOptionsStatement(string name_arg,
                                                 string subsample_name_arg,
                                                 OptionsList options_list_arg) :
      name{move(name_arg)},
      subsample_name{move(subsample_name_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    BasicOptionsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
    }
    
    bool
    BasicOptionsStatement::is_structural_innovation(const SymbolType symb_type) const
    {
      return symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet;
    }
    
    void
    BasicOptionsStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
    {
      if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    }
    
    void
    BasicOptionsStatement::writeCommonOutput(ostream &output, const string &lhs_field) const
    {
      output << lhs_field << " = estimation_info.empty_options;" << endl;
    
      writeCommonOutputHelper(output, "bounds", lhs_field);
      writeCommonOutputHelper(output, "init", lhs_field);
      writeCommonOutputHelper(output, "jscale", lhs_field);
    }
    
    void
    BasicOptionsStatement::writeCommonOutputHelper(ostream &output, const string &field, const string &lhs_field) const
    {
      if (auto itn = options_list.num_options.find(field);
          itn != options_list.num_options.end())
        output << lhs_field << "." << field << " = " << itn->second << ";" << endl;
    }
    
    void
    BasicOptionsStatement::writeOptionsOutput(ostream &output, string &lhs_field, const string &name2) const
    {
      if (subsample_name.empty())
        lhs_field += ".options(1)";
      else
        {
          output << "subsamples_indx = get_existing_subsamples_indx('" << name << "','" << name2 << "');" << endl
                 << "eisind = get_subsamples_range_indx(subsamples_indx, '" << subsample_name << "');" << endl;
          lhs_field += ".subsample_options(eisind)";
        }
      writeCommonOutput(output, lhs_field);
    }
    
    void
    BasicOptionsStatement::writeJsonOptionsOutput(ostream &output) const
    {
      output << R"(, "name": ")" << name << R"(")";
      if (!subsample_name.empty())
        output << R"(, "subsample_name": ")" << subsample_name << R"(")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    }
    
    OptionsStatement::OptionsStatement(string name_arg,
                                       string subsample_name_arg,
                                       OptionsList options_list_arg) :
      BasicOptionsStatement{move(name_arg), move(subsample_name_arg), move(options_list_arg)}
    {
    }
    
    void
    OptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field = "estimation_info.parameter(eifind)";
      output << "eifind = get_new_or_existing_ei_index('parameter_options_index', '"
             << name << "', '');" << endl
             << "estimation_info.parameter_options_index(eifind) = {'" << name << "'};" << endl;
      writeOptionsOutput(output, lhs_field, "");
    }
    
    void
    OptionsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "options")";
      writeJsonOptionsOutput(output);
      output << "}";
    }
    
    StdOptionsStatement::StdOptionsStatement(string name_arg,
                                             string subsample_name_arg,
                                             OptionsList options_list_arg,
                                             const SymbolTable &symbol_table_arg) :
      BasicOptionsStatement{move(name_arg), move(subsample_name_arg), move(options_list_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    StdOptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field;
      get_base_name(symbol_table.getType(name), lhs_field);
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_options_index', '"
             << name << "', '');" << endl
             << "estimation_info." << lhs_field << "_options_index(eifind) = {'" << name << "'};" << endl;
    
      lhs_field = "estimation_info." + lhs_field + "(eifind)";
      writeOptionsOutput(output, lhs_field, "");
    }
    
    void
    StdOptionsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "std_options")";
      writeJsonOptionsOutput(output);
      output << "}";
    }
    
    CorrOptionsStatement::CorrOptionsStatement(string name_arg1, string name_arg2,
                                               string subsample_name_arg,
                                               OptionsList options_list_arg,
                                               const SymbolTable &symbol_table_arg) :
      BasicOptionsStatement{move(name_arg1), move(subsample_name_arg), move(options_list_arg)},
      name1{move(name_arg2)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    CorrOptionsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if (symbol_table.getType(name) != symbol_table.getType(name1))
        {
          cerr << "ERROR: In the corr(A,B).options statement, A and B must be of the same type. "
               << "In your case, " << name << " and " << name1 << " are of different "
               << "types." << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    CorrOptionsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field;
      get_base_name(symbol_table.getType(name), lhs_field);
    
      output << "eifind = get_new_or_existing_ei_index('" << lhs_field << "_corr_options_index', '"
             << name << "', '" << name1 << "');" << endl
             << "estimation_info." << lhs_field << "_corr_options_index(eifind) = {'"
             << name << ":" << name1 << "'};" << endl;
    
      lhs_field = "estimation_info." + lhs_field + "_corr(eifind)";
      writeOptionsOutput(output, lhs_field, name1);
    }
    
    void
    CorrOptionsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "corr_options")"
             << R"(, "name2": ")" << name1 << R"(")";
      writeJsonOptionsOutput(output);
      output << "}";
    }
    
    OptionsEqualStatement::OptionsEqualStatement(string to_declaration_type_arg,
                                                 string to_name1_arg,
                                                 string to_name2_arg,
                                                 string to_subsample_name_arg,
                                                 string from_declaration_type_arg,
                                                 string from_name1_arg,
                                                 string from_name2_arg,
                                                 string from_subsample_name_arg,
                                                 const SymbolTable &symbol_table_arg) :
      to_declaration_type{move(to_declaration_type_arg)},
      to_name1{move(to_name1_arg)},
      to_name2{move(to_name2_arg)},
      to_subsample_name{move(to_subsample_name_arg)},
      from_declaration_type{move(from_declaration_type_arg)},
      from_name1{move(from_name1_arg)},
      from_name2{move(from_name2_arg)},
      from_subsample_name{move(from_subsample_name_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    OptionsEqualStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      if ((to_declaration_type != "par" && to_declaration_type != "std" && to_declaration_type != "corr")
          || (from_declaration_type != "par" && from_declaration_type != "std" && from_declaration_type != "corr"))
        {
          cerr << "Internal Dynare Error" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    OptionsEqualStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "options_equal")"
             << R"(, "to_name1": ")" << to_name1 << R"(")";
      if (to_declaration_type == "corr")
        output << R"(, "to_name2": ")" << to_name2 << R"(")";
      output << R"(, "to_subsample": ")" << to_subsample_name << R"(")"
             << R"(, "from_name1": ")" << from_name1 << R"(")";
      if (to_declaration_type == "corr")
        output << R"(, "from_name2": ")" << from_name2 << R"(")";
      output << R"(, "from_subsample": ")" << from_subsample_name << R"(")"
             << "}";
    }
    
    void
    OptionsEqualStatement::get_base_name(const SymbolType symb_type, string &lhs_field) const
    {
      if (symb_type == SymbolType::exogenous || symb_type == SymbolType::exogenousDet)
        lhs_field = "structural_innovation";
      else
        lhs_field = "measurement_error";
    }
    
    void
    OptionsEqualStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string lhs_field, rhs_field;
    
      if (to_declaration_type == "par")
        lhs_field = "parameter";
      else
        get_base_name(symbol_table.getType(to_name1), lhs_field);
    
      if (from_declaration_type == "par")
        rhs_field = "parameter";
      else
        get_base_name(symbol_table.getType(from_name1), rhs_field);
    
      if (to_declaration_type == "corr")
        lhs_field += "_corr";
    
      if (from_declaration_type == "corr")
        rhs_field += "_corr";
    
      output << "ei_to_ind = get_new_or_existing_ei_index('" << lhs_field << "_options_index', '"
             << to_name1 << "', '" << to_name2<< "');" << endl
             << "ei_from_ind = get_new_or_existing_ei_index('" << rhs_field << "_options_index', '"
             << from_name1 << "', '" << from_name2<< "');" << endl
             << "estimation_info." << lhs_field << "_options_index(ei_to_ind) = {'" << to_name1;
    
      if (to_declaration_type == "corr")
        output << ":" << to_name2;
      output << "'};" << endl;
    
      if (to_declaration_type == "par")
        lhs_field = "parameter";
    
      if (from_declaration_type == "par")
        rhs_field = "parameter";
    
      lhs_field = "estimation_info." + lhs_field + "(ei_to_ind)";
      rhs_field = "estimation_info." + rhs_field + "(ei_from_ind)";
    
      if (to_subsample_name.empty())
        lhs_field += ".options";
      else
        {
          output << "subsamples_to_indx = get_existing_subsamples_indx('" << to_name1 << "','" << to_name2 << "');" << endl
                 << "ei_to_ss_ind = get_subsamples_range_indx(subsamples_to_indx, '" << to_subsample_name << "');" << endl;
          lhs_field += ".subsample_options(ei_to_ss_ind)";
        }
    
      if (from_subsample_name.empty())
        rhs_field += ".options";
      else
        {
          output << "subsamples_from_indx = get_existing_subsamples_indx('" << from_name1 << "','" << from_name2 << "');" << endl
                 << "ei_from_ss_ind = get_subsamples_range_indx(subsamples_from_indx, '" << from_subsample_name << "');" << endl;
          rhs_field += ".subsample_options(ei_from_ss_ind)";
        }
    
      output << lhs_field << " = " << rhs_field << ";" << endl;
    }
    
    CalibSmootherStatement::CalibSmootherStatement(SymbolList symbol_list_arg,
                                                   OptionsList options_list_arg)
      : symbol_list{move(symbol_list_arg)}, options_list{move(options_list_arg)}
    {
    }
    
    void
    CalibSmootherStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.calib_smoother_present = true;
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: calib_smoother: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    CalibSmootherStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
      if (options_list.string_options.find("parameter_set") == options_list.string_options.end())
        output << "options_.parameter_set = 'calibration';" << endl;
      symbol_list.writeOutput("var_list_", output);
      output << "options_.smoother = true;" << endl
             << "options_.order = 1;" << endl
             << "[oo_, M_, options_, bayestopt_] = evaluate_smoother(options_.parameter_set, var_list_, M_, oo_, options_, bayestopt_, estim_params_);" << endl;
    }
    
    void
    CalibSmootherStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "calib_smoother")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    ExtendedPathStatement::ExtendedPathStatement(OptionsList options_list_arg)
      : options_list{move(options_list_arg)}
    {
    }
    
    void
    ExtendedPathStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      mod_file_struct.extended_path_present = true;
    
      if (options_list.num_options.find("periods") == options_list.num_options.end())
        {
          cerr << "ERROR: the 'periods' option of 'extended_path' is mandatory" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    ExtendedPathStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      // Beware: options do not have the same name in the interface and in the M code...
    
      for (const auto &num_option : options_list.num_options)
        if (num_option.first != "periods")
          output << "options_." << num_option.first << " = " << num_option.second << ";" << endl;
    
      output << "extended_path([], " << options_list.num_options.find("periods")->second
             << ", [], options_, M_, oo_);" << endl;
    }
    
    void
    ExtendedPathStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "extended_path")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    void
    ModelDiagnosticsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "model_diagnostics(M_,options_,oo_);" << endl;
    }
    
    void
    ModelDiagnosticsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "model_diagnostics"})";
    }
    
    Smoother2histvalStatement::Smoother2histvalStatement(OptionsList options_list_arg) :
      options_list{move(options_list_arg)}
    {
    }
    
    void
    Smoother2histvalStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output, "options_smoother2histval");
      output << "smoother2histval(options_smoother2histval);" << endl;
    }
    
    void
    Smoother2histvalStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "smoother_2_histval")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    MethodOfMomentsStatement::MethodOfMomentsStatement(SymbolList symbol_list_arg,
                                                         OptionsList options_list_arg) :
      symbol_list{move(symbol_list_arg)},
      options_list{move(options_list_arg)}
    {
    }
    
    void
    MethodOfMomentsStatement::checkPass(ModFileStructure &mod_file_struct, WarningConsolidation &warnings)
    {
      try
        {
          symbol_list.checkPass(warnings, { SymbolType::endogenous });
        }
      catch (SymbolList::SymbolListException &e)
        {
          cerr << "ERROR: method_of_moments: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
      mod_file_struct.mom_estimation_present = true;
      // Fill in option_order of mod_file_struct
      if (auto it = options_list.num_options.find("order");
          it != options_list.num_options.end())
        {
          int order = stoi(it->second);
    
          if (order > 2)
            mod_file_struct.k_order_solver = true;
    
          mod_file_struct.mom_order = order;
          mod_file_struct.order_option = max(mod_file_struct.order_option, order);
        }
    
        if (options_list.string_options.find("datafile") == options_list.string_options.end())
          {
            cerr << "ERROR: The method_of_moments statement requires a data file to be supplied via the datafile option." << endl;
            exit(EXIT_FAILURE);
          }
    
        if (options_list.string_options.find("mom.mom_method") == options_list.string_options.end())
          {
            cerr << "ERROR: The method_of_moments statement requires a method to be supplied via the mom_method option. Possible values are GMM or SMM." << endl;
            exit(EXIT_FAILURE);
          }
     
        if (auto it = options_list.string_options.find("mom.mom_method");
            it != options_list.string_options.end() && it->second == "GMM")
          mod_file_struct.GMM_present = true;     
    
        if (auto it = options_list.num_options.find("mom.analytic_standard_errors");
            it != options_list.num_options.end() && it->second == "true")
          mod_file_struct.analytic_standard_errors_present = true;
    
        if (!mod_file_struct.GMM_present && mod_file_struct.analytic_standard_errors_present)
          {
            cerr << "ERROR: The analytic_standard_errors statement requires the GMM option." << endl;
            exit(EXIT_FAILURE);
          }
        
        if (auto it = options_list.num_options.find("mom.analytic_jacobian");
            it != options_list.num_options.end() && it->second == "true")
          mod_file_struct.analytic_jacobian_present = true;
        
        if (!mod_file_struct.GMM_present && mod_file_struct.analytic_jacobian_present)
          {
            cerr << "ERROR: The analytic_jacobian statement requires the GMM option." << endl;
            exit(EXIT_FAILURE);
          }
    }
    
    void
    MethodOfMomentsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      symbol_list.writeOutput("var_list_", output);
      options_list.writeOutput(output, "options_mom_");
    
      output << "[oo_, options_mom_, M_] = method_of_moments(bayestopt_, options_, oo_, estim_params_, M_, options_mom_);" << endl;  
    }
    
    void
    MethodOfMomentsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "method_of_moments")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
      if (!symbol_list.empty())
        {
          output << ", ";
          symbol_list.writeJsonOutput(output);
        }
      output << "}";
    }
    
    
    GenerateIRFsStatement::GenerateIRFsStatement(OptionsList options_list_arg,
                                                 vector<string> generate_irf_names_arg,
                                                 vector<map<string, double>> generate_irf_elements_arg) :
      options_list{move(options_list_arg)},
      generate_irf_names{move(generate_irf_names_arg)},
      generate_irf_elements{move(generate_irf_elements_arg)}
    {
    }
    
    void
    GenerateIRFsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      options_list.writeOutput(output);
    
      if (generate_irf_names.empty())
        return;
    
      output << "options_.irf_opt.irf_shock_graphtitles = { ";
      for (const auto &generate_irf_name : generate_irf_names)
        output << "'" << generate_irf_name << "'; ";
      output << "};" << endl;
    
      output << "options_.irf_opt.irf_shocks = zeros(M_.exo_nbr, "
             << generate_irf_names.size() << ");" << endl;
    
      for (size_t i = 0; i < generate_irf_names.size(); i++)
        {
          map<string, double> m = generate_irf_elements[i];
          for (auto &it : m)
            output << "options_.irf_opt.irf_shocks(M_.exo_names == '"
                   << it.first << "', " << i + 1 << ") = "
                   << it.second << ";" << endl;
        }
    }
    
    void
    GenerateIRFsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "generate_irfs")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    
      if (!generate_irf_names.empty())
        {
          output << R"(, "irf_elements": [)";
          for (size_t i = 0; i < generate_irf_names.size(); i++)
            {
              output << R"({"name": ")" << generate_irf_names[i] << R"(", "shocks": [)";
              map<string, double> m = generate_irf_elements[i];
              size_t idx = 0;
              for (auto it = m.begin(); it != m.end(); ++it, idx++)
                {
                  output << R"({"exogenous_variable": ")" << it->first << R"(", )"
                         << R"("exogenous_variable_value": ")" << it->second << R"("})";
                  if (idx + 1 < m.size())
                    output << ", ";
                }
              output << "]}";
              if (i + 1 < generate_irf_names.size())
                output << ", ";
            }
          output << "]";
        }
      output << "}";
    }
    
    VarExpectationModelStatement::VarExpectationModelStatement(string model_name_arg,
                                                               expr_t expression_arg,
                                                               string aux_model_name_arg,
                                                               string horizon_arg,
                                                               expr_t discount_arg,
                                                               const SymbolTable &symbol_table_arg) :
      model_name{move(model_name_arg)}, expression{expression_arg},
      aux_model_name{move(aux_model_name_arg)}, horizon{move(horizon_arg)},
      discount{discount_arg}, symbol_table{symbol_table_arg}
    {
    }
    
    void
    VarExpectationModelStatement::substituteUnaryOpNodes(const lag_equivalence_table_t &nodes, ExprNode::subst_table_t &subst_table)
    {
      vector<BinaryOpNode *> neweqs;
      expression = expression->substituteUnaryOpNodes(nodes, subst_table, neweqs);
      if (neweqs.size() > 0)
        {
          cerr << "ERROR: the 'expression' option of var_expectation_model contains a variable with a unary operator that is not present in the VAR model" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    VarExpectationModelStatement::substituteDiff(const lag_equivalence_table_t &nodes, ExprNode::subst_table_t &subst_table)
    {
      vector<BinaryOpNode *> neweqs;
      expression = expression->substituteDiff(nodes, subst_table, neweqs);
      if (neweqs.size() > 0)
        {
          cerr << "ERROR: the 'expression' option of var_expectation_model contains a diff'd variable that is not present in the VAR model" << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    VarExpectationModelStatement::matchExpression()
    {
      try
        {
          auto vpc = expression->matchLinearCombinationOfVariables();
          for (const auto &it : vpc)
            {
              if (get<1>(it) != 0)
                throw ExprNode::MatchFailureException{"lead/lags are not allowed"};
              if (symbol_table.getType(get<0>(it)) != SymbolType::endogenous)
                throw ExprNode::MatchFailureException{"Variable is not an endogenous"};
              vars_params_constants.emplace_back(get<0>(it), get<2>(it), get<3>(it));
            }
        }
      catch (ExprNode::MatchFailureException &e)
        {
          cerr << "ERROR: expression in var_expectation_model is not of the expected form: " << e.message << endl;
          exit(EXIT_FAILURE);
        }
    }
    
    void
    VarExpectationModelStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      string mstruct = "M_.var_expectation." + model_name;
      output << mstruct << ".auxiliary_model_name = '" << aux_model_name << "';" << endl
             << mstruct << ".horizon = " << horizon << ';' << endl;
    
      if (!vars_params_constants.size())
        {
          cerr << "ERROR: VarExpectationModelStatement::writeOutput: matchExpression() has not been called" << endl;
          exit(EXIT_FAILURE);
        }
    
      ostringstream vars_list, params_list, constants_list;
      for (auto it = vars_params_constants.begin(); it != vars_params_constants.end(); ++it)
        {
          if (it != vars_params_constants.begin())
            {
              vars_list << ", ";
              params_list << ", ";
              constants_list << ", ";
            }
          vars_list << symbol_table.getTypeSpecificID(get<0>(*it))+1;
          if (get<1>(*it) == -1)
            params_list << "NaN";
          else
            params_list << symbol_table.getTypeSpecificID(get<1>(*it))+1;
          constants_list << get<2>(*it);
        }
      output << mstruct << ".expr.vars = [ " << vars_list.str() << " ];" << endl
             << mstruct << ".expr.params = [ " << params_list.str() << " ];" << endl
             << mstruct << ".expr.constants = [ " << constants_list.str() << " ];" << endl;
    
      if (auto disc_var = dynamic_cast<const VariableNode *>(discount);
          disc_var)
        output << mstruct << ".discount_index = " << symbol_table.getTypeSpecificID(disc_var->symb_id) + 1 << ';' << endl;
      else
        {
          output << mstruct << ".discount_value = ";
          discount->writeOutput(output);
          output << ';' << endl;
        }
      output << mstruct << ".param_indices = [ ";
      for (int param_id : aux_params_ids)
        output << symbol_table.getTypeSpecificID(param_id)+1 << ' ';
      output << "];" << endl;
    }
    
    void
    VarExpectationModelStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "var_expectation_model",)"
             << R"("model_name": ")" << model_name << R"(", )"
             << R"("expression": ")";
      expression->writeOutput(output);
      output << R"(", )"
             << R"("auxiliary_model_name": ")" << aux_model_name << R"(", )"
             << R"("horizon": ")" << horizon << R"(", )"
             << R"("discount": ")";
      discount->writeOutput(output);
      output << R"("})";
    }
    
    MatchedMomentsStatement::MatchedMomentsStatement(const SymbolTable &symbol_table_arg,
                                                     vector<tuple<vector<int>, vector<int>, vector<int>>> moments_arg) :
      symbol_table{symbol_table_arg}, moments{move(moments_arg)}
    {
    }
    
    void
    MatchedMomentsStatement::writeOutput(ostream &output, const string &basename, bool minimal_workspace) const
    {
      output << "M_.matched_moments = {" << endl;
      for (const auto &[symb_ids, lags, powers] : moments)
        {
          output << "  [";
          for (int s : symb_ids)
            output << symbol_table.getTypeSpecificID(s)+1 << ',';
          output << "], [";
          for (int l : lags)
            output << l << ',';
          output << "], [";
          for (int p : powers)
            output << p << ',';
          output << "]," << endl;
        }
      output << "};" << endl;
    }
    
    void
    MatchedMomentsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "matched_moments", "moments": [)" << endl;
      for (auto it = moments.begin(); it != moments.end(); ++it)
        {
          const auto &[symb_ids, lags, powers] = *it;
          output << R"(  { "endos": [)";
          for (auto it2 = symb_ids.begin(); it2 != symb_ids.end(); ++it2)
            {
              if (it2 != symb_ids.begin())
                output << ',';
              output << symbol_table.getTypeSpecificID(*it2)+1;
            }
          output << R"(], "lags": [)";
          for (auto it2 = lags.begin(); it2 != lags.end(); ++it2)
            {
              if (it2 != lags.begin())
                output << ',';
              output << *it2;
            }
          output << R"(], "powers": [)";
          for (auto it2 = powers.begin(); it2 != powers.end(); ++it2)
            {
              if (it2 != powers.begin())
                output << ',';
              output << *it2;
            }
          output << "]}";
          if (next(it) != moments.end())
            output << ',';
          output << endl;
        }
      output << "]}" << endl;
    }