Skip to content
Snippets Groups Projects
Select Git revision
  • 46da76c0ce2dbba515da7e2814869a056a152ae7
  • master default
  • r2025a
  • lto
  • asm
  • kronecker
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
  • 4.2.2
26 results

perfect_foresight_mcp_problem.m

Blame
  • Forked from Dynare / dynare
    5081 commits behind the upstream repository.
    Sébastien Villemot's avatar
    Sébastien Villemot authored
    The fix in commit 24cc67e5 was incorrect.
    46da76c0
    History
    perfect_foresight_mcp_problem.m 5.83 KiB
    function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_function, Y0, YT, ...
                                                      exo_simul, params, steady_state, ...
                                                      maximum_lag, T, ny, i_cols, ...
                                                      i_cols_J1, i_cols_1, i_cols_T, ...
                                                      i_cols_j, i_cols_0,i_cols_J0, eq_index)
    % function [residuals,JJacobian] = perfect_foresight_mcp_problem(y, dynamic_function, Y0, YT, ...
    %                                            exo_simul, params, steady_state, ...
    %                                            maximum_lag, T, ny, i_cols, ...
    %                                            i_cols_J1, i_cols_1, i_cols_T, ...
    %                                            i_cols_j,eq_index)
    % Computes the residuals and the Jacobian matrix for a perfect foresight problem over T periods
    % in a mixed complementarity problem context
    %
    % INPUTS
    %   y                   [double] N*1 array, terminal conditions for the endogenous variables
    %   dynamic_function    [handle] function handle to _dynamic-file
    %   Y0                  [double] N*1 array, initial conditions for the endogenous variables
    %   YT                  [double] N*1 array, terminal conditions for the endogenous variables
    %   exo_simul           [double] nperiods*M_.exo_nbr matrix of exogenous variables (in declaration order)
    %                                for all simulation periods
    %   params              [double] nparams*1 array, parameter values
    %   steady_state        [double] endo_nbr*1 vector of steady state values
    %   maximum_lag         [scalar] maximum lag present in the model
    %   T                   [scalar] number of simulation periods
    %   ny                  [scalar] number of endogenous variables
    %   i_cols              [double] indices of variables appearing in M.lead_lag_incidence
    %                                and that need to be passed to _dynamic-file
    %   i_cols_J1           [double] indices of contemporaneous and forward looking variables
    %                                appearing in M.lead_lag_incidence
    %   i_cols_1            [double] indices of contemporaneous and forward looking variables in
    %                                M.lead_lag_incidence in dynamic Jacobian (relevant in first period)
    %   i_cols_T            [double] columns of dynamic Jacobian related to contemporaneous and backward-looking
    %                                variables (relevant in last period)
    %   i_cols_j            [double] indices of variables in M.lead_lag_incidence
    %                                in dynamic Jacobian (relevant in intermediate periods)
    %   eq_index            [double] N*1 array, index vector describing residual mapping resulting
    %                                from complementarity setup
    % OUTPUTS
    %   residuals           [double] (N*T)*1 array, residuals of the stacked problem
    %   JJacobian           [double] (N*T)*(N*T) array, Jacobian of the stacked problem
    % ALGORITHM
    %   None
    %
    % SPECIAL REQUIREMENTS
    %   None.
    
    % Copyright (C) 1996-2020 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    
    YY = [Y0; y; YT];
    
    residuals = zeros(T*ny,1);
    if nargout == 2
        iJacobian = cell(T,1);
    end
    
    i_rows = 1:ny;
    offset = 0;
    i_cols_J = i_cols;
    
    for it = maximum_lag+(1:T)
        if nargout == 1
            res = dynamic_function(YY(i_cols),exo_simul, params, ...
                                   steady_state,it);
            residuals(i_rows) = res(eq_index);
        elseif nargout == 2
            [res,jacobian] = dynamic_function(YY(i_cols),exo_simul, params, steady_state,it);
            residuals(i_rows) = res(eq_index);
            if T==1 && it==maximum_lag+1
                [rows, cols, vals] = find(jacobian(eq_index,i_cols_0));
                if size(jacobian, 1) == 1 % find() will return row vectors in this case
                    rows = rows';
                    cols = cols';
                    vals = vals';
                end
                iJacobian{1} = [rows, i_cols_J0(cols), vals];
            elseif it == maximum_lag+1
                [rows,cols,vals] = find(jacobian(eq_index,i_cols_1));
                if numel(eq_index) == 1 % find() will return row vectors in this case
                    rows = rows';
                    cols = cols';
                    vals = vals';
                end
                iJacobian{1} = [offset+rows, i_cols_J1(cols), vals];
            elseif it == maximum_lag+T
                [rows,cols,vals] = find(jacobian(eq_index,i_cols_T));
                if numel(eq_index) == 1 % find() will return row vectors in this case
                    rows = rows';
                    cols = cols';
                    vals = vals';
                end
                iJacobian{T} = [offset+rows, i_cols_J(i_cols_T(cols)), vals];
            else
                [rows,cols,vals] = find(jacobian(eq_index,i_cols_j));
                if numel(eq_index) == 1 % find() will return row vectors in this case
                    rows = rows';
                    cols = cols';
                    vals = vals';
                end
                iJacobian{it-maximum_lag} = [offset+rows, i_cols_J(cols), vals];
                i_cols_J = i_cols_J + ny;
            end
            offset = offset + ny;
        end
    
        i_rows = i_rows + ny;
        i_cols = i_cols + ny;
    end
    
    if nargout == 2
        iJacobian = cat(1,iJacobian{:});
        JJacobian = sparse(iJacobian(:,1),iJacobian(:,2),iJacobian(:,3),T*ny,T*ny);
    end