Skip to content
Snippets Groups Projects
Select Git revision
  • 6072aa0b462484da990ffa00ee39fb141fa9513f
  • master default
  • matmul
  • pf_block_problem
  • r2025a
  • asm
  • kronecker
  • 4.5.6
  • 4.5.5
  • 4.5.4
  • 4.5.3
  • 4.5.2
  • 4.5.1
  • 4.5.0
  • 4.4.3
  • 4.4.2
  • 4.4.1
  • 4.4.0
  • 4.4-beta1
  • 4.3.3
  • 4.3.2
  • 4.3.1
  • 4.3.0
  • 4.2.5
  • 4.2.4
  • 4.2.3
  • 4.2.2
27 results

conditional_variance_decomposition.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    conditional_variance_decomposition.m 3.26 KiB
    function ConditionalVarianceDecomposition = conditional_variance_decomposition(StateSpaceModel, Steps, SubsetOfVariables,sigma_e_is_diagonal)
    % This function computes the conditional variance decomposition of a given state space model
    % for a subset of endogenous variables.
    % 
    % INPUTS 
    %   StateSpaceModel     [structure]   Specification of the state space model.
    %   Steps               [integer]     1*h vector of dates.
    %   SubsetOfVariables   [integer]     1*q vector of indices.
    %    
    % OUTPUTS 
    %   ConditionalVarianceDecomposition  [double] [n h p] array, where 
    %                                                    n is equal to length(SubsetOfVariables)
    %                                                    h is the number of Steps
    %                                                    p is the number of state innovations and
    % SPECIAL REQUIREMENTS
    %
    % [1] In this version, absence of measurement errors is assumed...
    
    % Copyright (C) 2010-2011 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    if any(Steps <= 0)
        error(['Conditional variance decomposition: All periods must be strictly ' ...
               'positive'])
    end
    
    number_of_state_innovations = ...
        StateSpaceModel.number_of_state_innovations;
    transition_matrix = StateSpaceModel.transition_matrix;
    number_of_state_equations = ...
        StateSpaceModel.number_of_state_equations;
    order_var = StateSpaceModel.order_var;
    nSteps = length(Steps);
    
    ConditionalVariance = zeros(number_of_state_equations,nSteps,number_of_state_innovations);
    
    if StateSpaceModel.sigma_e_is_diagonal
        B = StateSpaceModel.impulse_matrix.* ...
            repmat(sqrt(diag(StateSpaceModel.state_innovations_covariance_matrix)'),...
                   number_of_state_equations,1);
    else
        B = StateSpaceModel.impulse_matrix*chol(StateSpaceModel.state_innovations_covariance_matrix)';
    end
    
    for i=1:number_of_state_innovations
        BB = B(:,i)*B(:,i)';
        V = zeros(number_of_state_equations,number_of_state_equations);
        m = 1;
        for h = 1:max(Steps)
            V = transition_matrix*V*transition_matrix'+BB;
            if h == Steps(m)
                ConditionalVariance(order_var,m,i) = diag(V);
                m = m+1;
            end
        end
    end
    
    ConditionalVariance = ConditionalVariance(SubsetOfVariables,:,:);
    
    NumberOfVariables = length(SubsetOfVariables);
    SumOfVariances = zeros(NumberOfVariables,nSteps);
    for h = 1:length(Steps)
        SumOfVariances(:,h) = sum(ConditionalVariance(:,h,:),3);
    end
    
    ConditionalVarianceDecomposition = zeros(NumberOfVariables,length(Steps),number_of_state_innovations); 
    for i=1:number_of_state_innovations
        for h = 1:length(Steps)
            ConditionalVarianceDecomposition(:,h,i) = squeeze(ConditionalVariance(:,h,i))./SumOfVariances(:,h);
        end
    end