Skip to content
Snippets Groups Projects
Select Git revision
  • 2075585fa80f84d5bc607473124d5660ec008c76
  • master default
  • created_preprocessor_repo
3 results

meson.build

Blame
  • Forked from Dynare / preprocessor
    Source project has a limited visibility.
    realtime_shock_decomposition.m 9.88 KiB
    function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
    % function oo_ = realtime_shock_decomposition(M_,oo_,options_,varlist,bayestopt_,estim_params_)
    % Computes shocks contribution to a simulated trajectory. The fields set are
    % oo_.realtime_shock_decomposition, oo_.conditional_shock_decomposition and oo_.realtime_forecast_shock_decomposition.
    % Subfields are arrays n_var by nshock+2 by nperiods. The
    % first nshock columns store the respective shock contributions, column n+1
    % stores the role of the initial conditions, while column n+2 stores the
    % value of the smoothed variables.  Both the variables and shocks are stored
    % in the order of declaration, i.e. M_.endo_names and M_.exo_names, respectively.
    %
    % INPUTS
    %    M_:          [structure]  Definition of the model
    %    oo_:         [structure]  Storage of results
    %    options_:    [structure]  Options
    %    varlist:     [char]       List of variables
    %    bayestopt_:  [structure]  describing the priors
    %    estim_params_: [structure] characterizing parameters to be estimated
    %
    % OUTPUTS
    %    oo_:         [structure]  Storage of results
    %
    % SPECIAL REQUIREMENTS
    %    none
    
    % Copyright (C) 2009-2018 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    % indices of endogenous variables
    if isempty(varlist)
        varlist = M_.endo_names(1:M_.orig_endo_nbr);
    end
    
    [i_var, nvar, index_uniques] = varlist_indices(varlist,M_.endo_names);
    varlist = varlist(index_uniques);
    
    % number of variables
    endo_nbr = M_.endo_nbr;
    
    % number of shocks
    nshocks = M_.exo_nbr;
    
    % parameter set
    parameter_set = options_.parameter_set;
    if isempty(parameter_set)
        if isfield(oo_,'posterior_mean')
            parameter_set = 'posterior_mean';
        elseif isfield(oo_,'mle_mode')
            parameter_set = 'mle_mode';
        elseif isfield(oo_,'posterior')
            parameter_set = 'posterior_mode';
        else
            error(['realtime_shock_decomposition: option parameter_set is not specified ' ...
                   'and posterior mode is not available'])
        end
    end
    
    presample = max(1,options_.presample);
    if isfield(options_.shock_decomp,'presample')
        presample = max(presample,options_.shock_decomp.presample);
    end
    % forecast_=0;
    forecast_ = options_.shock_decomp.forecast;
    forecast_params=0;
    if forecast_ && isfield(options_.shock_decomp,'forecast_params')
        forecast_params = options_.shock_decomp.forecast_params;
    end
    
    % save_realtime=0;
    save_realtime = options_.shock_decomp.save_realtime;
    % array of time points in the range options_.presample+1:options_.nobs
    
    zreal = zeros(endo_nbr,nshocks+2,options_.nobs+forecast_);
    zcond = zeros(endo_nbr,nshocks+2,options_.nobs);
    skipline()
    skipline()
    running_text = 'Realtime shock decomposition ';
    newString=sprintf(running_text);
    fprintf(['\b%s'],newString);
    
    options_.selected_variables_only = 0; %make sure all variables are stored
    options_.plot_priors=0;
    init=1;
    nobs = options_.nobs;
    
    if forecast_ && any(forecast_params)
        M1=M_;
        M1.params = forecast_params;
        [junk1,junk2,junk3,junk4,junk5,junk6,oo1] = dynare_resolve(M1,options_,oo_);
        clear junk1 junk2 junk3 junk4 junk5 junk6
    end
    
    for j=presample+1:nobs
        %    evalin('base',['options_.nobs=' int2str(j) ';'])
        options_.nobs=j;
        [oo, M_, junk2, junk3, Smoothed_Variables_deviation_from_mean] = evaluate_smoother(parameter_set,varlist,M_,oo_,options_,bayestopt_,estim_params_);
    
        % reduced form
        dr = oo.dr;
    
        % data reordering
        order_var = dr.order_var;
        inv_order_var = dr.inv_order_var;
    
    
        % coefficients
        A = dr.ghx;
        B = dr.ghu;
    
        if forecast_
            if any(forecast_params)
                Af = oo1.dr.ghx;
                Bf = oo1.dr.ghu;
            else
                Af = A;
                Bf = B;
            end
        end
    
        % initialization
        gend = length(oo.SmoothedShocks.(M_.exo_names{1}));
        epsilon=NaN(nshocks,gend);
        for i=1:nshocks
            epsilon(i,:) = oo.SmoothedShocks.(M_.exo_names{i});
        end
        epsilon=[epsilon zeros(nshocks,forecast_)];
    
        z = zeros(endo_nbr,nshocks+2,gend+forecast_);
    
        z(:,end,1:gend) = Smoothed_Variables_deviation_from_mean;
    
        maximum_lag = M_.maximum_lag;
    
        k2 = dr.kstate(find(dr.kstate(:,2) <= maximum_lag+1),[1 2]);
        i_state = order_var(k2(:,1))+(min(i,maximum_lag)+1-k2(:,2))*M_.endo_nbr;
        for i=1:gend+forecast_
            if i > 1 && i <= maximum_lag+1
                lags = min(i-1,maximum_lag):-1:1;
            end
    
            if i > 1
                tempx = permute(z(:,1:nshocks,lags),[1 3 2]);
                m = min(i-1,maximum_lag);
                tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1),nshocks)];
                if i > gend
                    z(:,nshocks+2,i) = Af(inv_order_var,:)*z(i_state,nshocks+2,lags);
                    %             z(:,nshocks+2,i) = A(inv_order_var,:)*permute(z(i_state,nshocks+2,lags),[1 3 2]);
                    z(:,1:nshocks,i) = Af(inv_order_var,:)*tempx(i_state,:);
                else
                    z(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
                end
                lags = lags+1;
                z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
            end
    
            %         z(:,1:nshocks,i) = z(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
            z(:,nshocks+1,i) = z(:,nshocks+2,i) - sum(z(:,1:nshocks,i),2);
        end
    
        %% conditional shock decomp 1 step ahead
        z1 = zeros(endo_nbr,nshocks+2);
        z1(:,end) = Smoothed_Variables_deviation_from_mean(:,gend);
        for i=gend
    
            z1(:,1:nshocks) = z1(:,1:nshocks) + B(inv_order_var,:).*repmat(epsilon(:,i)',endo_nbr,1);
            z1(:,nshocks+1) = z1(:,nshocks+2) - sum(z1(:,1:nshocks),2);
        end
        %%
    
        %% conditional shock decomp k step ahead
        if forecast_ && forecast_<j
            zn = zeros(endo_nbr,nshocks+2,forecast_+1);
            zn(:,end,1:forecast_+1) = Smoothed_Variables_deviation_from_mean(:,gend-forecast_:gend);
            for i=1:forecast_+1
                if i > 1 && i <= maximum_lag+1
                    lags = min(i-1,maximum_lag):-1:1;
                end
    
                if i > 1
                    tempx = permute(zn(:,1:nshocks,lags),[1 3 2]);
                    m = min(i-1,maximum_lag);
                    tempx = [reshape(tempx,endo_nbr*m,nshocks); zeros(endo_nbr*(maximum_lag-i+1-1),nshocks)];
                    zn(:,1:nshocks,i) = A(inv_order_var,:)*tempx(i_state,:);
                    lags = lags+1;
                    zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
                end
    
                %             zn(:,1:nshocks,i) = zn(:,1:nshocks,i) + B(inv_order_var,:).*repmat(epsilon(:,i+gend-forecast_-1)',endo_nbr,1);
                zn(:,nshocks+1,i) = zn(:,nshocks+2,i) - sum(zn(:,1:nshocks,i),2);
            end
            oo_.conditional_shock_decomposition.(['time_' int2str(j-forecast_)])=zn;
        end
        %%
    
        if init
            zreal(:,:,1:j) = z(:,:,1:j);
        else
            zreal(:,:,j) = z(:,:,gend);
        end
        zcond(:,:,j) = z1;
        if ismember(j,save_realtime)
            oo_.realtime_shock_decomposition.(['time_' int2str(j)])=z;
        end
    
        if forecast_
            zfrcst(:,:,j+1) = z(:,:,gend+1);
            oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j)])=z(:,:,gend:end);
            if j>forecast_+presample
                %% realtime conditional shock decomp k step ahead
                oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)]) = ...
                    zreal(:,:,j-forecast_:j) - ...
                    oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)]);
                oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) = ...
                    oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end-1,:) + ...
                    oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:);
                oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-forecast_)])(:,end,:) = ...
                    zreal(:,end,j-forecast_:j);
    
                if j==nobs
                    for my_forecast_=(forecast_-1):-1:1
                        oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)]) = ...
                            zreal(:,:,j-my_forecast_:j) - ...
                            oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,:,1:my_forecast_+1);
                        oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) = ...
                            oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end-1,:) + ...
                            oo_.realtime_forecast_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,1:my_forecast_+1);
                        oo_.realtime_conditional_shock_decomposition.(['time_' int2str(j-my_forecast_)])(:,end,:) = ...
                            zreal(:,end,j-my_forecast_:j);
                    end
                end
    
            end
        end
    
        prctdone=(j-presample)/(nobs-presample);
        if isoctave
            printf([running_text,' %3.f%% done\r'], prctdone*100);
        else
            s0=repmat('\b',1,length(newString));
            newString=sprintf([running_text,' %3.1f%% done'], prctdone*100);
            fprintf([s0,'%s'],newString);
        end
        init=0;
    end
    oo_.realtime_shock_decomposition.pool = zreal;
    oo_.conditional_shock_decomposition.pool = zcond;
    if forecast_
        oo_.realtime_forecast_shock_decomposition.pool = zfrcst;
    end
    
    skipline()