Skip to content
Snippets Groups Projects
Select Git revision
  • 3d9ac26aa604a1ed0f839ac885f121f0f204de28
  • master default
  • julia
  • created_preprocessor_repo
4 results

StaticModel.hh

Blame
  • Forked from Dynare / preprocessor
    Source project has a limited visibility.
    variance_decomposition_mc_analysis.m 4.65 KiB
    function oo_ = variance_decomposition_mc_analysis(NumberOfSimulations,type,dname,fname,exonames,exo,vartan,var,mh_conf_sig,oo_,options_)
    % function oo_ = variance_decomposition_mc_analysis(NumberOfSimulations,type,dname,fname,exonames,exo,vartan,var,mh_conf_sig,oo_)
    % This function analyses the (posterior or prior) distribution of the
    % endogenous variables' variance decomposition.
    %
    % INPUTS
    %   NumberOfSimulations     [integer]           scalar, number of simulations.
    %   type                    [string]            'prior' or 'posterior'
    %   dname                   [string]            directory name where to save
    %   fname                   [string]            name of the mod-file
    %   exonames                [string]            (n_exo*char_length) character array with names of exogenous variables
    %   exo                     [string]            name of current exogenous
    %                                               variable
    %   vartan                  [string]            (n_endo*char_length) character array with name
    %                                               of endogenous variables
    %   var                     [integer]         index of the current
    %                                               endogenous variable
    %   mh_conf_sig             [double]            2 by 1 vector with upper
    %                                               and lower bound of HPD intervals
    %   oo_                     [structure]         Dynare structure where the results are saved.
    %   options_                [structure]         Dynare options structure
    %
    % OUTPUTS
    %   oo_          [structure]        Dynare structure where the results are saved.
    
    
    
    % Copyright (C) 2008-2013 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    if strcmpi(type,'posterior')
        TYPE = 'Posterior';
        PATH = [dname '/metropolis/'];
    else
        TYPE = 'Prior';
        PATH = [dname '/prior/moments/'];
    end
    
    indx = check_name(vartan,var);
    if isempty(indx)
        disp([ type '_analysis:: ' var ' is not a stationary endogenous variable!'])
        return
    end
    jndx = check_name(exonames,exo);
    if isempty(jndx)
        disp([ type '_analysis:: ' exo ' is not a declared exogenous variable!'])
        return
    end
    
    var=deblank(var);
    exo=deblank(exo);
    
    name = [ var '.' exo ];
    if isfield(oo_, [ TYPE 'TheoreticalMoments'])
        temporary_structure = oo_.([TYPE, 'TheoreticalMoments']);
        if isfield(temporary_structure,'dsge')
            temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge;
            if isfield(temporary_structure,'VarianceDecomposition')
                temporary_structure = oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.Mean;
                if isfield(temporary_structure,name)
                    % Nothing to do.
                    return
                end
            end
        end
    end
    
    ListOfFiles = dir([ PATH  fname '_' TYPE 'VarianceDecomposition*.mat']);
    i1 = 1; tmp = zeros(NumberOfSimulations,1);
    indice = (indx-1)*rows(exonames)+jndx;
    for file = 1:length(ListOfFiles)
        load([ PATH ListOfFiles(file).name ]);
        i2 = i1 + rows(Decomposition_array) - 1;
        tmp(i1:i2) = Decomposition_array(:,indice);
        i1 = i2+1;
    end
    
    if options_.estimation.moments_posterior_density.indicator
        [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
            posterior_moments(tmp,1,mh_conf_sig);
    else
        [p_mean, p_median, p_var, hpd_interval, p_deciles] = ...
            posterior_moments(tmp,0,mh_conf_sig);        
    end
    
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.Mean.(var).(exo) = p_mean;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.Median.(var).(exo) = p_median;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.Variance.(var).(exo) = p_var;
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.HPDinf.(var).(exo) = hpd_interval(1);
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.HPDsup.(var).(exo) = hpd_interval(2);
    oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.deciles.(var).(exo) = p_deciles;
    if options_.estimation.moments_posterior_density.indicator
        oo_.([TYPE, 'TheoreticalMoments']).dsge.VarianceDecomposition.density.(var).(exo) = density;
    end