Skip to content
Snippets Groups Projects
Select Git revision
  • f2b0bdf0a2a97b5e35c43657cde3b70ed2e6dd38
  • master default
  • julia
  • created_preprocessor_repo
4 results

NumericalInitialization.cc

Blame
  • Forked from Dynare / preprocessor
    Source project has a limited visibility.
    global_initialization.m 22.84 KiB
    function global_initialization()
    %function global_initialization()
    % initializes global variables and options for DYNARE
    %
    % INPUTS
    %    none
    %
    % OUTPUTS
    %    none
    %
    % SPECIAL REQUIREMENTS
    %    none
    
    % Copyright (C) 2003-2015 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    global oo_ M_ options_ estim_params_ bayestopt_ estimation_info ex0_ ys0_
    
    estim_params_ = [];
    bayestopt_ = [];
    options_.datafile = '';
    options_.dirname = M_.fname;
    M_.dname = M_.fname;
    options_.dataset = [];
    options_.verbosity = 1;
    options_.terminal_condition = 0;
    options_.rplottype = 0;
    options_.smpl = 0;
    options_.dynatol.f = 1e-5;
    options_.dynatol.x = 1e-5;
    options_.slowc = 1;
    options_.timing = 0;
    options_.gstep = ones(2,1);
    options_.gstep(1) = 1e-2;
    options_.gstep(2) = 1.0;
    options_.scalv = 1;
    options_.debug = 0;
    options_.initval_file = 0;
    options_.Schur_vec_tol = 1e-11; % used to find nonstationary variables in Schur decomposition of the
                                    % transition matrix
    options_.qz_criterium = [];
    options_.qz_zero_threshold = 1e-6;
    options_.lyapunov_complex_threshold = 1e-15;
    options_.solve_tolf = eps^(1/3);
    options_.solve_tolx = eps^(2/3);
    options_.dr_display_tol=1e-6;
    options_.minimal_workspace = 0;
    options_.dp.maxit = 3000;
    options_.steady.maxit = 50;
    options_.simul.maxit = 50;
    
    options_.mode_check.status = 0;
    options_.mode_check.neighbourhood_size = .5;
    options_.mode_check.symmetric_plots = 1;
    options_.mode_check.number_of_points = 20;
    options_.mode_check.nolik = 0;
    
    options_.huge_number = 1e7;
    
    % Default number of threads for parallelized mex files.
    options_.threads.kronecker.A_times_B_kronecker_C = 1;
    options_.threads.kronecker.sparse_hessian_times_B_kronecker_C = 1;
    options_.threads.local_state_space_iteration_2 = 1;
    
    % steady state
    options_.jacobian_flag = 1;
    
    % steady state file
    if exist([M_.fname '_steadystate2.m'],'file')
        options_.steadystate_flag = 2;
    elseif exist([M_.fname '_steadystate.m'],'file')
        options_.steadystate_flag = 1;
    else
        options_.steadystate_flag = 0;
    end
    options_.steadystate_partial = [];
    options_.steadystate.nocheck = 0;
    
    % subset of the estimated deep parameters
    options_.ParamSubSet = 'None';
    
    % bvar-dsge
    M_.bvar = [];
    options_.dsge_var = 0;
    options_.dsge_varlag = 4;
    
    % BVAR a la Sims
    options_.bvar_replic = 2000;
    options_.bvar_prior_tau = 3;
    options_.bvar_prior_decay = 0.5;
    options_.bvar_prior_lambda = 5;
    options_.bvar_prior_mu = 2;
    options_.bvar_prior_omega = 1;
    options_.bvar_prior_flat = 0;
    options_.bvar_prior_train = 0;
    
    % Initialize the field that will contain the optimization algorigthm's options declared in the
    % estimation command (if anny).
    options_.optim_opt = [];
    
    % Optimization algorithm [6] gmhmaxlik
    gmhmaxlik.iterations = 3;
    gmhmaxlik.number = 20000;
    gmhmaxlik.nclimb = 200000;
    gmhmaxlik.nscale = 200000;
    gmhmaxlik.target = 1/3; % Target for the acceptance rate.
    options_.gmhmaxlik = gmhmaxlik;
    
    % Request user input.
    options_.nointeractive = 0;
    
    % Graphics
    options_.graphics.nrows = 3;
    options_.graphics.ncols = 3;
    options_.graphics.line_types = {'b-'};
    options_.graphics.line_width = 1;
    options_.graph_format = 'eps';
    options_.nodisplay = 0;
    options_.nograph = 0;
    options_.XTick = [];
    options_.XTickLabel = [];
    options_.console_mode = 0;
    if isoctave
        if sum(get(0,'screensize'))==4
            options_.console_mode = 1;
            options_.nodisplay = 1;
        end
    else
        if isunix && (~usejava('jvm') || ~feature('ShowFigureWindows'))
            options_.console_mode = 1;
            options_.nodisplay = 1;
        end
    end
    
    % IRFs & other stoch_simul output
    options_.irf = 40;
    options_.impulse_responses.plot_threshold=1e-10;
    options_.relative_irf = 0;
    options_.ar = 5;
    options_.hp_filter = 0;
    options_.one_sided_hp_filter = 1600;
    options_.hp_ngrid = 512;
    options_.nodecomposition = 0;
    options_.nomoments = 0;
    options_.nocorr = 0;
    options_.periods = 0;
    options_.noprint = 0;
    options_.SpectralDensity.trigger = 0;
    options_.SpectralDensity.plot  = 1; 
    options_.SpectralDensity.cutoff  = 150; 
    options_.SpectralDensity.sdl = 0.01; 
    options_.nofunctions = false;
    
    options_.bandpass.indicator = 0;
    options_.bandpass.passband = [6; 32];
    
    % Extended path options
    %
    % Set debug flag
    ep.debug = 0;
    % Set memory flag
    ep.memory = 0;
    % Set verbose mode
    ep.verbosity = 0;
    % Set bytecode flag
    ep.use_bytecode = 0;
    % Initialization of the perfect foresight equilibrium paths
    % * init=0, previous solution is used.
    % * init=1, a path generated with the first order reduced form is used.
    % * init=2, mix of cases 0 and 1.
    ep.init = 0;
    % Maximum number of iterations for the deterministic solver.
    ep.maxit = 500;
    % Number of periods for the perfect foresight model.
    ep.periods = 200;
    % Default step for increasing the number of periods if needed
    ep.step = 50;
    % Set check_stability flag
    ep.check_stability = 0;
    % Define last periods used to test if the solution is stable with respect to an increase in the number of periods.
    ep.lp = 5;
    % Define first periods used to test if the solution is stable with respect to an increase in the number of periods.
    ep.fp = 2;
    % Define the distribution for the structural innovations.
    ep.innovation_distribution = 'gaussian';
    % Set flag for the seed
    ep.set_dynare_seed_to_default = 1;
    % Set algorithm for the perfect foresight solver
    ep.stack_solve_algo = 7;
    ep.solve_algo = 9;
    % Number of replications
    ep.replic_nbr = 1;
    % Parallel execution of replications
    ep.parallel_1 = false;
    % Stochastic extended path related options.
    ep.stochastic.method = '';
    ep.stochastic.algo = 0;
    ep.stochastic.quadrature.ortpol = 'hermite';
    ep.stochastic.order = 0;
    ep.stochastic.quadrature.nodes = 5;
    ep.stochastic.quadrature.pruned.status = 0;
    ep.stochastic.quadrature.pruned.relative = 1e-5;
    ep.stochastic.quadrature.pruned.level = 1e-5;
    ep.stochastic.hybrid_order = 0;
    % homotopic step in extended path simulations
    ep.stochastic.homotopic_steps = true;
    % Copy ep structure in options_ global structure
    options_.ep = ep;
    
    
    % Simulations of backward looking models options
    %
    bnlms.set_dynare_seed_to_default = 1;
    bnlms.innovation_distribution = 'gaussian';
    options_.bnlms = bnlms;
    
    
    % Particle filter
    %
    % Default is that we do not use the non linear kalman filter
    particle.status = 0;
    % How do we initialize the states?
    particle.initialization = 1;
    particle.initial_state_prior_std = .1;
    % Set the default order of approximation of the model (perturbation).
    particle.perturbation = 2;
    % Set the default number of particles.
    particle.number_of_particles = 5000;
    % Set the default approximation order (Smolyak)
    particle.smolyak_accuracy = 3;
    % By default we don't use pruning
    particle.pruning = 0;
    % Set the Gaussian approximation method for particles distributions
    particle.approximation_method = 'unscented';
    % Set unscented parameters alpha, beta and kappa for gaussian approximation
    particle.unscented.alpha = .01;
    particle.unscented.beta = 2;
    particle.unscented.kappa = 0;
    % Configuration of resampling in case of particles
    particle.resampling.status.systematic = 1;
    particle.resampling.status.none = 0;
    particle.resampling.status.generic = 0;
    particle.resampling.threshold = .5;
    particle.resampling.method.kitagawa = 1;
    particle.resampling.method.smooth = 0;
    particle.resampling.method.stratified = 0;
    % Set default algorithm
    particle.filter_algorithm = 'sis';
    % Approximation of the proposal distribution
    particle.proposal_approximation.cubature = 1;
    particle.proposal_approximation.unscented = 0;
    particle.proposal_approximation.montecarlo = 0;
    % Approximation of the particle distribution
    particle.distribution_approximation.cubature = 1;
    particle.distribution_approximation.unscented = 0;
    particle.distribution_approximation.montecarlo = 0;
    % Number of partitions for the smoothed resampling method
    particle.resampling.number_of_partitions = 200;
    % Configuration of the mixture filters
    %particle.mixture_method = 'particles' ;
    % Size of the different mixtures
    particle.mixture_state_variables = 5 ;
    particle.mixture_structural_shocks = 1 ;
    particle.mixture_measurement_shocks = 1 ;
    % Online approach 
    particle.liu_west_delta = 0.99 ;
    particle.liu_west_chol_sigma_bar = .01 ;
    % Copy ep structure in options_ global structure
    options_.particle = particle;
    options_.rwgmh.init_scale = 1e-4 ;
    options_.rwgmh.scale_chain = 1 ;
    options_.rwgmh.scale_shock = 1e-5 ;
    
    % TeX output
    options_.TeX = 0;
    
    % Exel
    options_.xls_sheet = 1; % Octave does not support the empty string, rather use first sheet
    options_.xls_range = '';
    
    % Prior draws
    options_.prior_draws = 10000;
    
    options_.forecast = 0;
    
    % Model
    options_.linear = 0;
    
    % Deterministic simulation
    options_.stack_solve_algo = 0;
    options_.markowitz = 0.5;
    options_.minimal_solving_periods = 1;
    options_.endogenous_terminal_period = 0;
    options_.no_homotopy = 0;
    
    % Solution
    options_.order = 2;
    options_.pruning = 0;
    options_.solve_algo = 4;
    options_.linear = 0;
    options_.replic = 50;
    options_.simul_replic = 1;
    options_.drop = 100;
    % if mjdgges.dll (or .mexw32 or ....) doesn't exist, matlab/qz is added to the path.
    % There exists now qz/mjdgges.m that contains the calls to the old Sims code
    % Hence, if mjdgges.m is visible exist(...)==2,
    % this means that the DLL isn't avaiable and use_qzdiv is set to 1
    if exist('mjdgges','file')==2
        options_.use_qzdiv = 1;
    else
        options_.use_qzdiv = 0;
    end
    options_.aim_solver = 0; % i.e. by default do not use G.Anderson's AIM solver, use mjdgges instead
    options_.k_order_solver=0; % by default do not use k_order_perturbation but mjdgges
    options_.partial_information = 0;
    options_.ACES_solver = 0;
    options_.conditional_variance_decomposition = [];
    
    % Ramsey policy
    options_.ramsey_policy = 0;
    options_.instruments = [];
    options_.timeless = 0;
    
    % estimation
    estimation_info.empty_prior = struct(...
        'domain', [], 'interval', [], 'mean', [], ...
        'median', [], 'mode', [], 'shape', [], ...
        'shift', [], 'stdev', [], 'truncate', [], 'variance', []);
    estimation_info.empty_options = struct(...
        'bounds',[], 'init', [], 'jscale', []);
    estimation_info.subsamples.range = struct('date1', [], 'date2', []);
    estimation_info.parameter.prior = estimation_info.empty_prior;
    estimation_info.parameter.subsample_prior = estimation_info.empty_prior;
    estimation_info.parameter.options = estimation_info.empty_options;
    estimation_info.parameter.subsample_options = estimation_info.empty_options;
    estimation_info.structural_innovation.prior = estimation_info.empty_prior;
    estimation_info.structural_innovation.subsample_prior = estimation_info.empty_prior;
    estimation_info.structural_innovation.options = estimation_info.empty_options;
    estimation_info.structural_innovation.subsample_options = estimation_info.empty_options;
    estimation_info.structural_innovation_corr.prior = estimation_info.empty_prior;
    estimation_info.structural_innovation_corr.subsample_prior = estimation_info.empty_prior;
    estimation_info.structural_innovation_corr.options = estimation_info.empty_options;
    estimation_info.structural_innovation_corr.subsample_options = estimation_info.empty_options;
    estimation_info.measurement_error.prior = estimation_info.empty_prior;
    estimation_info.measurement_error.subsample_prior = estimation_info.empty_prior;
    estimation_info.measurement_error.options = estimation_info.empty_options;
    estimation_info.measurement_error.subsample_options = estimation_info.empty_options;
    estimation_info.measurement_error_corr.prior = estimation_info.empty_prior;
    estimation_info.measurement_error_corr.subsample_prior = estimation_info.empty_prior;
    estimation_info.measurement_error_corr.options = estimation_info.empty_options;
    estimation_info.measurement_error_corr.subsample_options = estimation_info.empty_options;
    estimation_info.subsamples_index = {};
    estimation_info.subsamples.range_index = {};
    estimation_info.parameter_prior_index = {};
    estimation_info.parameter_options_index = {};
    estimation_info.parameter.range_index = {};
    estimation_info.measurement_error_prior_index = {};
    estimation_info.measurement_error_options_index = {};
    estimation_info.measurement_error.range_index = {};
    estimation_info.structural_innovation_prior_index = {};
    estimation_info.structural_innovation_options_index = {};
    estimation_info.structural_innovation.range_index = {};
    estimation_info.measurement_error_corr_prior_index = {};
    estimation_info.measurement_error_corr_options_index = {};
    estimation_info.measurement_error_corr.range_index = {};
    estimation_info.structural_innovation_corr_prior_index = {};
    estimation_info.structural_innovation_corr_options_index = {};
    estimation_info.structural_innovation_corr.range_index = {};
    estimation_info.joint_parameter_prior_index = {};
    estimation_info.joint_parameter = {'index','domain','interval','mean','median','mode','shape','shift','stdev','truncate','variance'};
    options_.initial_period = NaN; %dates(1,1);
    options_.dataset.file = [];
    options_.dataset.series = [];
    options_.dataset.firstobs = dates();
    options_.dataset.lastobs = dates();
    options_.dataset.nobs = NaN;
    options_.dataset.xls_sheet = [];
    options_.dataset.xls_range = [];
    options_.Harvey_scale_factor = 10;
    options_.MaxNumberOfBytes = 1e6;
    options_.MaximumNumberOfMegaBytes = 111;
    options_.analytic_derivation = 0;
    options_.analytic_derivation_mode = 0;
    options_.bayesian_irf = 0;
    options_.bayesian_th_moments = 0;
    options_.diffuse_filter = 0;
    options_.filter_step_ahead = [];
    options_.filtered_vars = 0;
    options_.first_obs = NaN;
    options_.nobs = NaN;
    options_.kalman_algo = 0;
    options_.fast_kalman = 0;
    options_.kalman_tol = 1e-10;
    options_.diffuse_kalman_tol = 1e-6;
    options_.use_univariate_filters_if_singularity_is_detected = 1;
    options_.riccati_tol = 1e-6;
    options_.lik_algo = 1;
    options_.lik_init = 1;
    options_.load_mh_file = 0;
    options_.logdata = 0;
    options_.loglinear = 0;
    options_.linear_approximation = 0;
    options_.logged_steady_state = 0;
    options_.mh_conf_sig = 0.90;
    options_.prior_interval = 0.90;
    options_.mh_drop = 0.5;
    options_.mh_jscale = 0.2;
    options_.mh_init_scale = 2*options_.mh_jscale;
    options_.mh_mode = 1;
    options_.mh_nblck = 2;
    options_.mh_recover = 0;
    options_.mh_replic = 20000;
    options_.recursive_estimation_restart = 0;
    options_.MCMC_jumping_covariance='hessian';
    options_.use_calibration_initialization = 0;
    options_.endo_vars_for_moment_computations_in_estimation=[];
    
    % Tailored Random Block Metropolis-Hastings
    options_.TaRB.use_TaRB = 0;
    options_.TaRB.mode_compute=4;
    options_.TaRB.new_block_probability=0.25; %probability that next parameter belongs to new block
    
    % Run optimizer silently
    options_.silent_optimizer=0;
    
    % Prior restrictions
    options_.prior_restrictions.status = 0;
    options_.prior_restrictions.routine = [];
    
    options_.mode_compute = 4;
    options_.mode_file = '';
    options_.moments_varendo = 0;
    options_.nk = 1;
    options_.noconstant = 0;
    options_.nodiagnostic = 0;
    options_.mh_posterior_mode_estimation = 0;
    options_.prefilter = 0;
    options_.presample = 0;
    options_.prior_trunc = 1e-10;
    options_.smoother = 0;
    options_.student_degrees_of_freedom = 3;
    options_.posterior_max_subsample_draws = 1200;
    options_.sub_draws = [];
    options_.use_mh_covariance_matrix = 0;
    options_.gradient_method = 2; %used by csminwel and newrat
    options_.gradient_epsilon = 1e-6; %used by csminwel and newrat
    options_.posterior_sampling_method = 'random_walk_metropolis_hastings';
    options_.proposal_distribution = 'rand_multivariate_normal';
    options_.student_degrees_of_freedom = 3;
    options_.trace_plot_ma = 200;
    options_.mh_autocorrelation_function_size = 30;
    options_.plot_priors = 1;
    options_.cova_compute = 1;
    options_.parallel = 0;
    options_.parallel_info.isHybridMatlabOctave = false;
    options_.parallel_info.leaveSlaveOpen = 0;
    options_.parallel_info.RemoteTmpFolder = '';
    options_.number_of_grid_points_for_kde = 2^9;
    quarter = 1;
    years = [1 2 3 4 5 10 20 30 40 50];
    options_.conditional_variance_decomposition_dates = zeros(1,length(years));
    for i=1:length(years)
        options_.conditional_variance_decomposition_dates(i) = ...
            (years(i)-1)*4+quarter;
    end
    options_.filter_covariance = 0;
    options_.filter_decomposition = 0;
    options_.selected_variables_only = 0;
    options_.initialize_estimated_parameters_with_the_prior_mode = 0;
    options_.estimation_dll = 0;
    % Misc
    options_.conf_sig = 0.6;
    oo_.exo_simul = [];
    oo_.endo_simul = [];
    ys0_ = [];
    ex0_ = [];
    oo_.dr = [];
    oo_.exo_steady_state = [];
    oo_.exo_det_steady_state = [];
    oo_.exo_det_simul = [];
    
    M_.params = [];
    M_.endo_histval = [];
    M_.exo_histval = [];
    M_.exo_det_histval = [];
    M_.Correlation_matrix = [];
    M_.Correlation_matrix_ME = [];
    M_.parameter_used_with_lead_lag = false;
    
    % homotopy for steady state
    options_.homotopy_mode = 0;
    options_.homotopy_steps = 1;
    options_.homotopy_force_continue = 0;
    
    %csminwel optimization routine
    csminwel.tolerance.f=1e-7;
    csminwel.maxiter=1000;
    csminwel.verbosity=1;
    csminwel.Save_files=1;
    
    options_.csminwel=csminwel;
    
    %newrat optimization routine
    newrat.hess=1; % dynare numerical hessian
    newrat.tolerance.f=1e-5;
    newrat.tolerance.f_analytic=1e-7;
    newrat.maxiter=1000;
    newrat.verbosity=1;
    newrat.Save_files=1;
    
    options_.newrat=newrat;
    
    % Simplex optimization routine (variation on Nelder Mead algorithm).
    simplex.tolerance.x = 1e-4;
    simplex.tolerance.f = 1e-4;
    simplex.maxiter = 5000;
    simplex.maxfcallfactor = 500;
    simplex.maxfcall = [];
    simplex.verbosity = 2;
    simplex.delta_factor=0.05;
    options_.simplex = simplex;
    
    % CMAES optimization routine.
    cmaes.SaveVariables='off';
    cmaes.DispFinal='on';
    cmaes.WarnOnEqualFunctionValues='no';
    cmaes.DispModulo='10';
    cmaes.LogModulo='0';
    cmaes.LogTime='0';
    cmaes.TolFun = 1e-7;
    cmaes.TolX = 1e-7;
    options_.cmaes = cmaes;
    
    % simpsa optimization routine.
    simpsa.TOLFUN = 1e-4;
    simpsa.TOLX = 1e-4;
    simpsa.TEMP_END = .1;
    simpsa.COOL_RATE = 10;
    simpsa.INITIAL_ACCEPTANCE_RATIO = .95;
    simpsa.MIN_COOLING_FACTOR = .9;
    simpsa.MAX_ITER_TEMP_FIRST = 50;
    simpsa.MAX_ITER_TEMP_LAST = 2000;
    simpsa.MAX_ITER_TEMP = 10;
    simpsa.MAX_ITER_TOTAL = 5000;
    simpsa.MAX_TIME = 2500;
    simpsa.MAX_FUN_EVALS = 20000;
    simpsa.DISPLAY = 'iter';
    options_.simpsa = simpsa;
    
    %solveopt optimizer
    solveopt.minimizer_indicator=-1; %use minimizer
    solveopt.TolX=1e-6; %accuracy of argument
    solveopt.TolFun=1e-6; %accuracy of function 
    solveopt.MaxIter=15000;
    solveopt.verbosity=1;
    solveopt.TolXConstraint=1.e-8;
    solveopt.SpaceDilation=2.5;
    solveopt.LBGradientStep=1.e-11;
    options_.solveopt=solveopt;
    
    %simulated annealing
    options_.saopt.neps=10;
    options_.saopt.maximizer_indicator=0;
    options_.saopt.rt=0.10;
    options_.saopt.MaxIter=100000;
    options_.saopt.verbosity=1;
    options_.saopt.TolFun=1.0e-8;
    options_.saopt.initial_temperature=15;
    options_.saopt.ns=10;
    options_.saopt.nt=10;
    options_.saopt.step_length_c=0.1;
    options_.saopt.initial_step_length=1;
    
    % prior analysis
    options_.prior_mc = 20000;
    options_.prior_analysis_endo_var_list = [];
    
    % did model undergo block decomposition + minimum feedback set computation ?
    options_.block = 0;
    
    % model evaluated using a compiled MEX
    options_.use_dll = 0;
    
    % model evaluated using bytecode.dll
    options_.bytecode = 0;
    
    % if equal to 1 use a fixed point method to solve Sylvester equation (for large scale models)
    options_.sylvester_fp = 0;
    
    % convergence criteria to solve iteratively a sylvester equations
    options_.sylvester_fixed_point_tol = 1e-12;
    
    % if 1 use a fixed point method to solve Lyapunov equation (for large scale models)
    options_.lyapunov_fp = 0;
    % if 1 use a doubling algorithm to solve Lyapunov equation (for large scale models)
    options_.lyapunov_db = 0;
    % if 1 use a square root solver to solve Lyapunov equation (for large scale models)
    options_.lyapunov_srs = 0;
    
    % convergence criterion for iteratives methods to solve lyapunov equations
    options_.lyapunov_fixed_point_tol = 1e-10;
    options_.lyapunov_doubling_tol = 1e-16;
    
    % if equal to 1 use a cycle reduction method to compute the decision rule (for large scale models)
    options_.dr_cycle_reduction = 0;
    
    % convergence criterion for iteratives methods to solve the decision rule
    options_.dr_cycle_reduction_tol = 1e-7;
    
    % if equal to 1 use a logarithmic reduction method to compute the decision rule (for large scale models)
    options_.dr_logarithmic_reduction = 0;
    
    % convergence criterion for iteratives methods to solve the decision rule
    options_.dr_logarithmic_reduction_tol = 1e-12;
    
    % convergence criterion for iteratives methods to solve the decision rule
    options_.dr_logarithmic_reduction_maxiter = 100;
    
    % dates for historical time series
    options_.initial_date.freq = 1;
    options_.initial_date.period = 1;
    options_.initial_date.subperiod = 0;
    
    % discretionary policy
    options_.discretionary_policy = 0;
    options_.discretionary_tol = 1e-7;
    
    % Shock decomposition
    options_.parameter_set = [];
    
    % Nonlinearfilters
    options_.nonlinear_filter = [];
    
    % SBVAR & MS SBVAR initializations:
    % SBVAR
    options_.ms.vlistlog = [];
    options_.ms.restriction_fname = 0;
    options_.ms.cross_restrictions = 0;
    options_.ms.contemp_reduced_form = 0;
    options_.ms.real_pseudo_forecast = 0;
    options_.ms.dummy_obs = 0;
    options_.ms.ncsk = 0;
    options_.ms.indxgforhat = 1;
    options_.ms.indxgimfhat = 1;
    options_.ms.indxestima = 1;
    options_.ms.indxgdls = 1;
    options_.ms.cms =0;
    options_.ms.ncms = 0;
    options_.ms.eq_cms = 1;
    options_.ms.banact = 1;
    options_.ms.log_var = [];
    options_.ms.Qi = [];
    options_.ms.Ri = [];
    options_.ms.lower_cholesky = 0;
    options_.ms.upper_cholesky = 0;
    options_.ms.constants_exclusion = 0;
    %options_.ms.nstates = 2;
    %options_.ms.indxscalesstates = 0;
    %options_.ms.q_diag = 0.85;
    %options_.ms.flat_prior = 0;
    %options_.ms.nstd = 6;
    %options_.ms.ninv = 1000;
    %options_.ms.indxparr = 1;
    %options_.ms.indxovr = 0;
    %options_.ms.aband = 1;
    %options_.ms.indxap = 1;
    %options_.ms.apband = 1;
    %options_.ms.indximf = 1;
    %options_.ms.imfband = 1;
    %options_.ms.indxfore = 0;
    %options_.ms.foreband = 0;
    %options_.ms.cnum = 0;
    
    % MS SBVAR (and some SBVAR)
    options_ = initialize_ms_sbvar_options(M_, options_);
    
    % saved graph formats
    options_.graph_save_formats.eps = 1;
    options_.graph_save_formats.pdf = 0;
    options_.graph_save_formats.fig = 0;
    
    % risky steady state
    options_.risky_steadystate = 0;
    
    % endogenous prior
    options_.endogenous_prior = 0;
    options_.endogenous_prior_restrictions.irf={};
    options_.endogenous_prior_restrictions.moment={};
    
    % OSR Optimal Simple Rules
    options_.osr.opt_algo=4;
    
    % use GPU
    options_.gpu = 0;
    
    %Geweke convergence diagnostics
    options_.convergence.geweke.taper_steps=[4 8 15];
    options_.convergence.geweke.geweke_interval=[0.2 0.5];
    
    % Options for lmmcp solver
    options_.lmmcp = [];
    
    % initialize persistent variables in priordens()
    priordens([],[],[],[],[],[],1);
    % initialize persistent variables in dyn_first_order_solver()
    dyn_first_order_solver();
    
    % Set dynare random generator and seed.
    set_dynare_seed('default');
    
    
    % Create directories
    [junk,junk]=mkdir(M_.fname);
    [junk,junk]=mkdir([M_.fname '/Output']);
    
    % Load user configuration file.
    if isfield(options_, 'global_init_file')
        run(options_.global_init_file);
    end