Skip to content
Snippets Groups Projects
Select Git revision
  • 28e3f1c66d2e54806b72886f849b628276c64b4a
  • master default
  • nlf-fixes
  • newton-quadratic-equation-solver
  • nlf-fixes-r
  • nls-fixes
  • sep-fixes
  • sep
  • use-dprior
  • ep-sparse
  • rebase-1
  • parfor
  • reset-seed-in-unit-tests
  • remove-persistent-variables
  • nonlinear-filter-fixes
  • pac-mce-with-composite-target
  • 6.x
  • dprior
  • covariance-quadratic-approximation
  • benchmark-ec
  • kalman_mex
  • 5.5
  • 5.4
  • 5.3
  • 5.2
  • 5.1
  • 5.0
  • 5.0-rc1
  • 4.7-beta3
  • 4.7-beta2
  • 4.7-beta1
  • 4.6.4
  • 4.6.3
  • 4.6.2
  • 4.6.1
  • 4.6.0
  • 4.6.0-rc2
  • 4.6.0-rc1
  • 4.6-beta1
  • 4.5.7
  • 4.5.6
41 results

dynare++-tutorial.tex

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    covariance_mc_analysis.m 4.25 KiB
    function oo_ = covariance_mc_analysis(NumberOfSimulations,type,dname,fname,vartan,nvar,var1,var2,mh_conf_sig,oo_)
    % This function analyses the (posterior or prior) distribution of the
    % endogenous variables covariance matrix.
    
    % Copyright (C) 2008-2009 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    if strcmpi(type,'posterior')
        TYPE = 'Posterior';
        PATH = [dname '/metropolis/'];
    else
        TYPE = 'Prior';
        PATH = [dname '/prior/moments/'];
    end
    
    indx1 = check_name(vartan,var1);
    if isempty(indx1)
        disp([ type '_analysis:: ' var1 ' is not a stationary endogenous variable!'])
        return
    end
    if ~isempty(var2)
        indx2 = check_name(vartan,var2);
        if isempty(indx2)
            disp([ type '_analysis:: ' var2 ' is not a stationary endogenous variable!'])
            return
        end
    else
        indx2 = indx1;
        var2 = var1;
    end
    
    if isfield(oo_,[ TYPE 'TheoreticalMoments'])
        eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments;'])   
        if isfield(temporary_structure,'dsge')
            eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments.dsge;'])
            if isfield(temporary_structure,'covariance')
                eval(['temporary_structure = oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Mean;'])
                if isfield(temporary_structure,var1)
                    eval(['temporary_structure_1 = oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Mean.' var1 ';'])
                    if isfield(temporary_structure_1,var2)
                        % Nothing to do (the covariance matrix is symmetric!).
                        return
                    end
                else
                    if isfield(temporary_structure,var2)
                        eval(['temporary_structure_2 = oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Mean.' var2 ';'])
                        if isfield(temporary_structure_2,var1)
                            % Nothing to do (the covariance matrix is symmetric!).
                            return
                        end
                    end
                end
            end
        end
    end
    
    ListOfFiles = dir([ PATH  fname '_' TYPE '2ndOrderMoments*.mat']);
    i1 = 1; tmp = zeros(NumberOfSimulations,1);
    for file = 1:length(ListOfFiles)
        load([ PATH ListOfFiles(file).name ]);
        i2 = i1 + rows(Covariance_matrix) - 1;
        tmp(i1:i2) = Covariance_matrix(:,symmetric_matrix_index(indx1,indx2,nvar));
        i1 = i2+1;
    end
    name = [var1 '.' var2];
    if ~isconst(tmp)
        [p_mean, p_median, p_var, hpd_interval, p_deciles, density] = ...
            posterior_moments(tmp,1,mh_conf_sig);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Mean.' name ' = p_mean;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Median.' name ' = p_median;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Variance.' name ' = p_var;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.HPDinf.' name ' = hpd_interval(1);']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.HPDsup.' name ' = hpd_interval(2);']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.deciles.' name ' = p_deciles;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.density.' name ' = density;']);
    else
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Mean.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Median.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.Variance.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.HPDinf.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.HPDsup.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.deciles.' name ' = NaN;']);
        eval(['oo_.' TYPE 'TheoreticalMoments.dsge.covariance.density.' name ' = NaN;']);
    end