Skip to content
Snippets Groups Projects
Select Git revision
  • 48acf40c00667705b17a888936143cb9fc893529
  • master default
  • nlf-fixes
  • newton-quadratic-equation-solver
  • nlf-fixes-r
  • nls-fixes
  • sep-fixes
  • sep
  • use-dprior
  • ep-sparse
  • rebase-1
  • parfor
  • reset-seed-in-unit-tests
  • remove-persistent-variables
  • nonlinear-filter-fixes
  • pac-mce-with-composite-target
  • 6.x
  • dprior
  • covariance-quadratic-approximation
  • benchmark-ec
  • kalman_mex
  • 5.5
  • 5.4
  • 5.3
  • 5.2
  • 5.1
  • 5.0
  • 5.0-rc1
  • 4.7-beta3
  • 4.7-beta2
  • 4.7-beta1
  • 4.6.4
  • 4.6.3
  • 4.6.2
  • 4.6.1
  • 4.6.0
  • 4.6.0-rc2
  • 4.6.0-rc1
  • 4.6-beta1
  • 4.5.7
  • 4.5.6
41 results

writeVarExpectationFunction.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    writeVarExpectationFunction.m 4.03 KiB
    function writeVarExpectationFunction(var_model_name, horizon)
    %function writeVarExpectationFunction(model_name)
    
    %%
    global M_;
    
    %% open file
    basename = ['var_forecast_' var_model_name];
    fid = fopen([basename '.m'], 'w');
    if fid == -1
        error(['Could not open ' basename '.m for writing']);
    end
    
    %% load .mat file
    load(var_model_name, 'autoregressive_matrices', 'mu');
    if ~exist('autoregressive_matrices', 'var') || ~exist('mu', 'var')
        error([var_model_name '.mat : must contain the variables autoregressive_matrices and mu']);
    end
    
    %%
    fprintf(fid, 'function ret = %s(y)\n', basename);
    fprintf(fid, '%%function ret = %s(y)\n', basename);
    fprintf(fid, '%% Calculates the %d-step-ahead forecast from the VAR model %s\n', max(horizon), var_model_name);
    fprintf(fid, '%%\n%% Created automatically by Dynare on %s\n%%\n\n', datetime);
    fprintf(fid, '%%%% Construct y\n');
    fprintf(fid, 'assert(length(y) == %d);\n', sum(sum(M_.lead_lag_incidence ~= 0)));
    
    endo_names = cellstr(M_.endo_names);
    nvars = length(M_.var.(var_model_name).var_list_);
    var_model_order = M_.var.(var_model_name).order;
    yidx = zeros(nvars, min(var_model_order, 2));
    % first for order <= 2, drawing variables directly from their endo_names
    for i=1:min(var_model_order, 2)
        if mod(i, 2) == 0
            ridx = 1;
        else
            ridx = 2;
        end
        for j=1:nvars
            yidx(j, i) = M_.lead_lag_incidence(ridx, strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), endo_names)');
        end
    end
    yidx = yidx(:);
    
    % then for order > 2
    if var_model_order > 2
        y1idx = zeros((var_model_order - 2)*nvars, var_model_order - 2);
        for i=3:var_model_order
            for j=1:nvars
                varidx = [M_.aux_vars.orig_index] == find(strcmp(strtrim(M_.var.(var_model_name).var_list_(j,:)), endo_names)) ...
                    & [M_.aux_vars.orig_lead_lag] == -i;
                cidx = [M_.aux_vars.endo_index];
                cidx = cidx(varidx);
                y1idx(j, i-2) = M_.lead_lag_incidence(2, cidx);
            end
        end
        yidx = [yidx ; y1idx(:)];
    end
    fprintf(fid, 'y = y([');
    fprintf(fid, '%d ', yidx);
    fprintf(fid, ']);\n');
    
    lm = length(mu);
    lc = length(autoregressive_matrices);
    assert(lc == var_model_order);
    
    A = zeros(lm*lc, lm*lc);
    for i=1:lc
        if any([lm lm] ~= size(autoregressive_matrices{i}))
            error(['The dimensions of mu and autoregressive_matrices for ' var_model_name ' are off']);