Skip to content
Snippets Groups Projects
Select Git revision
  • a6beb82341c6602f4795ec1af1fa68d9da08f7d6
  • master default
  • nlf-fixes
  • newton-quadratic-equation-solver
  • nlf-fixes-r
  • nls-fixes
  • sep-fixes
  • sep
  • use-dprior
  • ep-sparse
  • rebase-1
  • parfor
  • reset-seed-in-unit-tests
  • remove-persistent-variables
  • nonlinear-filter-fixes
  • pac-mce-with-composite-target
  • 6.x
  • dprior
  • covariance-quadratic-approximation
  • benchmark-ec
  • kalman_mex
  • 5.5
  • 5.4
  • 5.3
  • 5.2
  • 5.1
  • 5.0
  • 5.0-rc1
  • 4.7-beta3
  • 4.7-beta2
  • 4.7-beta1
  • 4.6.4
  • 4.6.3
  • 4.6.2
  • 4.6.1
  • 4.6.0
  • 4.6.0-rc2
  • 4.6.0-rc1
  • 4.6-beta1
  • 4.5.7
  • 4.5.6
41 results

AHessian.m

Blame
  • Forked from Dynare / dynare
    7223 commits behind, 4 commits ahead of the upstream repository.
    AHessian.m 5.75 KiB
    function [AHess, DLIK, LIK] = AHessian(T,R,Q,H,P,Y,DT,DYss,DOm,DH,DP,start,mf,kalman_tol,riccati_tol)
    % function [AHess, DLIK, LIK] = AHessian(T,R,Q,H,P,Y,DT,DYss,DOm,DH,DP,start,mf,kalman_tol,riccati_tol)
    %
    % computes the asymptotic hessian matrix of the log-likelihood function of
    % a state space model (notation as in kalman_filter.m in DYNARE
    % Thanks to  Nikolai Iskrev
    %
    % NOTE: the derivative matrices (DT,DR ...) are 3-dim. arrays with last
    % dimension equal to the number of structural parameters
    
    % Copyright (C) 2011-2016 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    
        k = size(DT,3);                                 % number of structural parameters
        smpl = size(Y,2);                               % Sample size.
        pp   = size(Y,1);                               % Maximum number of observed variables.
        mm   = size(T,2);                               % Number of state variables.
        a    = zeros(mm,1);                             % State vector.
        Om   = R*Q*transpose(R);                        % Variance of R times the vector of structural innovations.
        t    = 0;                                       % Initialization of the time index.
        oldK = 0;
        notsteady   = 1;                                % Steady state flag.
        F_singular  = 1;
    
    lik  = zeros(smpl,1);                           % Initialization of the vector gathering the densities.
    LIK  = Inf;                                     % Default value of the log likelihood.
    if nargout > 1,
        DLIK  = zeros(k,1);                             % Initialization of the score.
    end
        AHess  = zeros(k,k);                             % Initialization of the Hessian
        Da    = zeros(mm,k);                             % State vector.
        Dv = zeros(length(mf),k);
        
    %     for ii = 1:k
    %         DOm = DR(:,:,ii)*Q*transpose(R) + R*DQ(:,:,ii)*transpose(R) + R*Q*transpose(DR(:,:,ii)); 
    %     end
        
        while notsteady && t<smpl
            t  = t+1;
            v  = Y(:,t)-a(mf);
            F  = P(mf,mf) + H;
            if rcond(F) < kalman_tol
                if ~all(abs(F(:))<kalman_tol)
                    return
                else
                    a = T*a;
                    P = T*P*transpose(T)+Om;
                end
            else
                F_singular = 0;
                iF     = inv(F);
                K      = P(:,mf)*iF;
                lik(t) = log(det(F))+transpose(v)*iF*v;
    
                [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K);
                
                		for ii = 1:k
                            Dv(:,ii)   = -Da(mf,ii) - DYss(mf,ii);
                            Da(:,ii)   = DT(:,:,ii)*(a+K*v) + T*(Da(:,ii)+DK(:,:,ii)*v + K*Dv(:,ii));
                            if t>=start && nargout > 1
                                DLIK(ii,1)  = DLIK(ii,1) + trace( iF*DF(:,:,ii) ) + 2*Dv(:,ii)'*iF*v - v'*(iF*DF(:,:,ii)*iF)*v;
                            end
                        end
                        vecDPmf = reshape(DP(mf,mf,:),[],k);
    %                     iPmf = inv(P(mf,mf));
                        if t>=start
                            AHess = AHess + Dv'*iF*Dv + .5*(vecDPmf' * kron(iF,iF) * vecDPmf);
                        end
                a      = T*(a+K*v);                   
                P      = T*(P-K*P(mf,:))*transpose(T)+Om;
                DP     = DP1;
            end
            notsteady = max(max(abs(K-oldK))) > riccati_tol;
            oldK = K;
        end
    
        if F_singular
            error('The variance of the forecast error remains singular until the end of the sample')
        end
    
        
        if t < smpl
            t0 = t+1;
            while t < smpl
                t = t+1;
                v = Y(:,t)-a(mf);
                      	for ii = 1:k
                            Dv(:,ii)   = -Da(mf,ii)-DYss(mf,ii);
                            Da(:,ii)   = DT(:,:,ii)*(a+K*v) + T*(Da(:,ii)+DK(:,:,ii)*v + K*Dv(:,ii));
                    if t>=start && nargout >1
                       DLIK(ii,1)  = DLIK(ii,1) + trace( iF*DF(:,:,ii) ) + 2*Dv(:,ii)'*iF*v - v'*(iF*DF(:,:,ii)*iF)*v;
                    end
                        end
                 if t>=start
                    AHess = AHess + Dv'*iF*Dv; 
                 end   
                a = T*(a+K*v);
            lik(t) = transpose(v)*iF*v;
            end
            AHess = AHess + .5*(smpl-t0+1)*(vecDPmf' * kron(iF,iF) * vecDPmf);
            if nargout > 1
            for ii = 1:k
    %             DLIK(ii,1)  = DLIK(ii,1) + (smpl-t0+1)*trace( iF*DF(:,:,ii) );
            end
            end
            lik(t0:smpl) = lik(t0:smpl) + log(det(F));
    %         for ii = 1:k;
    %             for jj = 1:ii
    %              H(ii,jj) = trace(iPmf*(.5*DP(mf,mf,ii)*iPmf*DP(mf,mf,jj) + Dv(:,ii)*Dv(:,jj)'));
    %             end
    %         end
        end    
        
    AHess = -AHess;  
    if nargout > 1,
        DLIK = DLIK/2;
    end
    % adding log-likelihhod constants
    lik = (lik + pp*log(2*pi))/2;
    
    LIK = sum(lik(start:end)); % Minus the log-likelihood.
    % end of main function    
        
    function [DK,DF,DP1] = computeDKalman(T,DT,DOm,P,DP,DH,mf,iF,K)
    
                k      = size(DT,3);
                tmp    = P-K*P(mf,:);
    
    for ii = 1:k
        DF(:,:,ii)  = DP(mf,mf,ii) + DH(:,:,ii); 
        DiF(:,:,ii) = -iF*DF(:,:,ii)*iF;
        DK(:,:,ii)  = DP(:,mf,ii)*iF + P(:,mf)*DiF(:,:,ii);
        Dtmp        = DP(:,:,ii) - DK(:,:,ii)*P(mf,:) - K*DP(mf,:,ii);
        DP1(:,:,ii) = DT(:,:,ii)*tmp*T' + T*Dtmp*T' + T*tmp*DT(:,:,ii)' + DOm(:,:,ii);
    end
    
    % end of computeDKalman