Skip to content
Snippets Groups Projects
Select Git revision
  • e3485e8929e2d85463ff0d2feda8a3e2a5a8af70
  • master default
  • nlf-fixes
  • newton-quadratic-equation-solver
  • nlf-fixes-r
  • nls-fixes
  • sep-fixes
  • sep
  • use-dprior
  • ep-sparse
  • rebase-1
  • parfor
  • reset-seed-in-unit-tests
  • remove-persistent-variables
  • nonlinear-filter-fixes
  • pac-mce-with-composite-target
  • 6.x
  • dprior
  • covariance-quadratic-approximation
  • benchmark-ec
  • kalman_mex
  • 5.5
  • 5.4
  • 5.3
  • 5.2
  • 5.1
  • 5.0
  • 5.0-rc1
  • 4.7-beta3
  • 4.7-beta2
  • 4.7-beta1
  • 4.6.4
  • 4.6.3
  • 4.6.2
  • 4.6.1
  • 4.6.0
  • 4.6.0-rc2
  • 4.6.0-rc1
  • 4.6-beta1
  • 4.5.7
  • 4.5.6
41 results

identification_analysis.m

Blame
  • Forked from Dynare / dynare
    Source project has a limited visibility.
    plot_identification.m 14.61 KiB
    function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, save_figure)
    % function plot_identification(params,idemoments,idehess,idemodel, idelre, advanced, tittxt, name, IdentifDirectoryName, save_figure)
    %
    % INPUTS
    %    o params             [array] parameter values for identification checks
    %    o idemoments         [structure] identification results for the moments
    %    o idehess            [structure] identification results for the Hessian
    %    o idemodel           [structure] identification results for the reduced form solution
    %    o idelre             [structure] identification results for the LRE model
    %    o advanced           [integer] flag for advanced identification checks
    %    o tittxt             [char] name of the results to plot 
    %    o name               [char] list of names
    %    o IdentifDirectoryName   [char] directory name
    %    o save_figure        [integer] flag  for saving plots (=1) or not (=0)
    %    
    % OUTPUTS
    %    None
    %    
    % SPECIAL REQUIREMENTS
    %    None
    
    % Copyright (C) 2008-2011 Dynare Team
    %
    % This file is part of Dynare.
    %
    % Dynare is free software: you can redistribute it and/or modify
    % it under the terms of the GNU General Public License as published by
    % the Free Software Foundation, either version 3 of the License, or
    % (at your option) any later version.
    %
    % Dynare is distributed in the hope that it will be useful,
    % but WITHOUT ANY WARRANTY; without even the implied warranty of
    % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    % GNU General Public License for more details.
    %
    % You should have received a copy of the GNU General Public License
    % along with Dynare.  If not, see <http://www.gnu.org/licenses/>.
    
    global M_ options_
    
    if nargin<10 || isempty(save_figure),
        save_figure=0;
    end
    
    [SampleSize, nparam]=size(params);
    siJnorm = idemoments.siJnorm;
    siHnorm = idemodel.siHnorm;
    siLREnorm = idelre.siLREnorm;
    
    % if prior_exist,
    %     tittxt = 'Prior mean - ';
    % else
    %     tittxt = '';
    % end
    tittxt1=regexprep(tittxt, ' ', '_');
    tittxt1=strrep(tittxt1, '.', '');
    if SampleSize == 1,
        siJ = idemoments.siJ;
        figure('Name',[tittxt, ' - Identification using info from observables']),
        subplot(211)
        mmm = (idehess.ide_strength_J);
        [ss, is] = sort(mmm);
        bar(log([idehess.ide_strength_J(:,is)' idehess.ide_strength_J_prior(:,is)']))
        set(gca,'xlim',[0 nparam+1])
        set(gca,'xticklabel','')
        dy = get(gca,'ylim');
        for ip=1:nparam,
            text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
        end
        legend('relative to param value','relative to prior std','Location','Best')
        if  idehess.flag_score,
            title('Identification strength with asymptotic Information matrix (log-scale)')
        else
            title('Identification strength with moments Information matrix (log-scale)')
        end
        
        subplot(212)
        bar(log([idehess.deltaM(is) idehess.deltaM_prior(is)]))
        set(gca,'xlim',[0 nparam+1])
        set(gca,'xticklabel','')
        dy = get(gca,'ylim');
        for ip=1:nparam,
            text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
        end
        legend('relative to param value','relative to prior std','Location','Best')
        if  idehess.flag_score,
            title('Sensitivity component with asymptotic Information matrix (log-scale)')
        else
            title('Sensitivity component with moments Information matrix (log-scale)')
        end
        saveas(gcf,[IdentifDirectoryName,'/',M_.fname,'_ident_strength_',tittxt1])
        eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_ident_strength_' tittxt1]);
        eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_ident_strength_' tittxt1]);
        
        if advanced,
            disp(' ')
            disp('Press ENTER to display advanced diagnostics'), pause,
            figure('Name',[tittxt, ' - Sensitivity plot']),
            subplot(211)
            mmm = (siJnorm)'./max(siJnorm);
            mmm1 = (siHnorm)'./max(siHnorm);
            mmm=[mmm mmm1];
            mmm1 = (siLREnorm)'./max(siLREnorm);
            offset=length(siHnorm)-length(siLREnorm);
            mmm1 = [NaN(offset,1); mmm1];
            mmm=[mmm mmm1];
            
            bar(log(mmm(is,:).*100))
            set(gca,'xlim',[0 nparam+1])
            set(gca,'xticklabel','')
            dy = get(gca,'ylim');
            for ip=1:nparam,
                text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
            end
            if advanced,
                legend('Moments','Model','LRE model','Location','Best')
            end
            title('Sensitivity bars using derivatives (log-scale)')
            if save_figure
                saveas(gcf,[IdentifDirectoryName,'/',M_.fname,'_sensitivity_',tittxt1])
                eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_sensitivity_' tittxt1]);
                eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_sensitivity_' tittxt1]);
            end
            
            % identificaton patterns
            for  j=1:size(idemoments.cosnJ,2),
                pax=NaN(nparam,nparam);
                fprintf('\n')
                disp(['Collinearity patterns with ', int2str(j) ,' parameter(s)'])
                fprintf('%-15s [%-*s] %10s\n','Parameter',(15+1)*j,' Expl. params ','cosn')
                for i=1:nparam,
                    namx='';
                    for in=1:j,
                        dumpindx = idemoments.pars{i,j}(in);
                        if isnan(dumpindx),
                            namx=[namx ' ' sprintf('%-15s','--')];
                        else
                            namx=[namx ' ' sprintf('%-15s',name{dumpindx})];
                            pax(i,dumpindx)=idemoments.cosnJ(i,j);
                        end
                    end
                    fprintf('%-15s [%s] %10.3f\n',name{i},namx,idemoments.cosnJ(i,j))
                end
                figure('name',[tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)']),
                imagesc(pax,[0 1]);
                set(gca,'xticklabel','')
                set(gca,'yticklabel','')
                for ip=1:nparam,
                    text(ip,(0.5),name{ip},'rotation',90,'HorizontalAlignment','left','interpreter','none')
                    text(0.5,ip,name{ip},'rotation',0,'HorizontalAlignment','right','interpreter','none')
                end
                colorbar;
                ax=colormap;
                ax(1,:)=[0.9 0.9 0.9];
                colormap(ax);
                if nparam>10,
                    set(gca,'xtick',(5:5:nparam))
                    set(gca,'ytick',(5:5:nparam))
                end
                set(gca,'xgrid','on')
                set(gca,'ygrid','on')
                xlabel([tittxt,' - Collinearity patterns with ', int2str(j) ,' parameter(s)'])
                if save_figure
                    saveas(gcf,[IdentifDirectoryName,'/',M_.fname,'_ident_collinearity_', tittxt1, '_', int2str(j)])
                    eval(['print -depsc ' IdentifDirectoryName '/' M_.fname '_ident_collinearity_' tittxt1 '_' int2str(j)]);
                    eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_ident_collinearity_' tittxt1 '_' int2str(j)]);
                    if options_.nograph, close(gcf); end
                end
            end
            disp('')
            if idehess.flag_score,
                [U,S,V]=svd(idehess.AHess,0);
                S=diag(S);
                if nparam<5,
                    f1 = figure('name',[tittxt,' - Identification patterns (Information matrix)']);
                else
                    f1 = figure('name',[tittxt,' - Identification patterns (Information matrix): SMALLEST SV']);
                    f2 = figure('name',[tittxt,' - Identification patterns (Information matrix): HIGHEST SV']);
                end
            else
                S = idemoments.S;
                V = idemoments.V;
                if nparam<5,
                    f1 = figure('name',[tittxt,' - Identification patterns (moments)']);
                else
                    f1 = figure('name',[tittxt,' - Identification patterns (moments): SMALLEST SV']);
                    f2 = figure('name',[tittxt,' - Identification patterns (moments): HIGHEST SV']);
                end
            end
            for j=1:min(nparam,8),
                if j<5,
                    figure(f1),
                    jj=j;
                else
                    figure(f2),
                    jj=j-4;
                end
                subplot(4,1,jj),
                if j<5
                    bar(abs(V(:,end-j+1))),
                    Stit = S(end-j+1);
                else
                    bar(abs(V(:,jj))),
                    Stit = S(jj);
                end
                set(gca,'xticklabel','')
                if j==4 || j==nparam || j==8,
                    for ip=1:nparam,
                        text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                    end
                end
                title(['Singular value ',num2str(Stit)])
            end
            if save_figure,
                figure(f1);
                saveas(f1,[IdentifDirectoryName,'/',M_.fname,'_ident_pattern_',tittxt1,'_1'])
                eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_1']);
                eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_1']);
                if nparam>4,
                    figure(f2),
                    saveas(f2,[IdentifDirectoryName,'/',M_.fname,'_ident_pattern_',tittxt1,'_2'])
                    eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_2']);
                    eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_ident_pattern_' tittxt1 '_2']);
                end
            end
        end
        
    else
        figure('Name',['MC sensitivities']),
        subplot(211)
        mmm = (idehess.ide_strength_J);
        [ss, is] = sort(mmm);
        mmm = mean(siJnorm)';
        mmm = mmm./max(mmm);
        if advanced,
            mmm1 = mean(siHnorm)';
            mmm=[mmm mmm1./max(mmm1)];
            mmm1 = mean(siLREnorm)';
            offset=size(siHnorm,2)-size(siLREnorm,2);
            mmm1 = [NaN(offset,1); mmm1./max(mmm1)];
            mmm=[mmm mmm1];
        end        
            
        bar(mmm(is,:))
        set(gca,'xlim',[0 nparam+1])
        set(gca,'xticklabel','')
        dy = get(gca,'ylim');
        for ip=1:nparam,
            text(ip,dy(1),name{is(ip)},'rotation',90,'HorizontalAlignment','right','interpreter','none')
        end
        if advanced,
            legend('Moments','Model','LRE model','Location','Best')
        end
        title('MC mean of sensitivity measures')
        saveas(gcf,[IdentifDirectoryName,'/',M_.fname,'_MC_sensitivity'])
        eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_MC_sensitivity']);
        eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_MC_sensitivity']);
        if options_.nograph, close(gcf); end
        if advanced,
            disp(' ')
            disp('Press ENTER to display advanced diagnostics'), pause,
            options_.nograph=1;
            figure('Name','MC Condition Number'),
            subplot(221)
            hist(log10(idemodel.cond))
            title('log10 of Condition number in the model')
            subplot(222)
            hist(log10(idemoments.cond))
            title('log10 of Condition number in the moments')
            subplot(223)
            hist(log10(idelre.cond))
            title('log10 of Condition number in the LRE model')
            saveas(gcf,[IdentifDirectoryName,'/',M_.fname,'_ident_COND'])
            eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_ident_COND']);
            eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_ident_COND']);
            if options_.nograph, close(gcf); end
            ncut=floor(SampleSize/10*9);
            [dum,is]=sort(idelre.cond);
            [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberLRE', 1, [], IdentifDirectoryName, 0.1);
            [dum,is]=sort(idemodel.cond);
            [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberModel', 1, [], IdentifDirectoryName, 0.1);
            [dum,is]=sort(idemoments.cond);
            [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), 'MC_HighestCondNumberMoments', 1, [], IdentifDirectoryName, 0.1);
    %         [proba, dproba] = stab_map_1(idemoments.Mco', is(1:ncut), is(ncut+1:end), 'HighestCondNumberMoments_vs_Mco', 1, [], IdentifDirectoryName);
    %         for j=1:nparam,
    % %             ibeh=find(idemoments.Mco(j,:)<0.9);
    % %             inonbeh=find(idemoments.Mco(j,:)>=0.9);
    % %             if ~isempty(ibeh) && ~isempty(inonbeh)
    % %                 [proba, dproba] = stab_map_1(params, ibeh, inonbeh, ['HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName);
    % %             end
    %             [~,is]=sort(idemoments.Mco(:,j));
    %             [proba, dproba] = stab_map_1(params, is(1:ncut), is(ncut+1:end), ['MC_HighestMultiCollinearity_',name{j}], 1, [], IdentifDirectoryName, 0.15);
    %         end
    
            if nparam<5,
                f1 = figure('name',[tittxt,' - MC Identification patterns (moments)']);
            else
                f1 = figure('name',[tittxt,' - MC Identification patterns (moments): SMALLEST SV']);
                f2 = figure('name',[tittxt,' - MC Identification patterns (moments): HIGHEST SV']);
            end
            nplots=min(nparam,8);
            if nplots>4,
                nsubplo=ceil(nplots/2);
            else
                nsubplo=nplots;
            end
            for j=1:nplots,
                if (nparam>4 && j<=ceil(nplots/2)) || nparam<5,
                    figure(f1),
                    jj=j;
                    VVV=squeeze(abs(idemoments.V(:,:,end-j+1)));
                    SSS = idemoments.S(:,end-j+1);
                else
                    figure(f2),
                    jj=j-ceil(nplots/2);
                    VVV=squeeze(abs(idemoments.V(:,:,jj)));
                    SSS = idemoments.S(:,jj);
                end
                subplot(nsubplo,1,jj),
                for i=1:nparam,
                    [post_mean, post_median(:,i), post_var, hpd_interval(i,:), post_deciles] = posterior_moments(VVV(:,i),0,0.9);
                end
                bar(post_median)
                hold on, plot(hpd_interval,'--*r'),
                Stit=mean(SSS);
    
                set(gca,'xticklabel','')
                if j==4 || j==nparam || j==8,
                    for ip=1:nparam,
                        text(ip,-0.02,name{ip},'rotation',90,'HorizontalAlignment','right','interpreter','none')
                    end
                end
                title(['MEAN Singular value ',num2str(Stit)])
            end
            if save_figure,
                figure(f1);
                saveas(f1,[IdentifDirectoryName,'/',M_.fname,'_MC_dent_pattern_1'])
                eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_1']);
                eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_1']);
                if nparam>4,
                    figure(f2),
                    saveas(f2,[IdentifDirectoryName,'/',M_.fname,'_MC_ident_pattern_2'])
                    eval(['print -depsc2 ' IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_2']);
                    eval(['print -dpdf ' IdentifDirectoryName '/' M_.fname '_MC_ident_pattern_2']);
                end
            end
        end
    end
    
    % disp_identification(params, idemodel, idemoments, name)