Skip to content
Snippets Groups Projects
Commit 2d83b221 authored by sebastien's avatar sebastien
Browse files

4.0: merged changesets 2078, 2089 and 2090 from trunk

* new debug messages in dynare_solve.m
* solve_algo=2 exits immediately after failure to solve one block
* new solve_algo=4 with different way of dealing with badly scaled or nearly singular Jacobian
* solve_algo=0 fails if Matlab's Optimization Toolbox not present
* dynare_solve fails if solve_algo not in [0,1,2,3,4]


git-svn-id: https://www.dynare.org/svn/dynare/branches/4.0@2095 ac1d8469-bf42-47a9-8791-bf33cf982152
parent 4f50f9d6
No related branches found
No related tags found
No related merge requests found
......@@ -38,7 +38,11 @@ function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
options_ = set_default_option(options_,'solve_algo',2);
info = 0;
if options_.solve_algo == 0
if ~isempty(which('fsolve'))
if exist('OCTAVE_VERSION') || isempty(ver('optim'))
% Note that fsolve() exists under Octave, but has a different syntax
% So we fail for the moment under Octave, until we add the corresponding code
error('DYNARE_SOLVE: you can''t use solve_algo=0 since you don''t have Matlab''s Optimization Toolbox')
end
options=optimset('fsolve');
options.MaxFunEvals = 50000;
options.MaxIter = 2000;
......@@ -55,16 +59,10 @@ function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
else
info = 1;
end
return
else
options_.solve_algo = 1;
end
end
if options_.solve_algo == 1
elseif options_.solve_algo == 1
nn = size(x,1);
[x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag,varargin{:});
elseif options_.solve_algo == 2
elseif options_.solve_algo == 2 || options_.solve_algo == 4
nn = size(x,1) ;
tolf = options_.solve_tolf ;
......@@ -84,8 +82,6 @@ function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
error('exiting ...')
end
% f = 0.5*fvec'*fvec ;
if max(abs(fvec)) < tolf
return ;
end
......@@ -102,15 +98,30 @@ function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
[j1,j2,r,s] = dmperm(fjac);
if options_.debug
disp(['DYNARE_SOLVE (solve_algo=2|4): number of blocks = ' num2str(length(r))]);
end
for i=length(r)-1:-1:1
if options_.debug
disp(['DYNARE_SOLVE (solve_algo=2|4): solving block ' num2str(i) ', of size ' num2str(r(i+1)-r(i)) ]);
end
if options_.solve_algo == 2
[x,info]=solve1(func,x,j1(r(i):r(i+1)-1),j2(r(i):r(i+1)-1),jacobian_flag,varargin{:});
if info & options_.debug
error(sprintf('Solve block = %d check = %d\n',i,info));
else % solve_algo=4
[x,info]=solve2(func,x,j1(r(i):r(i+1)-1),j2(r(i):r(i+1)-1),jacobian_flag,varargin{:});
end
if info
return
end
end
fvec = feval(func,x,varargin{:});
if max(abs(fvec)) > tolf
if options_.solve_algo == 2
[x,info]=solve1(func,x,1:nn,1:nn,jacobian_flag,varargin{:});
else % solve_algo=4
[x,info]=solve2(func,x,1:nn,1:nn,jacobian_flag,varargin{:});
end
end
elseif options_.solve_algo == 3
if jacobian_flag
......@@ -118,9 +129,6 @@ function [x,info] = dynare_solve(func,x,jacobian_flag,varargin)
else
[x,info] = csolve(func,x,[],1e-6,500,varargin{:});
end
else
error('DYNARE_SOLVE: option solve_algo must be one of [0,1,2,3,4]')
end
% fvec1 = feval(func,x,varargin{:})
% 08/28/03 MJ add a final call to solve1 for solve_algo == 1 in case
% initvals generates 'false' zeros in the Jacobian
\ No newline at end of file
function [x,check] = solve2(func,x,j1,j2,jacobian_flag,varargin)
% function [x,check] = solve1(func,x,j1,j2,jacobian_flag,varargin)
% Solves systems of non linear equations of several variables
%
% This solver is used for solve_algo = ...
%
% This is a modified version of solve1:
% In solve1, before proceeding to the Newton step, we first check
% that the condition number is reasonable, and we use an alternate
% step formula if it is not the case.
% Here, we first do the Newton step, then we check if the left
% matrix division returned a warning (in case of badly scale or
% nearly singular jacobian) in which case we use the alternate
% step formula.
%
% INPUTS
% func: name of the function to be solved
% x: guess values
% j1: equations index for which the model is solved
% j2: unknown variables index
% jacobian_flag=1: jacobian given by the 'func' function
% jacobian_flag=0: jacobian obtained numerically
% varargin: list of arguments following jacobian_flag
%
% OUTPUTS
% x: results
% check=1: the model can not be solved
%
% SPECIAL REQUIREMENTS
% none
% Copyright (C) 2001-2008 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
global M_ options_ fjac
nn = length(j1);
fjac = zeros(nn,nn) ;
g = zeros(nn,1) ;
tolf = options_.solve_tolf ;
tolx = options_.solve_tolx;
tolmin = tolx ;
stpmx = 100 ;
maxit = options_.solve_maxit ;
check = 0 ;
fvec = feval(func,x,varargin{:});
fvec = fvec(j1);
i = find(~isfinite(fvec));
if ~isempty(i)
disp(['STEADY: numerical initial values incompatible with the following' ...
' equations'])
disp(j1(i)')
end
f = 0.5*fvec'*fvec ;
if max(abs(fvec)) < tolf
return ;
end
stpmax = stpmx*max([sqrt(x'*x);nn]) ;
first_time = 1;
for its = 1:maxit
if jacobian_flag
[fvec,fjac] = feval(func,x,varargin{:});
fvec = fvec(j1);
fjac = fjac(j1,j2);
else
dh = max(abs(x(j2)),options_.gstep*ones(nn,1))*eps^(1/3);
for j = 1:nn
xdh = x ;
xdh(j2(j)) = xdh(j2(j))+dh(j) ;
t = feval(func,xdh,varargin{:});
fjac(:,j) = (t(j1) - fvec)./dh(j) ;
g(j) = fvec'*fjac(:,j) ;
end
end
g = (fvec'*fjac)';
if options_.debug
disp(['cond(fjac) ' num2str(cond(fjac))])
end
M_.unit_root = 0;
if M_.unit_root
if first_time
first_time = 0;
[q,r,e]=qr(fjac);
n = sum(abs(diag(r)) < 1e-12);
fvec = q'*fvec;
p = e*[-r(1:end-n,1:end-n)\fvec(1:end-n);zeros(n,1)];
disp(' ')
disp('STEADY with unit roots:')
disp(' ')
if n > 0
disp([' The following variable(s) kept their value given in INITVAL' ...
' or ENDVAL'])
disp(char(e(:,end-n+1:end)'*M_.endo_names))
else
disp(' STEADY can''t find any unit root!')
end
else
[q,r]=qr(fjac*e);
fvec = q'*fvec;
p = e*[-r(1:end-n,1:end-n)\fvec(1:end-n);zeros(n,1)];
end
else
lastwarn('');
p = -fjac\fvec;
if ~isempty(lastwarn)
fjac2=fjac'*fjac;
p=-(fjac2+sqrt(nn*eps)*max(sum(abs(fjac2)))*eye(nn))\(fjac'*fvec);
end
end
xold = x ;
fold = f ;
[x,f,fvec,check]=lnsrch1(xold,fold,g,p,stpmax,func,j1,j2,varargin{:});
if options_.debug
disp([its f])
disp([xold x])
end
if check > 0
den = max([f;0.5*nn]) ;
if max(abs(g).*max([abs(x(j2)') ones(1,nn)])')/den < tolmin
return
else
disp (' ')
disp (['SOLVE: Iteration ' num2str(its)])
disp (['Spurious convergence.'])
disp (x)
return
end
if max(abs(x(j2)-xold(j2))./max([abs(x(j2)') ones(1,nn)])') < tolx
disp (' ')
disp (['SOLVE: Iteration ' num2str(its)])
disp (['Convergence on dX.'])
disp (x)
return
end
elseif max(abs(fvec)) < tolf
return
end
end
check = 1;
disp(' ')
disp('SOLVE: maxit has been reached')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment