Skip to content
Snippets Groups Projects
Commit 33d35bc3 authored by Stéphane Adjemian's avatar Stéphane Adjemian
Browse files

Added quantile routine in missing.

This is missing if the stats toolbox is not available. Integration test
TeX/fs2000_corr_ME.mod was failing because of its absence.
parent f86b0a5a
Branches
Tags
No related merge requests found
......@@ -98,6 +98,12 @@ Copyright: 1995-2007 Kurt Hornik
2008-2011 Dynare Team
License: GPL-3+
Files: matlab/missing/stats/quantile.m
Copyright: 2014-2016 Christopher Hummersone
2016 Dynare Team
License: GPL-3+
Files: matlab/missing/stats/corr.m
Copyright: 1993-1996 Kurt Hornik
1996-2015 John W. Eaton
......
function [q,N] = quantile(X, p, dim, method, weights) % --*-- Unitary tests --*--
% Quantiles of a sample via various methods.
%
% Q = QUANTILE2(X,P) returns quantiles of the values in X. P is a scalar
% or a vector of cumulative probability values. When X is a vector, Q is
% the same size as P, and Q(i) contains the P(i)-th quantile. When X is
% a matrix, the i-th row of Q contains the P(i)-th quantiles of each
% column of X. For N-D arrays, QUANTILE2 operates along the first
% non-singleton dimension.
%
% Q = QUANTILE2(X,P,DIM) calculates quantiles along dimension DIM. The
% DIM'th dimension of Q has length LENGTH(P).
%
% Q = QUANTILE2(X,P,DIM,METHOD) calculates quantiles using one of the
% methods described in http://en.wikipedia.org/wiki/Quantile. The method
% are designated 'R-1'...'R-9'; the default is R-8 as described in
% http://bit.ly/1kX4NcT, whereas Matlab uses 'R-5'.
%
% Q = QUANTILE2(X,P,[],METHOD) uses the specified METHOD, but calculates
% quantiles along the first non-singleton dimension.
%
% Q = QUANTILE2(X,P,[],METHOD,WEIGHTS) and QUANTILE2(X,P,[],[],WEIGHTS)
% uses the array WEIGHTS to weight the values in X when calculating
% quantiles. If no weighting is specified, the method determines the
% real-valued index in to the data that is used to calculate the P(i)-th
% quantile. When a weighting array WEIGHTS is specified (WEIGHTS should
% be the same size as X), this index is mapped to the cumulative weights
% (the weights are scaled to sum to N(i) - see below), and a new weighted
% index is returned (using linear interpolation) for the point where the
% cumulative weights equal the unweighted index. The weighted index is
% used to calculate the P(i)-th quantile. If the values in WEIGHTS are
% equal, then the weighted and unweighted index (and correpsonding
% quantile) are identical. The default method R-8 is used if METHOD is
% specified as an empty array ([]).
%
% [Q,N] = QUANTILE2(...) returns an array that is the same size as Q such
% that N(i) is the number of points used to calculate Q(i).
%
% Further reading
%
% Hyndman, R.J.; Fan, Y. (November 1996). "Sample Quantiles in
% Statistical Packages". The American Statistician 50 (4): 361-365.
% Frigge, Michael; Hoaglin, David C.; Iglewicz, Boris (February 1989).
% "Some Implementations of the Boxplot". The American Statistician 43
% (1): 50-54.
% Original file downloaded from:
% http://fr.mathworks.com/matlabcentral/fileexchange/46555-quantile-calculation
%
% Copyright (C) 2014-2016 University of Surrey (Christopher Hummersone)
% Copyright (C) 2016 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% Check input and make default assignments
assert(isnumeric(X),'X must be a numeric');
assert(isvector(p) & isnumeric(p),'P must be a numeric vector');
assert(all(p>=0 & p<=1),'Values in P must be in the interval [0,1].')
if nargin<2
error('Not enough input arguments.')
end
dims = size(X);
if nargin<3 || isempty(dim)
dim = find(dims>1,1,'first'); % default dim
else % validate input
assert(isnumeric(dim) | isempty(dim),'DIM must be an integer or empty');
assert(isint(dim) | isempty(dim),'DIM must be an integer or empty');
assert(dim>0,'DIM must be greater than 0')
end
if nargin<4
method = 'r-8'; % default method
else % validate input
if isempty(method)
method = 'r-8'; % default method
else
assert(ischar(method),'METHOD must be a character array')
end
end
if nargin<5
weights = [];
else
assert(isequal(size(X),size(weights)) || isempty(weights),'WEIGHTS must be the same size as X');
end
% Choose a method
% See http://en.wikipedia.org/wiki/Quantile#Estimating_the_quantiles_of_a_population
switch lower(method)
case 'r-1'
min_con = @(N,p)(p==0);
max_con = @(N,p)(false);
h = @(N,p)((N*p)+.5);
Qp = @(x,h)(x(ceil(h-.5)));
case 'r-2'
min_con = @(N,p)(p==0);
max_con = @(N,p)(p==1);
h = @(N,p)((N*p)+.5);
Qp = @(x,h)((x(ceil(h-.5))+x(floor(h+.5)))/2);
case 'r-3'
min_con = @(N,p)(p<=(.5/N));
max_con = @(N,p)(false);
h = @(N,p)(N*p);
Qp = @(x,h)(x(round(h)));
case 'r-4'
min_con = @(N,p)(p<(1/N));
max_con = @(N,p)(p==1);
h = @(N,p)(N*p);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-5'
min_con = @(N,p)(p<(.5/N));
max_con = @(N,p)(p>=((N-.5)/N));
h = @(N,p)((N*p)+.5);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-6'
min_con = @(N,p)(p<(1/(N+1)));
max_con = @(N,p)(p>=(N/(N+1)));
h = @(N,p)((N+1)*p);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-7'
min_con = @(N,p)(false);
max_con = @(N,p)(p==1);
h = @(N,p)(((N-1)*p)+1);
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-8'
min_con = @(N,p)(p<((2/3)/(N+(1/3))));
max_con = @(N,p)(p>=((N-(1/3))/(N+(1/3))));
h = @(N,p)(((N+(1/3))*p)+(1/3));
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
case 'r-9'
min_con = @(N,p)(p<((5/8)/(N+.25)));
max_con = @(N,p)(p>=((N-(3/8))/(N+.25)));
h = @(N,p)(((N+.25)*p)+(3/8));
Qp = @(x,h)(x(floor(h)) + ((h-floor(h))*(x(floor(h)+1)-x(floor(h)))));
otherwise
error(['Method ''' method ''' does not exist'])
end
% calculate quartiles
% reshape data so function works down columns
order = mod(dim-1:dim+length(dims)-2,length(dims))+1;
dims_shift = dims(order);
x = rearrange(X,order,[dims_shift(1) prod(dims_shift(2:end))]);
if ~isempty(weights)
weights = rearrange(weights,order,[dims_shift(1) prod(dims_shift(2:end))]);
cumwfunc = @accumulateWeights;
wfunc = @weightedIndex;
else
cumwfunc = @(~,~,~,N) 1:N;
wfunc = @(x,~) x;
end
% pre-allocate q
q = zeros([length(p) prod(dims_shift(2:end))]);
N = zeros([length(p) prod(dims_shift(2:end))]);
for m = 1:length(p)
for n = 1:numel(q)/length(p)
[xSorted,ind] = sort(x(~isnan(x(:,n)),n)); % sort
N(m,n) = length(xSorted); % sample size
k = cumwfunc(weights,ind,n,N(m,n));
switch N(m,n)
case 0
q(m,n) = NaN;
case 1
q(m,n) = xSorted;
otherwise
if min_con(N(m,n),p(m)) % at lower limit
q(m,n) = xSorted(1);
elseif max_con(N(m,n),p(m)) % at upper limit
q(m,n) = xSorted(N(m,n));
else % everything else
huw = h(N(m,n),p(m)); % unweighted index
hw = wfunc(huw,k);
q(m,n) = Qp(xSorted,hw);
end
end
end
end
% restore dims of q to equate to those of input
q = irearrange(q,order,[length(p) dims_shift(2:end)]);
N = irearrange(N,order,[length(p) dims_shift(2:end)]);
% if q is a vector, make same shape as p
if numel(p)==numel(q)
q=reshape(q,size(p));
N=reshape(N,size(p));
end
function cumweights = accumulateWeights(weights, ind, n, N)
% ACCUMULATEWEIGHTS accumulate the weights
wSorted = weights(ind,n); % sort weights
wSorted = wSorted*N/sum(wSorted); % normalize weights to sum to N
cumweights = cumsum(wSorted); % cumulative weights
function hw = weightedIndex(huw, cumweights)
% WEIGHTEDINDEX calculate index from cumulative weights
ii = find(sign(cumweights-huw)<0,1,'last');
jj = find(sign(cumweights-huw)>0,1,'first');
if isempty(ii) || isempty(jj)
hw = huw;
else
hw = ii + (huw-cumweights(ii))/(cumweights(jj)-cumweights(ii)); % weighted index
end
function y = isint(x)
% ISINT check if input is whole number
y = x==round(x);
function y = rearrange(x,order,shape)
%REARRANGE reshape and permute to make target dim column
y = permute(x,order);
y = reshape(y,shape);
function y = irearrange(x,order,shape)
%IREARRANGE reshape and permute to original size
y = reshape(x,shape);
y = ipermute(y,order);
%@test:1
%$ X = randn(10000000, 1);
%$
%$ try
%$ q = quantile(X, [.25, .5, .75, .95 ]);
%$ t(1) = true;
%$ catch
%$ t(1) = false;
%$ end
%$
%$ e = [-0.674489750196082, 0, 0.674489750196082, 1.644853626951472];
%$
%$ if t(1)
%$ for i=1:4
%$ t(i+1) = abs(q(i)-e(i))<1e-3;
%$ end
%$ end
%$
%$ T = all(t);
%@eof:1
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment