Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stéphane Adjemian
dynare
Commits
a0934d0c
Commit
a0934d0c
authored
11 years ago
by
Johannes Pfeifer
Browse files
Options
Downloads
Patches
Plain Diff
Add example3 that uses steady_state_model block to call fsolve
parent
1b564157
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/example3.mod
+88
-0
88 additions, 0 deletions
examples/example3.mod
examples/example3_steady_state_helper.m
+5
-0
5 additions, 0 deletions
examples/example3_steady_state_helper.m
with
93 additions
and
0 deletions
examples/example3.mod
0 → 100644
+
88
−
0
View file @
a0934d0c
/*
* Example 1 from F. Collard (2001): "Stochastic simulations with DYNARE:
* A practical guide" (see "guide.pdf" in the documentation directory).
*
* This file uses the steady_state_model-block to provide analytical steady state values.
* To do so, the equations of the model have been transformed into a non-linear equation in
* labor h. Within the steady_state_model-block, a helper function is called that uses fsolve
* to solve this non-linear equation. The use of the helper function is necessary to avoid
* interference of the Matlab syntax with Dynare's preprocessor. A more complicated alternative
* that provides more flexibility in the type of commands executed and functions called is the use
* of an explicit steady state file. See the NK_baseline.mod in the Examples Folder.
*
* This mod-file also shows how to use Dynare's capacities to generate TeX-files of the model equations.
* If you want to see the model equations belonging to this mod-file, run it using Dynare
* and then use a TeX-editor to compile the TeX-files generated.
*/
/*
* Copyright (C) 2013 Dynare Team
*
* This file is part of Dynare.
*
* Dynare is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Dynare is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Dynare. If not, see <http://www.gnu.org/licenses/>.
*/
var y, c, k, a, h, b;
varexo e, u;
parameters beta $\beta$
rho $\rho$
alpha $\alpha$
delta $\delta$
theta $\theta$
psi $\psi$
tau $\tau$;
alpha = 0.36;
rho = 0.95;
tau = 0.025;
beta = 0.99;
delta = 0.025;
psi = 0;
theta = 2.95;
phi = 0.1;
model;
c*theta*h^(1+psi)=(1-alpha)*y;
k = beta*(((exp(b)*c)/(exp(b(+1))*c(+1)))
*(exp(b(+1))*alpha*y(+1)+(1-delta)*k));
y = exp(a)*(k(-1)^alpha)*(h^(1-alpha));
k = exp(b)*(y-c)+(1-delta)*k(-1);
a = rho*a(-1)+tau*b(-1) + e;
b = tau*a(-1)+rho*b(-1) + u;
end;
steady_state_model;
h=example3_steady_state_helper(alpha,beta,delta,psi,theta);
k=((1/beta-(1-delta))/alpha)^(1/(alpha-1))*h;
y = k^alpha*h^(1-alpha);
c=(1-alpha)*y/(theta*h^(1+psi));
a=0;
b=0;
end;
shocks;
var e; stderr 0.009;
var u; stderr 0.009;
var e, u = phi*0.009*0.009;
end;
//use command to generate TeX-Files with dynamic and static model equations
write_latex_dynamic_model;
write_latex_static_model;
stoch_simul;
This diff is collapsed.
Click to expand it.
examples/example3_steady_state_helper.m
0 → 100644
+
5
−
0
View file @
a0934d0c
function h=example3_steady_state_helper(alpha,beta,delta,psi,theta)
options=optimset('Display','Final','TolX',1e-10,'TolFun',1e-10);
h=fsolve(@(h)1- ((((((1/beta-(1-delta))/alpha)^(1/(alpha-1))*h)^(alpha-1))*(h^(1-alpha))-(((1-alpha)*((((1/beta-(1-delta))/alpha)^(1/(alpha-1)))^alpha))/(theta*h^psi))/(((1/beta-(1-delta))/alpha)^(1/(alpha-1))*h))+(1-delta)),0.2,options);
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment