Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
P
particles
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Archives
particles
Commits
8d401a22
Commit
8d401a22
authored
9 years ago
by
Frédéric Karamé
Browse files
Options
Downloads
Patches
Plain Diff
Fix the calculation of the likelihood on the APF.
parent
5922f881
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/auxiliary_particle_filter.m
+44
-49
44 additions, 49 deletions
src/auxiliary_particle_filter.m
with
44 additions
and
49 deletions
src/auxiliary_particle_filter.m
+
44
−
49
View file @
8d401a22
function
[
LIK
,
lik
]
=
auxiliary_particle_filter
(
ReducedForm
,
Y
,
start
,
ParticleOptions
,
ThreadsOptions
)
function
[
LIK
,
lik
]
=
auxiliary_particle_filter
(
ReducedForm
,
Y
,
start
,
ParticleOptions
,
ThreadsOptions
)
% Evaluates the likelihood of a nonlinear model with a particle filter allowing eventually resampling.
% Evaluates the likelihood of a nonlinear model with the auxiliary particle filter
% allowing eventually resampling.
% Copyright (C) 2011-2014 Dynare Team
%
% Copyright (C) 2011-2015 Dynare Team
%
%
% This file is part of Dynare (particles module).
% This file is part of Dynare (particles module).
%
%
...
@@ -20,7 +21,7 @@ function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptio
...
@@ -20,7 +21,7 @@ function [LIK,lik] = auxiliary_particle_filter(ReducedForm,Y,start,ParticleOptio
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
% along with Dynare. If not, see <http://www.gnu.org/licenses/>.
persistent
init_flag
mf0
mf1
number_of_particles
persistent
init_flag
mf0
mf1
number_of_particles
persistent
sample_size
number_of_state_variables
number_of_observed_variables
number_of_structural_innovations
persistent
sample_size
number_of_observed_variables
number_of_structural_innovations
% Set default
% Set default
if
isempty
(
start
)
if
isempty
(
start
)
...
@@ -40,7 +41,6 @@ if isempty(init_flag)
...
@@ -40,7 +41,6 @@ if isempty(init_flag)
mf0
=
ReducedForm
.
mf0
;
mf0
=
ReducedForm
.
mf0
;
mf1
=
ReducedForm
.
mf1
;
mf1
=
ReducedForm
.
mf1
;
sample_size
=
size
(
Y
,
2
);
sample_size
=
size
(
Y
,
2
);
number_of_state_variables
=
length
(
mf0
);
number_of_observed_variables
=
length
(
mf1
);
number_of_observed_variables
=
length
(
mf1
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_structural_innovations
=
length
(
ReducedForm
.
Q
);
number_of_particles
=
ParticleOptions
.
number_of_particles
;
number_of_particles
=
ParticleOptions
.
number_of_particles
;
...
@@ -58,55 +58,44 @@ ghxu = ReducedForm.ghxu;
...
@@ -58,55 +58,44 @@ ghxu = ReducedForm.ghxu;
% Get covariance matrices
% Get covariance matrices
Q
=
ReducedForm
.
Q
;
Q
=
ReducedForm
.
Q
;
H
=
ReducedForm
.
H
;
H
=
ReducedForm
.
H
;
if
isempty
(
H
)
H
=
0
;
end
% Get initial condition for the state vector.
% Get initial condition for the state vector.
StateVectorMean
=
ReducedForm
.
StateVectorMean
;
StateVectorMean
=
ReducedForm
.
StateVectorMean
;
StateVectorVarianceSquareRoot
=
chol
(
ReducedForm
.
StateVectorVariance
)
';
%reduced_rank_cholesky(ReducedForm.StateVectorVariance)'
;
StateVectorVarianceSquareRoot
=
chol
(
ReducedForm
.
StateVectorVariance
)
'
;
state_variance_rank
=
size
(
StateVectorVarianceSquareRoot
,
2
);
state_variance_rank
=
size
(
StateVectorVarianceSquareRoot
,
2
);
Q_lower_triangular_cholesky
=
chol
(
Q
)
'
;
Q_lower_triangular_cholesky
=
chol
(
Q
)
'
;
if
pruning
StateVectorMean_
=
StateVectorMean
;
StateVectorVarianceSquareRoot_
=
StateVectorVarianceSquareRoot
;
end
% Set seed for randn().
% Set seed for randn().
set_dynare_seed
(
'default'
);
set_dynare_seed
(
'default'
);
% Initialization of the likelihood.
% Initialization of the likelihood.
const_lik
=
log
(
2
*
pi
)
*
number_of_observed_variables
+
log
(
det
(
H
));
const_lik
=
log
(
2
*
pi
)
*
number_of_observed_variables
+
log
(
det
(
H
));
lik
=
NaN
(
sample_size
,
1
);
lik
=
NaN
(
sample_size
,
1
);
LIK
=
NaN
;
LIK
=
NaN
;
% Initialization of the weights across particles.
% Initialization of the weights across particles.
weights
=
ones
(
1
,
number_of_particles
)/
number_of_particles
;
weights
=
ones
(
1
,
number_of_particles
)/
number_of_particles
;
StateVectors
=
bsxfun
(
@
plus
,
StateVectorVarianceSquareRoot
*
randn
(
state_variance_rank
,
number_of_particles
),
StateVectorMean
);
StateVectors
=
bsxfun
(
@
plus
,
StateVectorVarianceSquareRoot
*
randn
(
state_variance_rank
,
number_of_particles
),
StateVectorMean
);
%StateVectors = bsxfun(@plus,zeros(state_variance_rank,number_of_particles),StateVectorMean);
if
pruning
if
pruning
StateVectors_
=
StateVectors
;
StateVectors_
=
StateVectors
;
end
end
epsilon
=
Q_lower_triangular_cholesky
*
randn
(
number_of_structural_innovations
,
number_of_particles
);
% Uncomment for building the mean average predictions based on a sparse
yhat
=
zeros
(
2
,
number_of_particles
)
;
% grids of structural shocks. Otherwise, all shocks are set to 0 in the
if
pruning
% prediction.
yhat_
=
zeros
(
2
,
number_of_particles
)
;
%if ParticleOptions.proposal_approximation.cubature
[
tmp
,
tmp_
]
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
yhat_
,
steadystate
,
ThreadsOptions
.
local_state_space_iteration_2
);
% [nodes,nodes_weights] = spherical_radial_sigma_points(number_of_structural_innovations) ;
StateVectors_
=
tmp_
(
mf0
,:);
% nodes_weights = ones(size(nodes,1),1)*nodes_weights ;
else
%elseif ParticleOptions.proposal_approximation.unscented
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
% [nodes,nodes_weights,nodes_weights_c] = unscented_sigma_points(number_of_structural_innovations,ParticleOptions);
end
%else
StateVectors
=
tmp
(
mf0
,:)
;
% error('Estimation: This approximation for the proposal is not implemented or unknown!')
%end
if
ParticleOptions
.
proposal_approximation
.
cubature
%nodes = Q_lower_triangular_cholesky*nodes ;
[
nodes
,
nodes_weights
]
=
spherical_radial_sigma_points
(
number_of_structural_innovations
)
;
nodes_weights
=
ones
(
size
(
nodes
,
1
),
1
)
*
nodes_weights
;
nodes
=
zeros
(
1
,
number_of_structural_innovations
)
;
elseif
ParticleOptions
.
proposal_approximation
.
unscented
nodes_weights
=
1
;
[
nodes
,
nodes_weights
,
nodes_weights_c
]
=
unscented_sigma_points
(
number_of_structural_innovations
,
ParticleOptions
);
else
error
(
'Estimation: This approximation for the proposal is not implemented or unknown!'
)
end
nodes
=
Q_lower_triangular_cholesky
*
nodes
;
for
t
=
1
:
sample_size
for
t
=
1
:
sample_size
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
yhat
=
bsxfun
(
@
minus
,
StateVectors
,
state_variables_steady_state
);
...
@@ -125,21 +114,19 @@ for t=1:sample_size
...
@@ -125,21 +114,19 @@ for t=1:sample_size
tmp
=
tmp
+
nodes_weights
(
i
)
*
local_state_space_iteration_2
(
yhat
,
nodes
(
i
,:)
*
ones
(
1
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
tmp
=
tmp
+
nodes_weights
(
i
)
*
local_state_space_iteration_2
(
yhat
,
nodes
(
i
,:)
*
ones
(
1
,
number_of_particles
),
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
end
end
end
end
%PredictedObservedMean = weights*(tmp(mf1,:)');
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
%dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean');
%tau_tilde = weights.*(exp(-.5*(const_lik+sum(PredictionError.*(H\PredictionError),1))) + 1e-99) ;
%PredictedObservedVariance = bsxfun(@times,weights,dPredictedObservedMean)*dPredictedObservedMean' +H;
% Replace Gaussian density with a Student density with 3 degrees of
wtilde
=
exp
(
-.
5
*
(
const_lik
+
sum
(
PredictionError
.*
(
H
\
PredictionError
),
1
)))
;
% freedom for fat tails.
tau_tilde
=
weights
.*
wtilde
;
z
=
sum
(
PredictionError
.*
(
H
\
PredictionError
),
1
)
;
sum_tau_tilde
=
sum
(
tau_tilde
)
;
tau_tilde
=
weights
.*
(
tpdf
(
z
,
3
*
ones
(
size
(
z
)))
+
1e-99
)
;
lik
(
t
)
=
log
(
sum_tau_tilde
)
;
tau_tilde
=
tau_tilde
/
sum
(
tau_tilde
)
;
tau_tilde
=
tau_tilde
/
sum_tau_tilde
;
indx
=
resample
(
0
,
tau_tilde
'
,
ParticleOptions
);
indx
=
resample
(
0
,
tau_tilde
'
,
ParticleOptions
);
if
pruning
if
pruning
yhat_
=
yhat_
(:,
indx
)
;
yhat_
=
yhat_
(:,
indx
)
;
end
end
yhat
=
yhat
(:,
indx
)
;
yhat
=
yhat
(:,
indx
)
;
factor
=
weights
(
indx
)
.
/
tau_tilde
(
indx
)
;
weights_stage_1
=
weights
(
indx
)
.
/
tau_tilde
(
indx
)
;
epsilon
=
Q_lower_triangular_cholesky
*
randn
(
number_of_structural_innovations
,
number_of_particles
);
epsilon
=
Q_lower_triangular_cholesky
*
randn
(
number_of_structural_innovations
,
number_of_particles
);
if
pruning
if
pruning
[
tmp
,
tmp_
]
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
yhat_
,
steadystate
,
ThreadsOptions
.
local_state_space_iteration_2
);
[
tmp
,
tmp_
]
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
yhat_
,
steadystate
,
ThreadsOptions
.
local_state_space_iteration_2
);
...
@@ -148,13 +135,21 @@ for t=1:sample_size
...
@@ -148,13 +135,21 @@ for t=1:sample_size
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
tmp
=
local_state_space_iteration_2
(
yhat
,
epsilon
,
ghx
,
ghu
,
constant
,
ghxx
,
ghuu
,
ghxu
,
ThreadsOptions
.
local_state_space_iteration_2
);
end
end
StateVectors
=
tmp
(
mf0
,:);
StateVectors
=
tmp
(
mf0
,:);
%PredictedObservedMean = mean(tmp(mf1,:),2);
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
PredictionError
=
bsxfun
(
@
minus
,
Y
(:,
t
),
tmp
(
mf1
,:));
%dPredictedObservedMean = bsxfun(@minus,tmp(mf1,:),PredictedObservedMean);
weights_stage_2
=
weights_stage_1
.*
(
exp
(
-.
5
*
(
const_lik
+
sum
(
PredictionError
.*
(
H
\
PredictionError
),
1
)))
+
1e-99
)
;
%PredictedObservedVariance = (dPredictedObservedMean*dPredictedObservedMean')/number_of_particles + H;
lik
(
t
)
=
log
(
mean
(
weights_stage_2
))
;
lnw
=
exp
(
-.
5
*
(
const_lik
+
sum
(
PredictionError
.*
(
H
\
PredictionError
),
1
)));
weights
=
weights_stage_2
/
sum
(
weights_stage_2
);
wtilde
=
lnw
.*
factor
;
if
(
ParticleOptions
.
resampling
.
status
.
generic
&&
neff
(
weights
)
<
ParticleOptions
.
resampling
.
threshold
*
sample_size
)
||
ParticleOptions
.
resampling
.
status
.
systematic
weights
=
wtilde
/
sum
(
wtilde
);
if
pruning
temp
=
resample
([
StateVectors
' StateVectors_'
],
weights
'
,
ParticleOptions
);
StateVectors
=
temp
(:,
1
:
number_of_state_variables
)
'
;
StateVectors_
=
temp
(:,
number_of_state_variables
+
1
:
2
*
number_of_state_variables
)
'
;
else
StateVectors
=
resample
(
StateVectors
',weights'
,
ParticleOptions
)
'
;
end
weights
=
ones
(
1
,
number_of_particles
)/
number_of_particles
;
end
end
end
%plot(lik) ;
LIK
=
-
sum
(
lik
(
start
:
end
));
LIK
=
-
sum
(
lik
(
start
:
end
));
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment