Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container Registry
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dynare
dynare
Commits
9fd0dacf
Verified
Commit
9fd0dacf
authored
1 year ago
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Drop Dynamic Striated Metropolis-Hastings.
Will be part of dynare 7.x.
parent
f392c786
No related branches found
No related tags found
No related merge requests found
Pipeline
#9978
passed
1 year ago
Stage: build
Stage: test
Stage: pkg
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
matlab/estimation/smc/dsmh.m
+0
-299
0 additions, 299 deletions
matlab/estimation/smc/dsmh.m
with
0 additions
and
299 deletions
matlab/estimation/smc/dsmh.m
deleted
100644 → 0
+
0
−
299
View file @
f392c786
function
dsmh
(
TargetFun
,
xparam1
,
mh_bounds
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
oo_
)
% Dynamic Striated Metropolis-Hastings algorithm.
%
% INPUTS
% o TargetFun [char] string specifying the name of the objective
% function (posterior kernel).
% o xparam1 [double] (p*1) vector of parameters to be estimated (initial values).
% o mh_bounds [double] (p*2) matrix defining lower and upper bounds for the parameters.
% o dataset_ data structure
% o dataset_info dataset info structure
% o options_ options structure
% o M_ model structure
% o estim_params_ estimated parameters structure
% o bayestopt_ estimation options structure
% o oo_ outputs structure
%
% SPECIAL REQUIREMENTS
% None.
%
% PARALLEL CONTEXT
% The most computationally intensive part of this function may be executed
% in parallel. The code suitable to be executed in
% parallel on multi core or cluster machine (in general a 'for' cycle)
% has been removed from this function and been placed in the posterior_sampler_core.m funtion.
%
% The DYNARE parallel packages comprise a i) set of pairs of Matlab functions that can be executed in
% parallel and called name_function.m and name_function_core.m and ii) a second set of functions used
% to manage the parallel computations.
%
% This function was the first function to be parallelized. Later, other
% functions have been parallelized using the same methodology.
% Then the comments write here can be used for all the other pairs of
% parallel functions and also for management functions.
% Copyright © 2022-2023 Dynare Team
%
% This file is part of Dynare.
%
% Dynare is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% Dynare is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with Dynare. If not, see <https://www.gnu.org/licenses/>.
opts
=
options_
.
posterior_sampler_options
.
dsmh
;
lambda
=
exp
(
bsxfun
(
@
minus
,
options_
.
posterior_sampler_options
.
dsmh
.
H
,
1
:
1
:
options_
.
posterior_sampler_options
.
dsmh
.
H
)/(
options_
.
posterior_sampler_options
.
dsmh
.
H
-
1
)
*
log
(
options_
.
posterior_sampler_options
.
dsmh
.
lambda1
));
c
=
0.055
;
MM
=
int64
(
options_
.
posterior_sampler_options
.
dsmh
.
N
*
options_
.
posterior_sampler_options
.
dsmh
.
G
/
10
)
;
% Step 0: Initialization of the sampler
[
param
,
tlogpost_iminus1
,
loglik
,
bayestopt_
]
=
...
smc_samplers_initialization
(
TargetFun
,
'dsmh'
,
opts
.
particles
,
mh_bounds
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
oo_
);
ESS
=
zeros
(
options_
.
posterior_sampler_options
.
dsmh
.
H
,
1
)
;
zhat
=
1
;
% The DSMH starts here
for
i
=
2
:
options_
.
posterior_sampler_options
.
dsmh
.
H
disp
(
''
);
disp
(
'Tempered iteration'
);
disp
(
i
)
;
% Step 1: sort the densities and compute IS weigths
[
tlogpost_iminus1
,
loglik
,
param
]
=
sort_matrices
(
tlogpost_iminus1
,
loglik
,
param
)
;
[
tlogpost_i
,
weights
,
zhat
,
ESS
,
Omegachol
]
=
compute_IS_weights_and_moments
(
param
,
tlogpost_iminus1
,
loglik
,
lambda
,
i
,
zhat
,
ESS
)
;
% Step 2: tune c_i
c
=
tune_c
(
TargetFun
,
param
,
tlogpost_i
,
lambda
,
i
,
c
,
Omegachol
,
weights
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
);
% Step 3: Metropolis step
[
param
,
tlogpost_iminus1
,
loglik
]
=
mutation_DSMH
(
TargetFun
,
param
,
tlogpost_i
,
tlogpost_iminus1
,
loglik
,
lambda
,
i
,
c
,
MM
,
Omegachol
,
weights
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
);
end
weights
=
exp
(
loglik
*
(
lambda
(
end
)
-
lambda
(
end
-
1
)));
weights
=
weights
/
sum
(
weights
);
indx_resmpl
=
smc_resampling
(
weights
,
rand
(
1
,
1
),
options_
.
posterior_sampler_options
.
dsmh
.
particles
);
distrib_param
=
param
(:,
indx_resmpl
);
mean_xparam
=
mean
(
distrib_param
,
2
);
npar
=
length
(
xparam1
);
lb95_xparam
=
zeros
(
npar
,
1
)
;
ub95_xparam
=
zeros
(
npar
,
1
)
;
for
i
=
1
:
npar
temp
=
sortrows
(
distrib_param
(
i
,:)
'
)
;
lb95_xparam
(
i
)
=
temp
(
0.025
*
options_
.
posterior_sampler_options
.
dsmh
.
particles
)
;
ub95_xparam
(
i
)
=
temp
(
0.975
*
options_
.
posterior_sampler_options
.
dsmh
.
particles
)
;
end
TeX
=
options_
.
TeX
;
str
=
sprintf
(
' Param. \t Lower Bound (95%%) \t Mean \t Upper Bound (95%%)'
);
for
l
=
1
:
npar
name
=
get_the_name
(
l
,
TeX
,
M_
,
estim_params_
,
options_
.
varobs
);
str
=
sprintf
(
'%s\n %s \t\t %5.4f \t\t %7.5f \t\t %5.4f'
,
str
,
name
,
lb95_xparam
(
l
),
mean_xparam
(
l
),
ub95_xparam
(
l
));
end
disp
(
str
)
disp
(
''
)
%% Plot parameters densities
if
TeX
fidTeX
=
fopen
([
M_
.
fname
'_param_density.tex'
],
'w'
);
fprintf
(
fidTeX
,
'%% TeX eps-loader file generated by DSMH.m (Dynare).\n'
);
fprintf
(
fidTeX
,[
'%% '
datestr
(
now
,
0
)
'\n'
]);
fprintf
(
fidTeX
,
' \n'
);
end
number_of_grid_points
=
2
^
9
;
% 2^9 = 512 !... Must be a power of two.
bandwidth
=
0
;
% Rule of thumb optimal bandwidth parameter.
kernel_function
=
'gaussian'
;
% Gaussian kernel for Fast Fourier Transform approximation.
plt
=
1
;
%for plt = 1:nbplt,
if
TeX
NAMES
=
[];
TeXNAMES
=
[];
end
hh_fig
=
dyn_figure
(
options_
.
nodisplay
,
'Name'
,
'Parameters Densities'
);
for
k
=
1
:
npar
%min(nstar,npar-(plt-1)*nstar)
subplot
(
ceil
(
sqrt
(
npar
)),
floor
(
sqrt
(
npar
)),
k
)
%kk = (plt-1)*nstar+k;
[
name
,
texname
]
=
get_the_name
(
k
,
TeX
,
M_
,
estim_params_
,
options_
.
varobs
);
optimal_bandwidth
=
mh_optimal_bandwidth
(
distrib_param
(
k
,:)
'
,
options_
.
posterior_sampler_options
.
dsmh
.
particles
,
bandwidth
,
kernel_function
);
[
density
(:,
1
),
density
(:,
2
)]
=
kernel_density_estimate
(
distrib_param
(
k
,:)
'
,
number_of_grid_points
,
...
options_
.
posterior_sampler_options
.
dsmh
.
particles
,
optimal_bandwidth
,
kernel_function
);
plot
(
density
(:,
1
),
density
(:,
2
));
hold
on
if
TeX
title
(
texname
,
'interpreter'
,
'latex'
)
else
title
(
name
,
'interpreter'
,
'none'
)
end
hold
off
axis
tight
drawnow
end
dyn_saveas
(
hh_fig
,[
M_
.
fname
'_param_density'
int2str
(
plt
)
],
options_
.
nodisplay
,
options_
.
graph_format
);
if
TeX
&&
any
(
strcmp
(
'eps'
,
cellstr
(
options_
.
graph_format
)))
% TeX eps loader file
fprintf
(
fidTeX
,
'\\begin{figure}[H]\n'
);
fprintf
(
fidTeX
,
'\\centering \n'
);
fprintf
(
fidTeX
,
'\\includegraphics[width=%2.2f\\textwidth]{%_param_density%s}\n'
,
min
(
k
/
floor
(
sqrt
(
npar
)),
1
),
M_
.
fname
,
int2str
(
plt
));
fprintf
(
fidTeX
,
'\\caption{Parameter densities based on the Dynamic Striated Metropolis-Hastings algorithm.}'
);
fprintf
(
fidTeX
,
'\\label{Fig:ParametersDensities:%s}\n'
,
int2str
(
plt
));
fprintf
(
fidTeX
,
'\\end{figure}\n'
);
fprintf
(
fidTeX
,
' \n'
);
end
%end
function
[
tlogpost_iminus1
,
loglik
,
param
]
=
sort_matrices
(
tlogpost_iminus1
,
loglik
,
param
)
[
~
,
indx_ord
]
=
sortrows
(
tlogpost_iminus1
);
tlogpost_iminus1
=
tlogpost_iminus1
(
indx_ord
);
param
=
param
(:,
indx_ord
);
loglik
=
loglik
(
indx_ord
);
function
[
tlogpost_i
,
weights
,
zhat
,
ESS
,
Omegachol
]
=
compute_IS_weights_and_moments
(
param
,
tlogpost_iminus1
,
loglik
,
lambda
,
i
,
zhat
,
ESS
)
if
i
==
1
tlogpost_i
=
tlogpost_iminus1
+
loglik
*
lambda
(
i
);
else
tlogpost_i
=
tlogpost_iminus1
+
loglik
*
(
lambda
(
i
)
-
lambda
(
i
-
1
));
end
weights
=
exp
(
tlogpost_i
-
tlogpost_iminus1
);
zhat
=
(
mean
(
weights
))
*
zhat
;
weights
=
weights
/
sum
(
weights
);
ESS
(
i
)
=
1
/
sum
(
weights
.^
2
);
% estimates of mean and variance
mu
=
param
*
weights
;
z
=
bsxfun
(
@
minus
,
param
,
mu
);
Omega
=
z
*
diag
(
weights
)
*
z
'
;
Omegachol
=
chol
(
Omega
)
'
;
function
c
=
tune_c
(
TargetFun
,
param
,
tlogpost_i
,
lambda
,
i
,
c
,
Omegachol
,
weights
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
)
disp
(
'tuning c_i...'
);
disp
(
'Initial value ='
);
disp
(
c
)
;
npar
=
size
(
param
,
1
);
lower_prob
=
(
.
5
*
(
options_
.
posterior_sampler_options
.
dsmh
.
alpha0
+
options_
.
posterior_sampler_options
.
dsmh
.
alpha1
))
^
5
;
upper_prob
=
(
.
5
*
(
options_
.
posterior_sampler_options
.
dsmh
.
alpha0
+
options_
.
posterior_sampler_options
.
dsmh
.
alpha1
))
^
(
1
/
5
);
stop
=
0
;
while
stop
==
0
acpt
=
0.0
;
indx_resmpl
=
smc_resampling
(
weights
,
rand
(
1
,
1
),
options_
.
posterior_sampler_options
.
dsmh
.
G
);
param0
=
param
(:,
indx_resmpl
);
tlogpost0
=
tlogpost_i
(
indx_resmpl
);
for
j
=
1
:
options_
.
posterior_sampler_options
.
dsmh
.
G
for
l
=
1
:
options_
.
posterior_sampler_options
.
dsmh
.
K
validate
=
0
;
while
validate
==
0
candidate
=
param0
(:,
j
)
+
sqrt
(
c
)
*
Omegachol
*
randn
(
npar
,
1
);
if
all
(
candidate
>=
mh_bounds
.
lb
)
&&
all
(
candidate
<=
mh_bounds
.
ub
)
[
tlogpostx
,
loglikx
]
=
tempered_likelihood
(
TargetFun
,
candidate
,
lambda
(
i
),
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
);
if
isfinite
(
loglikx
)
% if returned log-density is not Inf or Nan (penalized value)
validate
=
1
;
if
rand
(
1
,
1
)
<
exp
(
tlogpostx
-
tlogpost0
(
j
))
% accept
acpt
=
acpt
+
1
/(
options_
.
posterior_sampler_options
.
dsmh
.
G
*
options_
.
posterior_sampler_options
.
dsmh
.
K
);
param0
(:,
j
)
=
candidate
;
tlogpost0
(
j
)
=
tlogpostx
;
end
end
end
end
end
end
disp
(
'Acceptation rate ='
)
;
disp
(
acpt
)
;
if
options_
.
posterior_sampler_options
.
dsmh
.
alpha0
<=
acpt
&&
acpt
<=
options_
.
posterior_sampler_options
.
dsmh
.
alpha1
disp
(
'done!'
);
stop
=
1
;
else
if
acpt
<
lower_prob
c
=
c
/
5
;
elseif
lower_prob
<=
acpt
&&
acpt
<=
upper_prob
c
=
c
*
log
(
.
5
*
(
options_
.
posterior_sampler_options
.
dsmh
.
alpha0
+
options_
.
posterior_sampler_options
.
dsmh
.
alpha1
))/
log
(
acpt
);
else
c
=
5
*
c
;
end
disp
(
'Trying with c= '
)
;
disp
(
c
)
end
end
function
[
out_param
,
out_tlogpost_iminus1
,
out_loglik
]
=
mutation_DSMH
(
TargetFun
,
param
,
tlogpost_i
,
tlogpost_iminus1
,
loglik
,
lambda
,
i
,
c
,
MM
,
Omegachol
,
weights
,
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
)
indx_levels
=
(
1
:
1
:
MM
-
1
)
*
options_
.
posterior_sampler_options
.
dsmh
.
N
*
options_
.
posterior_sampler_options
.
dsmh
.
G
/
MM
;
npar
=
size
(
param
,
1
)
;
p
=
1
/(
10
*
options_
.
posterior_sampler_options
.
dsmh
.
tau
);
disp
(
'Metropolis step...'
);
% build the dynamic grid of levels
levels
=
[
0.0
;
tlogpost_iminus1
(
indx_levels
)];
% initialize the outputs
out_param
=
param
;
out_tlogpost_iminus1
=
tlogpost_i
;
out_loglik
=
loglik
;
% resample and initialize the starting groups
indx_resmpl
=
smc_resampling
(
weights
,
rand
(
1
,
1
),
options_
.
posterior_sampler_options
.
dsmh
.
G
);
param0
=
param
(:,
indx_resmpl
);
tlogpost_iminus10
=
tlogpost_iminus1
(
indx_resmpl
);
tlogpost_i0
=
tlogpost_i
(
indx_resmpl
);
loglik0
=
loglik
(
indx_resmpl
);
% Start the Metropolis
for
l
=
1
:
options_
.
posterior_sampler_options
.
dsmh
.
N
*
options_
.
posterior_sampler_options
.
dsmh
.
tau
for
j
=
1
:
options_
.
posterior_sampler_options
.
dsmh
.
G
u1
=
rand
(
1
,
1
);
u2
=
rand
(
1
,
1
);
if
u1
<
p
k
=
1
;
for
m
=
1
:
MM
-
1
if
levels
(
m
)
<=
tlogpost_iminus10
(
j
)
&&
tlogpost_iminus10
(
j
)
<
levels
(
m
+
1
)
k
=
m
+
1
;
break
end
end
indx
=
floor
(
(
k
-
1
)
*
options_
.
posterior_sampler_options
.
dsmh
.
N
*
options_
.
posterior_sampler_options
.
dsmh
.
G
/
MM
+
1
+
u2
*
(
options_
.
posterior_sampler_options
.
dsmh
.
N
*
options_
.
posterior_sampler_options
.
dsmh
.
G
/
MM
-
1
)
);
if
i
==
1
alp
=
(
loglik
(
indx
)
-
loglik0
(
j
))
*
lambda
(
i
);
else
alp
=
(
loglik
(
indx
)
-
loglik0
(
j
))
*
(
lambda
(
i
)
-
lambda
(
i
-
1
));
end
if
u2
<
exp
(
alp
)
param0
(:,
j
)
=
param
(:,
indx
);
tlogpost_i0
(
j
)
=
tlogpost_i
(
indx
);
loglik0
(
j
)
=
loglik
(
indx
);
tlogpost_iminus10
(
j
)
=
tlogpost_iminus1
(
indx
);
end
else
validate
=
0
;
while
validate
==
0
candidate
=
param0
(:,
j
)
+
sqrt
(
c
)
*
Omegachol
*
randn
(
npar
,
1
);
if
all
(
candidate
(:)
>=
mh_bounds
.
lb
)
&&
all
(
candidate
(:)
<=
mh_bounds
.
ub
)
[
tlogpostx
,
loglikx
]
=
tempered_likelihood
(
TargetFun
,
candidate
,
lambda
(
i
),
dataset_
,
dataset_info
,
options_
,
M_
,
estim_params_
,
bayestopt_
,
mh_bounds
,
oo_
);
if
isfinite
(
loglikx
)
% if returned log-density is not Inf or Nan (penalized value)
validate
=
1
;
if
u2
<
exp
(
tlogpostx
-
tlogpost_i0
(
j
))
% accept
param0
(:,
j
)
=
candidate
;
tlogpost_i0
(
j
)
=
tlogpostx
;
loglik0
(
j
)
=
loglikx
;
if
i
==
1
tlogpost_iminus10
(
j
)
=
tlogpostx
-
loglikx
*
lambda
(
i
);
else
tlogpost_iminus10
(
j
)
=
tlogpostx
-
loglikx
*
(
lambda
(
i
)
-
lambda
(
i
-
1
));
end
end
end
end
end
end
end
if
mod
(
l
,
options_
.
posterior_sampler_options
.
dsmh
.
tau
)
==
0
rang
=
(
l
/
options_
.
posterior_sampler_options
.
dsmh
.
tau
-
1
)
*
options_
.
posterior_sampler_options
.
dsmh
.
G
+
1
:
l
*
options_
.
posterior_sampler_options
.
dsmh
.
G
/
options_
.
posterior_sampler_options
.
dsmh
.
tau
;
out_param
(:,
rang
)
=
param0
;
out_tlogpost_iminus1
(
rang
)
=
tlogpost_i0
;
out_loglik
(
rang
)
=
loglik0
;
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment