Skip to content
Snippets Groups Projects
Select Git revision
  • ha_mcp
  • master default protected
  • pac_composite_target_mce
  • ramsey_k_order
  • 4.6
  • occbin
  • uop
  • rework_pac
  • aux_vars_fix
  • created_preprocessor_repo
10 results

Shocks.cc

Blame
  • Forked from Dynare / preprocessor
    482 commits behind the upstream repository.
    Shocks.cc 33.51 KiB
    /*
     * Copyright © 2003-2022 Dynare Team
     *
     * This file is part of Dynare.
     *
     * Dynare is free software: you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation, either version 3 of the License, or
     * (at your option) any later version.
     *
     * Dynare is distributed in the hope that it will be useful,
     * but WITHOUT ANY WARRANTY; without even the implied warranty of
     * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     * GNU General Public License for more details.
     *
     * You should have received a copy of the GNU General Public License
     * along with Dynare.  If not, see <https://www.gnu.org/licenses/>.
     */
    
    #include <cassert>
    #include <cstdlib>
    #include <iostream>
    #include <utility>
    
    #include "Shocks.hh"
    
    AbstractShocksStatement::AbstractShocksStatement(bool mshocks_arg,
                                                     bool overwrite_arg,
                                                     det_shocks_t det_shocks_arg,
                                                     const SymbolTable &symbol_table_arg) :
      mshocks{mshocks_arg},
      overwrite{overwrite_arg},
      det_shocks{move(det_shocks_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    AbstractShocksStatement::writeDetShocks(ostream &output) const
    {
      int exo_det_length = 0;
    
      for (const auto & [id, shock_vec] : det_shocks)
        for (bool exo_det = (symbol_table.getType(id) == SymbolType::exogenousDet);
             const auto &[period1, period2, value] : shock_vec)
          {
            output << "M_.det_shocks = [ M_.det_shocks;" << endl
                   << boolalpha
                   << "struct('exo_det'," << exo_det
                   << ",'exo_id'," << symbol_table.getTypeSpecificID(id)+1
                   << ",'multiplicative'," << mshocks
                   << ",'periods'," << period1 << ":" << period2
                   << ",'value',";
            value->writeOutput(output);
            output << ") ];" << endl;
    
            if (exo_det && period2 > exo_det_length)
              exo_det_length = period2;
          }
      output << "M_.exo_det_length = " << exo_det_length << ";\n";
    }
    
    void
    AbstractShocksStatement::writeJsonDetShocks(ostream &output) const
    {
      output << R"("deterministic_shocks": [)";
      for (bool printed_something{false};
           const auto &[id, shock_vec] : det_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("values": [)";
          for (bool printed_something2{false};
               const auto &[period1, period2, value] : shock_vec)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << "]";
    }
    
    ShocksStatement::ShocksStatement(bool overwrite_arg,
                                     det_shocks_t det_shocks_arg,
                                     var_and_std_shocks_t var_shocks_arg,
                                     var_and_std_shocks_t std_shocks_arg,
                                     covar_and_corr_shocks_t covar_shocks_arg,
                                     covar_and_corr_shocks_t corr_shocks_arg,
                                     const SymbolTable &symbol_table_arg) :
      AbstractShocksStatement{false, overwrite_arg, move(det_shocks_arg), symbol_table_arg},
      var_shocks{move(var_shocks_arg)},
      std_shocks{move(std_shocks_arg)},
      covar_shocks{move(covar_shocks_arg)},
      corr_shocks{move(corr_shocks_arg)}
    {
    }
    
    void
    ShocksStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                 [[maybe_unused]] bool minimal_workspace) const
    {
      output << "%" << endl
             << "% SHOCKS instructions" << endl
             << "%" << endl;
    
      if (overwrite)
        {
          output << "M_.det_shocks = [];" << endl;
    
          output << "M_.Sigma_e = zeros(" << symbol_table.exo_nbr() << ", "
                 << symbol_table.exo_nbr() << ");" << endl
                 << "M_.Correlation_matrix = eye(" << symbol_table.exo_nbr() << ", "
                 << symbol_table.exo_nbr() << ");" << endl;
    
          if (has_calibrated_measurement_errors())
            output << "M_.H = zeros(" << symbol_table.observedVariablesNbr() << ", "
                   << symbol_table.observedVariablesNbr() << ");" << endl
                   << "M_.Correlation_matrix_ME = eye(" << symbol_table.observedVariablesNbr() << ", "
                   << symbol_table.observedVariablesNbr() << ");" << endl;
          else
            output << "M_.H = 0;" << endl
                   << "M_.Correlation_matrix_ME = 1;" << endl;
    
        }
    
      writeDetShocks(output);
      writeVarAndStdShocks(output);
      writeCovarAndCorrShocks(output);
    
      /* M_.sigma_e_is_diagonal is initialized to 1 by ModFile.cc.
         If there are no off-diagonal elements, and we are not in overwrite mode,
         then we don't reset it to 1, since there might be previous shocks blocks
         with off-diagonal elements. */
      if (covar_shocks.size()+corr_shocks.size() > 0)
        output << "M_.sigma_e_is_diagonal = 0;" << endl;
      else if (overwrite)
        output << "M_.sigma_e_is_diagonal = 1;" << endl;
    }
    
    void
    ShocksStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "shocks")"
             << R"(, "overwrite": )" << boolalpha << overwrite;
      if (!det_shocks.empty())
        {
          output << ", ";
          writeJsonDetShocks(output);
        }
      output<< R"(, "variance": [)";
      for (bool printed_something{false};
           auto &[id, value] : var_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"name": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("variance": ")";
          value->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << R"(, "stderr": [)";
      for (bool printed_something{false};
           auto &[id, value] : std_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"name": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("stderr": ")";
          value->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << R"(, "covariance": [)";
      for (bool printed_something{false};
           auto &[ids, value] : covar_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << "{"
                 << R"("name": ")" << symbol_table.getName(ids.first) << R"(", )"
                 << R"("name2": ")" << symbol_table.getName(ids.second) << R"(", )"
                 << R"("covariance": ")";
          value->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << R"(, "correlation": [)";
      for (bool printed_something{false};
           auto &[ids, value] : corr_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << "{"
                 << R"("name": ")" << symbol_table.getName(ids.first) << R"(", )"
                 << R"("name2": ")" << symbol_table.getName(ids.second) << R"(", )"
                 << R"("correlation": ")";
          value->writeJsonOutput(output, {}, {});
          output << R"("})";
        }
      output << "]"
             << "}";
    }
    
    void
    ShocksStatement::writeVarOrStdShock(ostream &output, const pair<int, expr_t> &it,
                                        bool stddev) const
    {
      SymbolType type = symbol_table.getType(it.first);
      assert(type == SymbolType::exogenous || symbol_table.isObservedVariable(it.first));
    
      int id;
      if (type == SymbolType::exogenous)
        {
          output << "M_.Sigma_e(";
          id = symbol_table.getTypeSpecificID(it.first) + 1;
        }
      else
        {
          output << "M_.H(";
          id = symbol_table.getObservedVariableIndex(it.first) + 1;
        }
    
      output << id << ", " << id << ") = ";
      if (stddev)
        output << "(";
      it.second->writeOutput(output);
      if (stddev)
        output << ")^2";
      output << ";" << endl;
    }
    
    void
    ShocksStatement::writeVarAndStdShocks(ostream &output) const
    {
      for (const auto &it : var_shocks)
        writeVarOrStdShock(output, it, false);
    
      for (const auto &it : std_shocks)
        writeVarOrStdShock(output, it, true);
    }
    
    void
    ShocksStatement::writeCovarOrCorrShock(ostream &output, const pair<pair<int, int>, expr_t> &it,
                                           bool corr) const
    {
      SymbolType type1 = symbol_table.getType(it.first.first);
      SymbolType type2 = symbol_table.getType(it.first.second);
      assert((type1 == SymbolType::exogenous && type2 == SymbolType::exogenous)
             || (symbol_table.isObservedVariable(it.first.first) && symbol_table.isObservedVariable(it.first.second)));
      string matrix, corr_matrix;
      int id1, id2;
      if (type1 == SymbolType::exogenous)
        {
          matrix = "M_.Sigma_e";
          corr_matrix = "M_.Correlation_matrix";
          id1 = symbol_table.getTypeSpecificID(it.first.first) + 1;
          id2 = symbol_table.getTypeSpecificID(it.first.second) + 1;
        }
      else
        {
          matrix = "M_.H";
          corr_matrix = "M_.Correlation_matrix_ME";
          id1 = symbol_table.getObservedVariableIndex(it.first.first) + 1;
          id2 = symbol_table.getObservedVariableIndex(it.first.second) + 1;
        }
    
      output << matrix << "(" << id1 << ", " << id2 << ") = ";
      it.second->writeOutput(output);
      if (corr)
        output << "*sqrt(" << matrix << "(" << id1 << ", " << id1 << ")*"
               << matrix << "(" << id2 << ", " << id2 << "))";
      output << ";" << endl
             << matrix << "(" << id2 << ", " << id1 << ") = "
             << matrix << "(" << id1 << ", " << id2 << ");" << endl;
    
      if (corr)
        {
          output << corr_matrix << "(" << id1 << ", " << id2 << ") = ";
          it.second->writeOutput(output);
          output << ";" << endl
                 << corr_matrix << "(" << id2 << ", " << id1 << ") = "
                 << corr_matrix << "(" << id1 << ", " << id2 << ");" << endl;
        }
    }
    
    void
    ShocksStatement::writeCovarAndCorrShocks(ostream &output) const
    {
      for (const auto &it : covar_shocks)
        writeCovarOrCorrShock(output, it, false);
    
      for (const auto &it : corr_shocks)
        writeCovarOrCorrShock(output, it, true);
    }
    
    void
    ShocksStatement::checkPass(ModFileStructure &mod_file_struct,
                               [[maybe_unused]] WarningConsolidation &warnings)
    {
      /* Error out if variables are not of the right type. This must be done here
         and not at parsing time (see #448).
         Also Determine if there is a calibrated measurement error */
      for (auto [id, val] : var_shocks)
        {
          if (symbol_table.getType(id) != SymbolType::exogenous
              && !symbol_table.isObservedVariable(id))
            {
              cerr << "shocks: setting a variance on '"
                   << symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      for (auto [id, val] : std_shocks)
        {
          if (symbol_table.getType(id) != SymbolType::exogenous
              && !symbol_table.isObservedVariable(id))
            {
              cerr << "shocks: setting a standard error on '"
                   << symbol_table.getName(id) << "' is not allowed, because it is neither an exogenous variable nor an observed endogenous variable" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      for (const auto & [ids, val] : covar_shocks)
        {
          auto &[symb_id1, symb_id2] = ids;
    
          if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
                 && symbol_table.getType(symb_id2) == SymbolType::exogenous)
                || (symbol_table.isObservedVariable(symb_id1)
                    && symbol_table.isObservedVariable(symb_id2))))
            {
              cerr << "shocks: setting a covariance between '"
                   << symbol_table.getName(symb_id1) << "' and '"
                   << symbol_table.getName(symb_id2) << "'is not allowed; covariances can only be specified for exogenous or observed endogenous variables of same type" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      for (const auto & [ids, val] : corr_shocks)
        {
          auto &[symb_id1, symb_id2] = ids;
    
          if (!((symbol_table.getType(symb_id1) == SymbolType::exogenous
                 && symbol_table.getType(symb_id2) == SymbolType::exogenous)
                || (symbol_table.isObservedVariable(symb_id1)
                    && symbol_table.isObservedVariable(symb_id2))))
            {
              cerr << "shocks: setting a correlation between '"
                   << symbol_table.getName(symb_id1) << "' and '"
                   << symbol_table.getName(symb_id2) << "'is not allowed; correlations can only be specified for exogenous or observed endogenous variables of same type" << endl;
              exit(EXIT_FAILURE);
            }
        }
    
      // Determine if there is a calibrated measurement error
      mod_file_struct.calibrated_measurement_errors |= has_calibrated_measurement_errors();
    
      // Fill in mod_file_struct.parameters_with_shocks_values (related to #469)
      for (auto [id, val] : var_shocks)
        val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
      for (auto [id, val] : std_shocks)
        val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
      for (const auto &[ids, val] : covar_shocks)
        val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
      for (const auto &[ids, val] : corr_shocks)
        val->collectVariables(SymbolType::parameter, mod_file_struct.parameters_within_shocks_values);
    }
    
    bool
    ShocksStatement::has_calibrated_measurement_errors() const
    {
      for (auto [id, val] : var_shocks)
        if (symbol_table.isObservedVariable(id))
          return true;
    
      for (auto [id, val] : std_shocks)
        if (symbol_table.isObservedVariable(id))
          return true;
    
      for (const auto & [ids, val] : covar_shocks)
        if (symbol_table.isObservedVariable(ids.first)
            || symbol_table.isObservedVariable(ids.second))
          return true;
    
      for (const auto & [ids, val] : corr_shocks)
        if (symbol_table.isObservedVariable(ids.first)
            || symbol_table.isObservedVariable(ids.second))
          return true;
    
      return false;
    }
    
    MShocksStatement::MShocksStatement(bool overwrite_arg,
                                       det_shocks_t det_shocks_arg,
                                       const SymbolTable &symbol_table_arg) :
      AbstractShocksStatement{true, overwrite_arg, move(det_shocks_arg), symbol_table_arg}
    {
    }
    
    void
    MShocksStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                  [[maybe_unused]] bool minimal_workspace) const
    {
      output << "%" << endl
             << "% MSHOCKS instructions" << endl
             << "%" << endl;
    
      if (overwrite)
        output << "M_.det_shocks = [];" << endl;
    
      writeDetShocks(output);
    }
    
    void
    MShocksStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "mshocks")"
             << R"(, "overwrite": )" << boolalpha << overwrite;
      if (!det_shocks.empty())
        {
          output << ", ";
          writeJsonDetShocks(output);
        }
      output << "}";
    }
    
    ShocksSurpriseStatement::ShocksSurpriseStatement(bool overwrite_arg,
                                                     AbstractShocksStatement::det_shocks_t surprise_shocks_arg,
                                                     const SymbolTable &symbol_table_arg) :
      overwrite{overwrite_arg}, surprise_shocks{move(surprise_shocks_arg)},
      symbol_table{symbol_table_arg}
    {
    }
    
    void
    ShocksSurpriseStatement::checkPass(ModFileStructure &mod_file_struct,
                                       [[maybe_unused]] WarningConsolidation &warnings)
    {
      mod_file_struct.shocks_surprise_present = true;
    }
    
    void
    ShocksSurpriseStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                         [[maybe_unused]] bool minimal_workspace) const
    {
      if (overwrite)
        output << "M_.surprise_shocks = [" << endl;
      else
        output << "M_.surprise_shocks = [ M_.surprise_shocks;" << endl;
      for (const auto &[id, shock_vec] : surprise_shocks)
        for (const auto &[period1, period2, value] : shock_vec)
          {
            output << "struct('exo_id'," << symbol_table.getTypeSpecificID(id)+1
                   << ",'periods'," << period1 << ":" << period2
                   << ",'value',";
            value->writeOutput(output);
            output << ");" << endl;
          }
      output << "];" << endl;
    }
    
    void
    ShocksSurpriseStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "shocks")"
             << R"(, "surprise": true)"
             << R"(, "surprise_shocks": [)";
      for (bool printed_something{false};
           const auto &[id, shock_vec] : surprise_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("values": [)";
          for (bool printed_something2{false};
               const auto &[period1, period2, value] : shock_vec)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << "]}";
    }
    
    ShocksLearntInStatement::ShocksLearntInStatement(int learnt_in_period_arg, bool overwrite_arg,
                                                     learnt_shocks_t learnt_shocks_arg,
                                                     const SymbolTable &symbol_table_arg) :
      learnt_in_period{learnt_in_period_arg}, overwrite{overwrite_arg},
      learnt_shocks{move(learnt_shocks_arg)}, symbol_table{symbol_table_arg}
    {
    }
    
    void
    ShocksLearntInStatement::checkPass(ModFileStructure &mod_file_struct,
                                       [[maybe_unused]] WarningConsolidation &warnings)
    {
      mod_file_struct.shocks_learnt_in_present = true;
    }
    
    string
    ShocksLearntInStatement::typeToString(LearntShockType type)
    {
      switch (type)
        {
        case LearntShockType::level:
          return "level";
        case LearntShockType::add:
          return "add";
        case LearntShockType::multiply:
          return "multiply";
        }
      exit(EXIT_FAILURE); // Silence GCC warning
    }
    
    void
    ShocksLearntInStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                         [[maybe_unused]] bool minimal_workspace) const
    {
      if (overwrite)
        output << "if ~isempty(M_.learnt_shocks)" << endl
               << "  M_.learnt_shocks = M_.learnt_shocks([M_.learnt_shocks.learnt_in] ~= " << learnt_in_period << ");" << endl
               << "end" << endl;
    
      output << "M_.learnt_shocks = [ M_.learnt_shocks;" << endl;
      for (const auto &[id, shock_vec] : learnt_shocks)
        for (const auto &[type, period1, period2, value] : shock_vec)
          {
            output << "struct('learnt_in'," << learnt_in_period
                   << ",'exo_id'," << symbol_table.getTypeSpecificID(id)+1
                   << ",'periods'," << period1 << ":" << period2
                   << ",'type','" << typeToString(type) << "'"
                   << ",'value',";
            value->writeOutput(output);
            output << ");" << endl;
          }
      output << "];" << endl;
    }
    
    void
    ShocksLearntInStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "shocks")"
             << R"(, "learnt_in": )" << learnt_in_period
             << R"(, "overwrite": )" << boolalpha << overwrite
             << R"(, "learnt_shocks": [)";
      for (bool printed_something{false};
           const auto &[id, shock_vec] : learnt_shocks)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("values": [)";
          for (bool printed_something2{false};
               const auto &[type, period1, period2, value] : shock_vec)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("type": ")" << typeToString(type) << R"(", )"
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << "]}";
    }
    
    ConditionalForecastPathsStatement::ConditionalForecastPathsStatement(AbstractShocksStatement::det_shocks_t paths_arg,
                                                                         const SymbolTable &symbol_table_arg) :
      paths{move(paths_arg)},
      symbol_table{symbol_table_arg},
      path_length{computePathLength(paths)}
    {
    }
    
    int
    ConditionalForecastPathsStatement::computePathLength(const AbstractShocksStatement::det_shocks_t &paths)
    {
      int length{0};
      for (const auto &[ignore, elems] : paths)
        for (auto &[period1, period2, value] : elems)
          // Period1 < Period2, as enforced in ParsingDriver::add_period()
          length = max(length, period2);
      return length;
    }
    
    void
    ConditionalForecastPathsStatement::writeOutput(ostream &output,
                                                   [[maybe_unused]] const string &basename,
                                                   [[maybe_unused]] bool minimal_workspace) const
    {
      assert(path_length > 0);
      output << "constrained_vars_ = [];" << endl
             << "constrained_paths_ = NaN(" << paths.size() << ", " << path_length << ");" << endl;
    
      for (int k{1};
           const auto &[id, elems] : paths)
        {
          if (k == 1)
            output << "constrained_vars_ = " << symbol_table.getTypeSpecificID(id) + 1 << ";" << endl;
          else
            output << "constrained_vars_ = [constrained_vars_; " << symbol_table.getTypeSpecificID(id) + 1 << "];" << endl;
          for (const auto &[period1, period2, value] : elems)
            for (int j = period1; j <= period2; j++)
              {
                output << "constrained_paths_(" << k << "," << j << ")=";
                value->writeOutput(output);
                output << ";" << endl;
              }
          k++;
        }
    }
    
    void
    ConditionalForecastPathsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "conditional_forecast_paths")"
             << R"(, "paths": [)";
      for (bool printed_something{false};
           const auto &[id, elems] : paths)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(id) << R"(", )"
                 << R"("values": [)";
          for (bool printed_something2{false};
               const auto &[period1, period2, value] : elems)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << "]}";
    }
    
    MomentCalibration::MomentCalibration(constraints_t constraints_arg,
                                         const SymbolTable &symbol_table_arg)
      : constraints{move(constraints_arg)}, symbol_table{symbol_table_arg}
    {
    }
    
    void
    MomentCalibration::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                   [[maybe_unused]] bool minimal_workspace) const
    {
      output << "options_.endogenous_prior_restrictions.moment = {" << endl;
      for (const auto &c : constraints)
        {
          output << "'" << symbol_table.getName(c.endo1) << "', "
                 << "'" << symbol_table.getName(c.endo2) << "', "
                 << c.lags << ", "
                 << "[ ";
          c.lower_bound->writeOutput(output);
          output << ", ";
          c.upper_bound->writeOutput(output);
          output << " ];"
                 << endl;
        }
      output << "};" << endl;
    }
    
    void
    MomentCalibration::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "moment_calibration")"
             << R"(, "moment_calibration_criteria": [)";
      for (bool printed_something{false};
           const auto &c : constraints)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"endogenous1": ")" << symbol_table.getName(c.endo1) << R"(")"
                 << R"(, "endogenous2": ")" << symbol_table.getName(c.endo2) << R"(")"
                 << R"(, "lags": ")" << c.lags << R"(")"
                 << R"(, "lower_bound": ")";
          c.lower_bound->writeJsonOutput(output, {}, {});
          output << R"(")"
                 << R"(, "upper_bound": ")";
          c.upper_bound->writeJsonOutput(output, {}, {});
          output << R"(")"
                 << "}";
        }
      output << "]"
             << "}";
    }
    
    IrfCalibration::IrfCalibration(constraints_t constraints_arg,
                                   const SymbolTable &symbol_table_arg,
                                   OptionsList options_list_arg)
      : constraints{move(constraints_arg)}, symbol_table{symbol_table_arg}, options_list{move(options_list_arg)}
    {
    }
    
    void
    IrfCalibration::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                [[maybe_unused]] bool minimal_workspace) const
    {
      options_list.writeOutput(output);
    
      output << "options_.endogenous_prior_restrictions.irf = {" << endl;
      for (const auto &c : constraints)
        {
          output << "'" << symbol_table.getName(c.endo) << "', "
                 << "'" << symbol_table.getName(c.exo) << "', "
                 << c.periods << ", "
                 << "[ ";
          c.lower_bound->writeOutput(output);
          output << ", ";
          c.upper_bound->writeOutput(output);
          output << " ];"
                 << endl;
        }
      output << "};" << endl;
    }
    
    void
    IrfCalibration::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "irf_calibration")";
      if (options_list.getNumberOfOptions())
        {
          output << ", ";
          options_list.writeJsonOutput(output);
        }
    
      output << R"(, "irf_restrictions": [)";
      for (bool printed_something{false};
           const auto &c : constraints)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"endogenous": ")" << symbol_table.getName(c.endo) << R"(")"
                 << R"(, "exogenous": ")" << symbol_table.getName(c.exo) << R"(")"
                 << R"(, "periods": ")" << c.periods << R"(")"
                 << R"(, "lower_bound": ")";
          c.lower_bound->writeJsonOutput(output, {}, {});
          output << R"(")";
          output << R"(, "upper_bound": ")";
          c.upper_bound->writeJsonOutput(output, {}, {});
          output << R"(")"
                 << "}";
        }
      output << "]"
             << "}";
    }
    
    ShockGroupsStatement::ShockGroupsStatement(group_t shock_groups_arg, string name_arg)
      : shock_groups{move(shock_groups_arg)}, name{move(name_arg)}
    {
    }
    
    void
    ShockGroupsStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                      [[maybe_unused]] bool minimal_workspace) const
    {
      int i = 1;
      for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it)
        {
          bool unique_label{true};
          for (auto it1 = it+1; it1 != shock_groups.end(); ++it1)
            if (it->name == it1->name)
              {
                unique_label = false;
                cerr << "Warning: shock group label '" << it->name << "' has been reused. "
                     << "Only using the last definition." << endl;
                break;
              }
    
          if (unique_label)
            {
              output << "M_.shock_groups." << name
                     << ".group" << i << ".label = '" << it->name << "';" << endl
                     << "M_.shock_groups." << name
                     << ".group" << i << ".shocks = {";
              for (const auto &it1 : it->list)
                output << " '" << it1 << "'";
              output << "};" << endl;
              i++;
            }
        }
    }
    
    void
    ShockGroupsStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "shock_groups", "name": ")" << name << R"(", "groups": [)";
      bool printed_something{false};
      for (auto it = shock_groups.begin(); it != shock_groups.end(); ++it)
        {
          bool unique_label{true};
          for (auto it1 = it+1; it1 != shock_groups.end(); ++it1)
            if (it->name == it1->name)
              {
                unique_label = false;
                break;
              }
    
          if (unique_label)
            {
              if (exchange(printed_something, true))
                output << ", ";
              output << R"({"group_name": ")" << it->name << R"(",)"
                     << R"("shocks": [)";
              for (bool printed_something2{false};
                   const auto &it1 : it->list)
                {
                  if (exchange(printed_something2, true))
                    output << ", ";
                  output << R"(")" << it1 << R"(")";
                }
              output << "]}";
            }
        }
      output << "]}";
    }
    
    Init2shocksStatement::Init2shocksStatement(vector<pair<int, int>> init2shocks_arg, string name_arg,
                                               const SymbolTable &symbol_table_arg)
      : init2shocks{move(init2shocks_arg)}, name{move(name_arg)}, symbol_table{symbol_table_arg}
    {
    }
    
    void
    Init2shocksStatement::checkPass([[maybe_unused]] ModFileStructure &mod_file_struct,
                                    [[maybe_unused]] WarningConsolidation &warnings)
    {
      for (size_t i = 0; i < init2shocks.size(); i++)
        for (size_t j = i + 1; j < init2shocks.size(); j++)
          if (init2shocks.at(i).first == init2shocks.at(j).first)
            {
              cerr << "Init2shocks(" << name << "): enogenous variable '"
                   << symbol_table.getName(init2shocks.at(i).first)
                   << "' appears more than once in the init2shocks statement" << endl;
              exit(EXIT_FAILURE);
            }
    }
    
    void
    Init2shocksStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                      [[maybe_unused]] bool minimal_workspace) const
    {
      output << "M_.init2shocks." << name << " = {" << endl;
      for (const auto &[id1, id2] : init2shocks)
        output << "{'" << symbol_table.getName(id1) << "', '" << symbol_table.getName(id2) << "'};" << endl;
      output << "};" << endl;
    }
    
    void
    Init2shocksStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "init2shocks", "name": ")" << name << R"(", "groups": [)";
      for (bool printed_something{false};
           const auto &[id1, id2] : init2shocks)
        {
          if (exchange(printed_something, true))
            output << ",";
          output << R"({"endogenous": ")" << symbol_table.getName(id1) << R"(", )"
                 << R"( "exogenous": ")" << symbol_table.getName(id2) << R"("})";
        }
      output << "]}";
    }
    
    HeteroskedasticShocksStatement::HeteroskedasticShocksStatement(bool overwrite_arg,
                                                                   const heteroskedastic_shocks_t &values_arg,
                                                                   const heteroskedastic_shocks_t &scales_arg,
                                                                   const SymbolTable &symbol_table_arg)
      : overwrite{overwrite_arg}, values{values_arg}, scales{scales_arg}, symbol_table{symbol_table_arg}
    {
    }
    
    void
    HeteroskedasticShocksStatement::writeOutput(ostream &output, [[maybe_unused]] const string &basename,
                                                [[maybe_unused]] bool minimal_workspace) const
    {
      // NB: The first initialization of the fields is done in ModFile::writeMOutput()
      if (overwrite)
        output << "M_.heteroskedastic_shocks.Qvalue_orig = [];" << endl
               << "M_.heteroskedastic_shocks.Qscale_orig = [];" << endl;
    
      for (const auto &[symb_id, vec] : values)
        for (int tsid = symbol_table.getTypeSpecificID(symb_id);
             const auto &[period1, period2, value] : vec)
          {
            output << "M_.heteroskedastic_shocks.Qvalue_orig = [M_.heteroskedastic_shocks.Qvalue_orig; struct('exo_id', "
                   << tsid+1 << ",'periods',"
                   << period1 << ":" << period2 << ",'value',";
            value->writeOutput(output);
            output << ")];" << endl;
          }
      for (const auto &[symb_id, vec] : scales)
        for (int tsid = symbol_table.getTypeSpecificID(symb_id);
             const auto &[period1, period2, scale] : vec)
          {
            output << "M_.heteroskedastic_shocks.Qscale_orig = [M_.heteroskedastic_shocks.Qscale_orig; struct('exo_id', "
                   << tsid+1 << ",'periods',"
                   << period1 << ":" << period2 << ",'scale',";
            scale->writeOutput(output);
            output << ")];" << endl;
          }
    }
    
    void
    HeteroskedasticShocksStatement::writeJsonOutput(ostream &output) const
    {
      output << R"({"statementName": "heteroskedastic_shocks")"
             << R"(, "overwrite": )" << boolalpha << overwrite
             << R"(, "shocks_values": [)";
      for (bool printed_something{false};
           const auto &[symb_id, vec] : values)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(symb_id) << R"(", )"
                 << R"("values": [)";
          for (bool printed_something2{false};
               const auto &[period1, period2, value] : vec)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << R"(], "shocks_scales": [)";
      for (bool printed_something{false};
           const auto &[symb_id, vec] : scales)
        {
          if (exchange(printed_something, true))
            output << ", ";
          output << R"({"var": ")" << symbol_table.getName(symb_id) << R"(", )"
                 << R"("scales": [)";
          for (bool printed_something2{false};
               const auto &[period1, period2, value] : vec)
            {
              if (exchange(printed_something2, true))
                output << ", ";
              output << R"({"period1": )" << period1 << ", "
                     << R"("period2": )" << period2 << ", "
                     << R"("value": ")";
              value->writeJsonOutput(output, {}, {});
              output << R"("})";
            }
          output << "]}";
        }
      output << "]}";
    }