Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
dynare
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stéphane Adjemian
dynare
Commits
d68698ff
Commit
d68698ff
authored
Jun 21, 2018
by
Stéphane Adjemian
Browse files
Options
Downloads
Patches
Plain Diff
Added example with estimation of the PAC equation by NLS.
parent
b0f4ecd6
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/9/clean
+8
-0
8 additions, 0 deletions
examples/9/clean
examples/9/example.mod
+100
-0
100 additions, 0 deletions
examples/9/example.mod
with
108 additions
and
0 deletions
examples/9/clean
0 → 100755
+
8
−
0
View file @
d68698ff
#!/bin/sh
rm
-rf
example
rm
-f
example
*
.json
rm
-f
example
*
.m
rm
-f
example
*
.mat
rm
-f
example.log
rm
-f
ssr_zpac.m
This diff is collapsed.
Click to expand it.
examples/9/example.mod
0 → 100644
+
100
−
0
View file @
d68698ff
// --+ options: json=compute, stochastic +--
var x1 x2 x1bar x2bar z y;
varexo ex1 ex2 ex1bar ex2bar ez ey;
parameters
rho_1 rho_2
a_x1_0 a_x1_1 a_x1_2 a_x1_x2_1 a_x1_x2_2
a_x2_0 a_x2_1 a_x2_2 a_x2_x1_1 a_x2_x1_2
e_c_m c_z_1 c_z_2 gamma beta ;
rho_1 = .9;
rho_2 = -.2;
a_x1_0 = -.9;
a_x1_1 = .4;
a_x1_2 = .3;
a_x1_x2_1 = .1;
a_x1_x2_2 = .2;
a_x2_0 = -.9;
a_x2_1 = .2;
a_x2_2 = -.1;
a_x2_x1_1 = -.1;
a_x2_x1_2 = .2;
beta = .2;
e_c_m = .5;
c_z_1 = .2;
c_z_2 = -.1;
gamma = .7;
var_model(model_name=toto, eqtags=['eq:x1', 'eq:x2', 'eq:x1bar', 'eq:x2bar']);
pac_model(var_model_name=toto, discount=beta, model_name=pacman, undiff('eq:x1', 1), undiff('eq:x2', 1));
model;
[name='eq:y']
y = rho_1*y(-1) + rho_2*y(-2) + ey;
[name='eq:x1', data_type='nonstationary']
diff(x1) = a_x1_0*(x1(-1)-x1bar(-1)) + a_x1_1*diff(x1(-1)) + a_x1_2*diff(x1(-2)) + a_x1_x2_1*diff(x2(-1)) + a_x1_x2_2*diff(x2(-2)) + ex1;
[name='eq:x2', data_type='nonstationary']
diff(x2) = a_x2_0*(x2(-1)-x2bar(-1)) + a_x2_1*diff(x1(-1)) + a_x2_2*diff(x1(-2)) + a_x2_x1_1*diff(x2(-1)) + a_x2_x1_2*diff(x2(-2)) + ex2;
[name='eq:x1bar', data_type='nonstationary']
x1bar = x1bar(-1) + ex1bar;
[name='eq:x2bar', data_type='nonstationary']
x2bar = x2bar(-1) + ex2bar;
[name='zpac']
diff(z) = gamma*(e_c_m*(x1(-1)-z(-1)) + c_z_1*diff(z(-1)) + c_z_2*diff(z(-2)) + pac_expectation(pacman)) + (1-gamma)*y + ez;
end;
shocks;
var ex1 = 1.0;
var ex2 = 1.0;
var ex1bar = 1.0;
var ex2bar = 1.0;
var ez = 1.0;
var ey = 0.1;
end;
// Build the companion matrix of the VAR model (toto).
get_companion_matrix('toto', 'pacman');
// Update the parameters of the PAC expectation model (h0 and h1 vectors).
pac.update.expectation('pacman');
// Set initial conditions to zero. Please use more sensible values if any...
initialconditions = dseries(zeros(10, M_.endo_nbr+M_.exo_nbr), 2000Q1, vertcat(M_.endo_names,M_.exo_names));
// Simulate the model for 500 periods
TrueData = simul_backward_model(initialconditions, 500);
//[pnames, enames, xnames, pid, eid, xid] = get_variables_and_parameters_in_equation('zpac', M_)
// Define a structure describing the parameters to be estimated (with initial conditions).
eparams.e_c_m = .9;
eparams.c_z_1 = .5;
eparams.c_z_2 = .2;
eparams.gamma = .1;
// Define the dataset used for estimation
edata = TrueData;
edata.ez = dseries(NaN(TrueData.nobs, 1), 200Q1, 'ez');
pac.estimate('zpac', eparams, edata, 2005Q1:2120Q1);
disp(sprintf('Estimate of e_c_m: %f', M_.params(strmatch('e_c_m', M_.param_names, 'exact'))))
disp(sprintf('Estimate of c_z_1: %f', M_.params(strmatch('c_z_1', M_.param_names, 'exact'))))
disp(sprintf('Estimate of c_z_2: %f', M_.params(strmatch('c_z_2', M_.param_names, 'exact'))))
disp(sprintf('Estimate of gamma: %f', M_.params(strmatch('gamma', M_.param_names, 'exact'))))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment